高级检索

矿用输送带钉扣机穿钉机构运动误差分析

商德勇, 王宇威, 牛艳奇, 李占平, 王存忠

商德勇,王宇威,牛艳奇,等. 矿用输送带钉扣机穿钉机构运动误差分析[J]. 煤炭科学技术,2023,51(S1):362−371

. DOI: 10.13199/j.cnki.cst.2022-1043
引用本文:

商德勇,王宇威,牛艳奇,等. 矿用输送带钉扣机穿钉机构运动误差分析[J]. 煤炭科学技术,2023,51(S1):362−371

. DOI: 10.13199/j.cnki.cst.2022-1043

SHANG Deyong,WANG Yuwei,NIU Yanqi,et al. Motion error analysis of nailing piercing mechanism of conveyor belt nailing machine[J]. Coal Science and Technology,2023,51(S1):362−371

. DOI: 10.13199/j.cnki.cst.2022-1043
Citation:

SHANG Deyong,WANG Yuwei,NIU Yanqi,et al. Motion error analysis of nailing piercing mechanism of conveyor belt nailing machine[J]. Coal Science and Technology,2023,51(S1):362−371

. DOI: 10.13199/j.cnki.cst.2022-1043

矿用输送带钉扣机穿钉机构运动误差分析

基金项目: 

国家自然科学基金面上资助项目(52174154);国家自然科学基金创新研究群体资助项目(52121003);中央高校基本科研业务费专项资金资助项目(2022YQJD21)

详细信息
    作者简介:

    商德勇: (1983—),男,山东陵县人,副教授,硕士生导师,博士。E-mail:shangdeyong@cumtb.edu.cn

  • 中图分类号: TH112

Motion error analysis of nailing piercing mechanism of conveyor belt nailing machine

Funds: 

National Natural Science Foundation of China (52174154); National Natural Science Foundation of China Innovation Research Group Project (52121003); Central University Basic Research Fund Project (2022YQJD21)

  • 摘要:

    针对矿用输送带钉扣机传动机构的尺寸误差和铰链间隙误差会造成输送带压扣不紧、钉不透的问题,以钉扣机穿钉机构为研究对象,考虑了穿钉机构中尺寸误差以及铰链间隙误差对运动输出误差的影响,分析了机构的运动可靠性。首先,建立穿钉机构的运动学模型,并基于连续接触模型、有效长度理论等得到机构末端输出位置与各构件参数之间的变化规律。其次,建立了考虑尺寸误差、铰链间隙误差的误差模型,分别得到了运动输出误差的均值与方差。最后得到了各误差对输出运动精度和可靠性的影响规律。通过引入误差传递函数,分别得到了机构尺寸误差与铰链误差对运动输出的影响程度。仿真结果表明,铰链误差对运动输出误差的影响程度比杆长误差影响大,在钉扣机设计和装配阶段,应重点控制铰链C和铰链E的间隙误差,可有效提高钉扣机构运动输出精度。

    Abstract:

    Aiming at the problem that the size error and hinge clearance error of the driving mechanism of the belt nailing machine will cause the tight press button and the impenetrable belt nail, taking the nail piercing mechanism of the nailing machine as the research object, the influence of the size error and hinge clearance error on the motion output error of the nail piercing mechanism is considered, and the motion error of the mechanism is analyzed. Firstly, the kinematic model of the nail piercing mechanism is established, and the variation law between the end output position of the mechanism and the parameters of each component is obtained based on the continuous contact model and the effective length theory. Secondly, the error model considering size error and hinge clearance error is established, and the mean and variance of motion output error are obtained respectively. Finally, the influence law of each error on the accuracy and reliability of output motion is obtained. By introducing error transfer function, the influence degree of mechanism size error and hinge error on motion output is obtained. The simulation results show that the influence of hinge error on the motion output error is greater than that of rod length error. In the design and assembly stage of the buttoning machine, the clearance error between hinge C and hinge E should be controlled, which can effectively improve the motion output accuracy of the buttoning mechanism. This conclusion has a certain guiding significance for guiding the design of conveyor belt nailing machine and improving the motion accuracy of nailing machine.

  • 带式输送机作为低成本、高效率的多物料连续运输设备,具有运量大、距离长、运行阻力小、便于集中自动控制等优点,被广泛应用于煤炭、港口、金属矿山等场所。其输送带是主要的牵引机构又是承载机构,而机械式带扣连接具有操作方便、快捷、对人员技术要求低等特点,是织物层芯输送带的一种主要连接方法。输送带钉扣机正是一种广泛使用的带扣压入小型设备,按驱动方式不同可分为手动拉杆式、气动式和液压式3种类型。手动拉杆式由于重量轻、便于携带等特点应用广泛。学者们对输送带钉扣机的研究文献较少,陈道炯等[1-2]完成了对钉扣机工作部件的拓扑优化。张淳等[3]对钉扣机传动方案进行了改进设计。由于加工制造误差、长期磨损等因素影响,钉扣机传动构件的尺寸误差和铰链间隙会引起穿钉机构输出位移误差,造成压扣不紧、钉不透输送带等现象。为了提高传动机构运动精度,在零件设计和加工制造时应严格限制构件尺寸公差和运动副间隙,但较小的装配公差和间隙将增加制造成本。反之,则造成机构运动精度的降低。

    钉扣机穿钉机构运动误差决定了钉扣机是否能长期稳定可靠稳定[4-7]。为保证机构系统的工作轨迹能满足工作任务的要求,需进行机构运动可靠性分析。在机构尺寸误差和配合误差引起的运动可靠度方面,王汝贵等[8]建立了包含机器人髋关节机构杆长、铰链间隙和机构输入误差因素在内的机构位姿误差数学模型,得到了髋关节机构运动可靠度。SU等[9]基于矩阵法和间隙向量模型,提出了一种考虑结构误差和间隙的复杂连杆机构可靠性分析方法。ZHOU等[10]采用蒙特卡罗方法计算了综合误差条件下襟翼偏转精度的可靠性和襟翼咬合的可靠性。HUANG等[11]提出了一种基于区间集的非概率可靠性模型来度量四杆机构的可靠性。LI等[12]开发了PUMA560系列机构的通用可靠性分析程序,在机构设计中具有很好的应用前景。HU等[13]对某型飞机座舱门锁机构的运动性能可靠性进行了研究,验证了故障物理与软件仿真相结合的方法能够有效地解决复杂机械产品的可靠性问题。HAN等[14]基于可靠性、机构运动学和运动误差分析理论对不同设计参数下的机构运动特性进行了仿真计算,对各设计参数进行了灵敏度分析,实现了基于参数化模型的机构运动可靠性分析。张义民等[15]提出了一种不完全概率信息的平面连杆机构运动精度稳健性设计方法。陈放等[16]基于联合概率方法提出了平面轨迹机构时变可靠性分析方法。ZHANG等[17]基于首次穿越法提出了函数生成机构的时变可靠性分析方法,并进一步通过包络法分析了含关节间隙函数生成机构时变可靠性。刘胜利等[18]以平面五杆变胞机构为例,分析了交变温度工况下计及多源不确定性的变胞机构全构态运动可靠性。YOUN等[19]通过分析大型冰箱门铰链结构的机械特性,对门铰链进行了可靠性设计优化。周长聪等[20]对起落架收放机构进行了运动学分析,并给出了机构可靠性和灵敏度随着起落架收放次数的变化规律。

    在此研究基础上,笔者综合考虑尺寸误差、铰链间隙误差等因素,以输送带钉扣机穿钉机构为例,利用连续接触模型、运动可靠性理论等方法,基于向量关系建立了传动机构运动模型,得到了钉扣机穿钉机构的输出误差与输入角度之间的关系。基于运动可靠性理论推导了杆长误差、铰链误差等综合误差对输出误差的影响规律,最终保证了穿钉机构运动的可靠度,为输送带钉扣机传动机构的设计与制造提供理论参考。

    以输送带钉扣机穿钉机构为研究对象,其三维模型如图1所示,由滑块导座1、顶针滑块2、右摇杆3、顶针摇杆连杆4、右曲柄5、手柄6装配而成。通过右手柄6驱动右曲柄5转动,带动顶针摇杆连杆4和右摇杆3转动,从而使顶针滑块2自下而上运动至扣钉穿透输送带完成穿钉动作。其中右曲柄5和右摇杆3铰接在机身上,顶针摇杆连杆4与其铰接,顶针滑块2与右摇杆3的一端铰接,且限位于固定在机身上的滑座1内,可上下滑动完成穿钉动作。

    图  1  钉扣机穿钉机构三维模型
    Figure  1.  Three-dimensional model of nailing mechanism of nailing machine

    穿钉机构结构简图如图2所示,以逆时针方向为正方向。

    图  2  钉扣机穿钉机构简图
    Figure  2.  Schematic diagram of nailing mechanism of nailing machine

    由矢量封闭回路ABCD得到矢量方程:

    $$ \vec{l}_1+\vec{l}_2=\vec{l}_3+\vec{l}_4 $$ (1)

    将上述矢量方程写成坐标方程:

    $$ \left\{\begin{array}{l} l_2 \cos\; \varphi_2-l_1 \cos\; \varphi_1=l_3 \cos\; \varphi_3+l_4 \cos\; \varphi_4 \\ l_1 \sin\; \varphi_1+l_2 \sin\; \varphi_2=l_3 \sin\; \varphi_3-l_4 \sin\; \varphi_4 \end{array}\right. $$ (2)

    同理,可得在封闭矢量回路ABD中:

    $$ \vec{l}_1+\vec{l}=\vec{l}_4 $$ (3)
    $$ \left\{\begin{array}{l} -l_1 \cos\; \varphi_1+l \cos\; \theta=l_4 \cos\; \varphi_4 \\ l_1 \sin\; \varphi_1+l \sin\; \theta=l_4 \sin\; \varphi_4 \end{array}\right. $$ (4)

    解得:

    $$ \left\{\begin{array}{l} l=\sqrt{l_1^2+l_4^2-2 l_1 l_4 \cos \left(\pi-\varphi_1+\varphi_4\right)} \\ \theta=\arctan \left(\dfrac{l_4 \sin\; \varphi_4-l_1 \sin \;\varphi_1}{l_4 \cos\; \varphi_4+l_1 \cos\; \varphi_1}\right) \end{array}\right. $$ (5)

    在封闭矢量回路BCD中:

    $$ \vec{l}_2=\vec{l}+\vec{l}_3 $$ (6)
    $$ \left\{\begin{array}{l} l \cos\; \theta=l_2 \cos\; \varphi_2+l_3 \cos\; \varphi_3 \\ l \sin\; \theta=l_2 \sin\; \varphi_2+l_3 \sin\; \varphi_3 \end{array}\right. $$ (7)

    解得:

    $$ \left\{\begin{array}{l} \cos \left(\varphi_3-\theta\right)=\dfrac{l^2+l_3^2-l_2^2}{2 l l_3} \\ \tan\; \varphi_2=\dfrac{l \sin\; \theta-l_3 \sin\; \varphi_3}{l \cos\; \theta-l_3 \cos\; \varphi_3} \end{array}\right. $$ (8)

    式(8)中有$ {\varphi _3} = \alpha $

    $$ Y=l_3^{\prime} \cos \;\alpha+l_5 \cos\; \psi=l_3^{\prime} \cos\; \alpha+\sqrt{l_5^2-\left(e-l_3^{\prime} \sin\; \alpha\right)^2} $$ (9)

    式中:$ \alpha \in \left(\dfrac{\text{π}}{2},\text{π}\right) $;Y为顶针滑块行程距离。

    由于加工工艺的不同以及制造和装配等因素的影响,机构中各杆长尺寸和铰链间隙误差无法避免且相互独立,因此可对尺寸误差和铰链间隙引起的输出误差分别求解,再将两误差线性叠加即可求得输出总误差的均值与方差等。

    机构中从动件的位置取决于原动件的位置和构件的长度,即$ \varphi_3=\varphi_3\left(\varphi_i, l_i\right)(i=1,2,3,4) $,可先求得中间输入角$ \varphi_3$。

    为简化计算过程,令:

    $$ \begin{gathered} a=l_4 \cos \;\varphi_4+l_1 \cos \;\varphi_1, b=l_1 \sin\; \varphi_1+l_4 \sin \;\varphi_4 \\ G=\frac{a^2+b^2-l_2^2+l_3^2}{2 a l_3}, H=-\frac{b}{a} \\ \varphi_3=\sin ^{-1} \frac{-G H+\left(H^2-G^2+1\right)^{1 / 2}}{H^2+1} \end{gathered} $$ (10)

    其中,由于$ {\varphi _4} $为一常量值,在后续导数计算中可忽略,代入最终结果即可。

    $$ \begin{split} &\frac{{\partial {\varphi _3}}}{{\partial {l_i}}} = \frac{1}{{1 + {H^2}}}{[{(1 + {H^2})^2} - {(GH + {({H^2} - {G^2} + 1)^{1/2}})^2}]^{1/2}}\\ & \left\{ {\left[\frac{{\partial G}}{{\partial {l_i}}}H + G\frac{{\partial H}}{{\partial {l_i}}} + \frac{1}{{{{({H^2} - {G^2} + 1)}^{1/2}}}}\left(2H\frac{{\partial H}}{{\partial {l_i}}} + 2G\frac{{\partial G}}{{\partial {l_i}}}\right)\right]^2}\right. \\ & \left.- 2H\frac{{\partial H}}{{\partial {l_i}}}(GH + {({H^2} - {G^2} + 1)^{1/2}})\right\} \end{split} $$ (11)

    其中:

    $$ \begin{aligned} &\left\{ \begin{gathered} \frac{{\partial G}}{{\partial {l_1}}} = \frac{{\cos {\varphi _1}}}{{2{l_3}}} + \frac{{2ab\sin {\varphi _1} - {b^2}\cos {\varphi _1}}}{{2{l_3}{a^2}}} + \frac{{l_2^2\cos {\varphi _1}}}{{2{l_3}{a^2}}} - \frac{{{l_3}\cos {\varphi _1}}}{{2{a^2}}} \\ \frac{{\partial G}}{{\partial {l_2}}} = - \frac{{{l_2}}}{{{l_3}a}} \\ \frac{{\partial G}}{{\partial {l_3}}} = \frac{{ - {a^2} - {b^2} + l_2^2 + l_3^2}}{{2al_3^2}} \\ \end{gathered} \right. \\ &\left\{ \begin{gathered} \frac{{\partial H}}{{\partial {l_1}}} = \frac{{{l_4}\sin {\varphi _1}}}{{{l_4} + {l_1}\cos {\varphi _1}}} \\ \frac{{\partial H}}{{\partial {l_2}}} = \frac{{\partial H}}{{\partial {l_3}}} = 0 \\ \frac{{\partial H}}{{\partial {l_4}}} = \frac{{{l_1}\sin {\varphi _1}}}{{{{({l_4} + {l_1}\cos {\varphi _1})}^2}}} \\ \end{gathered} \right. \end{aligned}$$
    $$ \begin{aligned} \Delta \varphi_3 & =\varphi_3\left(\varphi_1+\Delta \varphi_1, \cdots \varphi_3+\Delta \varphi_3, l_1+\Delta l_1, \cdots l_3+\Delta l_3\right)-\\ &\qquad\varphi_3\left(\varphi_1, \cdots \varphi_3, l_1 \cdots l_3\right) \\ & =\frac{\partial \varphi_3}{\partial \varphi_1} \Delta \varphi_1+\frac{\partial \varphi_3}{\partial \varphi_2} \Delta \varphi_2+\frac{\partial \varphi_3}{\partial \varphi_3} \Delta \varphi_3+\frac{\partial \varphi_3}{\partial l_1} \Delta l_1+\\ &\qquad\frac{\partial \varphi_3}{\partial l_2} \Delta l_2+\frac{\partial \varphi_3}{\partial l_3} \Delta l_3 \end{aligned} $$ (12)

    对式(1)建立位置方程并求全微分解得:

    $$ \left\{ \begin{aligned} &{\rm d} f_1=-\cos \varphi_1 {\rm d} l_1+l_1 \sin \varphi_1 {\rm d} \varphi_1+\cos \varphi_2 {\rm d} l_2-l_2 \sin \varphi_2 {\rm d} \varphi_2+\\ &\qquad\cos \varphi_3 {\rm d} l_3-l_3 \sin \varphi_3 {\rm d} \varphi_3-\cos \theta_4 {\rm d} l_4 \\ &{\rm d} f_2=\sin \varphi_1 {\rm d} l_1-l_1 \cos \varphi_1 {\rm d} \varphi_1-\sin \varphi_2 {\rm d} l_2-l_2 \cos \varphi_2 {\rm d} \varphi_2-\\ &\qquad\sin \varphi_3 {\rm d} l_3-l_3 \cos \varphi_3 {\rm d} \varphi_3+\sin \theta_4 {\rm d} l_4 \end{aligned} \right. $$ (13)

    且有$\Delta f_i \approx {\rm d} f_i, \Delta l_i \approx {\rm d} l_i, \Delta \varphi_i \approx {\rm d} \varphi_i, {\rm d} f_1={\rm d} f_2=0 $代入式(13)则有:

    $$\begin{split} \Delta \varphi_3^l=&\frac{l_1 \sin \left(\varphi_1+\varphi_2\right)}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \Delta \varphi_1-\frac{\cos \left(\varphi_1-\varphi_2\right)}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \Delta l_1+\\ &\frac{1}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \Delta l_2+\frac{\cos \left(\varphi_2-\varphi_3\right)}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \Delta l_3-\\ &\frac{\cos \left(\varphi_2-\varphi_4\right)}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \Delta l_4 \end{split}$$ (14)

    又$ \varphi_3=\alpha, \Delta \varphi_3^l=\Delta \alpha, Y^*=f\left(l_3^{\prime}, l_5, e, \alpha\right) $

    用“$ {*} $”表示理想值,用“$ \Delta $”表示误差值,经过一阶泰勒级数展开后的实际位移表达式为:

    $$ \begin{aligned} Y & =Y^*+\Delta Y \\ & =f\left(l_3^*+\Delta r, l_5^*+\Delta l_5, e^*+\Delta e, \alpha^*+\Delta \alpha\right) \\ & =f\left(l_3^*, l_5^*, e^*, \alpha^*\right)+\frac{\partial f}{\partial l_3^{\prime}} \Delta l_3^{\prime}+\frac{\partial f}{\partial l_5} \Delta l_5+\frac{\partial f}{\partial e} \Delta e+\frac{\partial f}{\partial \alpha} \Delta \alpha \end{aligned} $$ (15)

    则杆长误差引起的输出位移误差$ \Delta Y $为:

    $$ \Delta Y=\frac{\partial f}{\partial l_3^{\prime}} \Delta l_3^{\prime}+\frac{\partial f}{\partial l_5} \Delta l_5+\frac{\partial f}{\partial e} \Delta e+\frac{\partial f}{\partial \alpha} \Delta \alpha $$ (16)

    将式(9)分别对$l_3^{\prime}, l_5, e $求导:

    $$ \frac{{\rm{d}} Y}{{\rm{d}} l_3^{\prime}}=\cos \alpha+\frac{\left({e}-l_3^{\prime} \sin \alpha\right) \sin \alpha}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}} $$ (17)
    $$ \frac{{\rm{d}} Y}{{\rm{d}} l_5}=\frac{l_5}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}} $$ (18)
    $$ \frac{{\rm{d}} Y}{{\rm{d}} e}=-\frac{l_3^{\prime} \sin \alpha+e}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}} $$ (19)
    $$ \frac{{\rm{d}} Y}{{\rm{d}} \alpha}=-l_3^{\prime} \sin \alpha+\frac{\left(e-l_3^{\prime} \sin \alpha\right) l_3^{\prime} \cos \alpha}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}} $$ (20)

    将式(14)、式(17)—式(20)代入式(16),并设输出位移误差$ \Delta Y $的均值$ \mu_{t} $和方差$ \sigma_{t}^{2} $,则

    $$ \begin{aligned} \;\;\mu_t & = \frac{\mathrm{d} Y}{\mathrm{~d} l_3^{\prime}} E\left(\Delta l_3^{\prime}\right) + \frac{\mathrm{d} Y}{\mathrm{~d} l_5} E\left(\Delta l_5\right) + \frac{\mathrm{d} Y}{\mathrm{~d} e} E(\Delta e) + \frac{\mathrm{d} Y}{\mathrm{~d} \alpha} E(\Delta \alpha) \\ & =\left(\cos \alpha - \frac{\left( \mathrm{e} - l_3 \sin \alpha\right) \sin \alpha}{\sqrt{l_5^2 - \left(l_3^{\prime} \sin \alpha+e\right)^2}}\right) \mu_{l_3} + \frac{l_5}{\sqrt{l_5^2 - \left(l_3 \sin \alpha + e \right)^2}} \mu_{l_5}-\\ &\quad\frac{l_3^{\prime} \sin \alpha+e}{\sqrt{l_5^2 - \left(l_3 \sin \alpha + e\right)^2}} \mu_e + \left( -l_3 \sin \alpha + \frac{\left( e - l_3 \sin \alpha\right) l_3^{\prime} \cos \alpha}{\sqrt{l_5^2 - \left( e-l_3 \sin \alpha \right)^2}} \right) \mu_{2 \alpha} \end{aligned} $$ (21)

    其中$ \Delta l_3^{\prime}, \Delta l_5, \Delta e, \Delta \alpha$互不相关,则有:

    $$ \begin{aligned} \sigma_t^2= & D(\Delta Y)=\left(\frac{{\rm{d}} Y}{{\rm{d}} l_3^{\prime}}\right)^2 \sigma_{l_3}^2+\left(\frac{{\rm{d}} Y}{{\rm{d}} l_5}\right)^2 \sigma_{l_5}{ }^2+\\ & \qquad\left(\frac{{\rm{d}} Y}{{\rm{d}} e}\right)^2 \sigma_e^2+\left(\frac{{\rm{d}} Y}{{\rm{d}} \alpha}\right)^2 \sigma_\alpha^2 \\ = & \left(\cos \alpha-\frac{\left(e-l_3^{\prime} \sin \alpha\right) \sin \alpha}{\sqrt{l_5^2-\left(l_3^{\prime} \sin \alpha+e\right)^2}}\right)^2 \sigma_{l_3}{ }^2+\\ & \left(\frac{l_5}{\sqrt{l_5^2-\left(l_3^{\prime} \sin \alpha+e\right)^2}}\right)^2 \sigma_{l_5}{ }^2- \\ & \left(\frac{l_3^{\prime} \sin \alpha+e}{\sqrt{l_5^2-\left(l_3^{\prime} \sin \alpha+e\right)^2}}\right)^2 \sigma_e^2+\\ & \left(-l_3^{\prime} \sin \alpha+\frac{\left(e-l_3^{\prime} \sin \alpha\right) l_3^{\prime} \cos \alpha}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}}\right) \sigma_\alpha^2 \end{aligned} $$ (22)

    铰链副的内部连接如图3所示,分别由误差圆1,销轴2,销孔3组成。销轴的中心在误差圆范围内随机分布,误差圆半径是由销孔与销轴的直径差决定。其中,假设销轴与销孔在接触过程中未发生接触变形。

    图  3  铰链副内部连接示意
    Figure  3.  Schematic of secondary internal connection of hinge

    铰接运动副连接的示意如图4所示。将运动副连接放大,设P为套孔中心,连杆OP长为rC点是销轴中心。由于间隙的存在,PC不重合,因此OC这个实际连杆长度就包括了运动副的间隙误差,称为有效长度,设为R

    图  4  运动副有效连接示意
    Figure  4.  Schematic of effective connection of kinematic pair
    $$ R=\sqrt{(r+x)^2+y^2} $$ (23)
    $$ R_c=R_1-R_2 $$ (24)

    其中$ R_{c} $为误差圆的半径,同时也是铰链副的径向间隙。

    假设误差均为标准正态分布,其中$T_z $为径向公差。

    $$ \sigma_x=T_z / 6=2 R_c / 6=R_c / 3, \sigma_x^2=R_c^2 / 9 $$ (25)

    则$\sigma_x^2=E\left(R_c^2\right) / 9 $

    将 $ \sigma_{R_c}^2=E\left(R_c^2\right)-E^2\left(R_c\right) $代入式(25)得

    $$ \sigma_x^2=\left[\sigma_{R_c}^2+E^2\left(R_c\right)\right] / 9 $$ (26)

    同理得

    $$ \sigma_y^2=\left[\sigma_{R_c}^2+E^2\left(R_c\right)\right] / 9 $$ (27)

    式中:$ \sigma_{x}^{2} $、$ \sigma_{y}^{2} $分别为销轴中心局域坐标xy的方差;$ \sigma_{R_c}^2 $为径向间隙误差的方差;$ E^2\left(R_c\right)$为径向间隙误差的均值[21]

    将式(23)以数学期望形式展开得到:

    $$ E^2(\mathrm{R})=E^2(r)+2 E(r) E(x)+E^2(x)+E^2(y) $$ (28)

    根据标准正态分布的对称性,有E(x) =E(y)= 0,$E(\mathrm{R})=E(r), \mu_{\Delta R}=\mu_{\Delta r}$。则当确定运动副径向间隙$ R_c$>的特征值后,就可求出销轴中心局域坐标xy的特征值。

    将式(23)求微分可得:

    $$ 2 R \partial R=2(r+x) \partial r $$ (29)

    将$ (s,k) $用均值$ (s,k) $代入,则有

    $$ \frac{\partial R}{\partial r}=\frac{r+x}{R}=\frac{\bar{r}+\bar{x}}{\bar{R}} $$ (30)
    $$ \frac{\partial y}{\partial r}=\frac{\partial y}{\partial R} \frac{\partial R}{\partial r}=\frac{\partial y}{\partial R} \frac{\bar{r}+\bar{x}}{\bar{R}} $$ (31)
    $$ \bar{x}=\bar{y}=0, \bar{R}=\bar{r} $$ (32)
    $$ \frac{\partial y}{\partial r}=\frac{\partial y}{\partial R} $$ (33)

    同理证得:

    $$ \frac{\partial y}{\partial x}=\frac{\partial y}{\partial R} \frac{\partial R}{\partial x}=\frac{\partial y}{\partial R} \frac{\bar{r}+\bar{x}}{\bar{R}}=\frac{\partial y}{\partial R} $$ (34)
    $$ \frac{\partial y}{\partial y}=\frac{\partial y}{\partial R} \frac{\partial R}{\partial y}=\frac{\partial y}{\partial R} \frac{\bar{y}}{\bar{R}}=0 $$ (35)

    以文中穿钉机构为例,对于铰链间隙引起的传动输出角$ (s,k) $的误差,考虑到机构在工作中始终受到输入和输出力矩的作用,则机构的运动精度分析应采用连续接触型模型[22],求得铰链A到铰链D的间隙误差引起的机构运动输出误差为:

    $$ \begin{aligned} & \Delta \varphi_3^t=\frac{1}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \sum_{i=1}^4 q_{s k} \\ & \varphi_3=\alpha \end{aligned} $$ (36)

    其中,$ q_{s k} $表示铰链运动副中$ (s,k) $中包容元件与被包容元件之间的间隙,为随机变量。

    设$ l_{3}^{\prime} $与支座之间铰链径向间隙为$ L_{t 3}^{\prime} $,$ y $与连杆$ l_{5} $之间铰链径向间隙为$ L_{t s} $,连杆$ y $与滑块之间铰链误差不计。已知$ l_{3}^{\prime} $、$ y $、$ L_{t 3}^{\prime} $、$ y $的均值和方差,利用有效长度理论,可得到间隙误差引起的滑块输出误差。

    以有效长度$ L_{i} $代替实际杆长$ l_{i} $,有效顶针滑块位移$ {y_d} $代替理论推导滑块位移$ Y $,则由位置关系式(9)可得:

    $$ \begin{gathered} y_d=L_3^{\prime} \cos \alpha+\sqrt{L_5^2-\left(e-L_3^{\prime} \sin \alpha\right)^2} \\ \mu_{\left(\Delta y_d\right)}=\frac{\partial y_d}{\partial L_{c 3}^{\prime}} \mu_{\Delta L_3}+\frac{\partial y_d}{\partial L_{c 5}} \mu_{\Delta L_5}+\frac{\partial y_d}{\partial e} \mu_e+\frac{\partial y_d}{\partial \alpha} \mu_{\Delta \alpha} \end{gathered} $$ (37)

    将式(17)—式(19)、式(23)代入式(37):

    $$ \begin{aligned} \mu_{\mathrm{c}\left(2 y_d\right)}= & \left(\cos \alpha+\frac{\left(e-L_3^{\prime} \sin \alpha\right) \sin \alpha}{\sqrt{L_5^2-\left(e-L_3^{\prime} \sin \alpha\right)^2}}\right) \mu_{\Delta L_3} +\\ & \frac{L_5}{\sqrt{L_5^2-\left(e-L_3^{\prime} \sin \alpha\right)^2}} \mu_{\Delta L_{c 5}}- \\ & \frac{l_3^{\prime} \sin \alpha+e}{\sqrt{l_5^2-\left(l_3^{\prime} \sin \alpha+e\right)^2}} \mu_e +\\ & \left(-l_3^{\prime} \sin \alpha+\frac{\left(e-l_3^{\prime} \sin \alpha\right) l_3^{\prime} \cos \alpha}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}}\right) \mu_{\Delta \phi_3^{\prime}} \end{aligned} $$ (38)
    $$ \left\{\begin{array}{l} L_{c 3}^{\prime}{ }^2=\left(l_3^{\prime}+x_1\right)^2+y_1^2 \\ L_{c 5}{ }^2=\left(l_5+x_2\right)^2+y_2^2 \end{array}\right. $$ (39)

    其中,$ {x_{1,}}{x_{2,}}{y_{1,}}{y_2} $分别为图4内轴套轴销在相对滑动过程中在$ {x_,}y $上的特征值。

    由式(39)推导得方差如式(40)所示:

    $$ \begin{split} \sigma_{c y}^2=&\left(\frac{\partial y_d}{\partial l_3^{\prime}}\right)^2 \sigma_{\Delta L_{c 3}}^2+\left(\frac{\partial y_d}{\partial x_1}\right)^2 \sigma_{\Delta x_1}^2+\left(\frac{\partial y_d}{\partial y_1}\right)^2 \sigma_{\Delta y_1}^2+\\ &\left(\frac{\partial y_d}{\partial l_5}\right)^2 \sigma_{\Delta L_{c 5}}^2+\left(\frac{\partial y_d}{\partial x_2}\right)^2 \sigma_{\Delta x_2}^2+\left(\frac{\partial y_d}{\partial y_2}\right)^2 \sigma_{\Delta y_2}^2 \end{split} $$ (40)

    将式(33)—式(35)代入式(40)得铰链误差下的输出位移$ Y $的方差公式:

    $$ \begin{aligned} \sigma_{c y}^2 = & \left(\frac{\partial y_d}{\partial l_3^{\prime}}\right)^2 \sigma_{\Delta L_{c 3}}^2 + \left(\frac{\partial y_d}{\partial l_3^{\prime}}\right)^2 \sigma_{\Delta x_1}^2 + \left(\frac{\partial y_d}{\partial l_5}\right)^2 \sigma_{\Delta L_{c 5}}^2 + \left(\frac{\partial y_d}{\partial l_5}\right)^2 \sigma_{\Delta x_2}^2 \\ = & \left(\frac{\partial y_d}{\partial l_3^{\prime}}\right)^2\left(\sigma_{\Delta L_{c 3}}^2+\sigma_{\Delta x_1}^2\right)+\left(\frac{\partial y_d}{\partial l_5}\right)^2\left(\sigma_{\Delta L_{c 5}}^2+\sigma_{\Delta x_2}^2\right) \\ = & \left(\cos \alpha+\frac{\left(e-L_3^{\prime} \sin \alpha\right) \sin \alpha}{\sqrt{L_5^2-\left(e-L_3^{\prime} \sin \alpha\right)^2}}\right)^2\left(\sigma_{\Delta L_{c 3}^{\prime}}^2+\sigma_{\Delta x_1}^2\right)+\ldots \\ & \left(\frac{L_5}{\sqrt{L_5^2-\left(e-L_3^{\prime} \sin \alpha\right)^2}}\right)^2\left(\sigma_{\Delta L_{c 5}}^2+\sigma_{\Delta x_2}^2\right) \end{aligned} $$ (41)

    式中,$\sigma_{\Delta L_{c 3}^{\prime}}^2, \sigma_{\Delta L_{c 5}}^2$为两铰链间隙误差的方差;$\sigma_{\Delta x_1}^2, \sigma_{\Delta x_2}^2 $为铰链局域坐标$ x $方向上的方差。

    关于机构的可靠度$ {Z_m} $,一般认为误差均服从正态分布,其叠加仍遵循正态分布 [23]。可靠度公式为:

    $$ {Z_m} = \varPhi (\beta ) $$ (42)
    $$ \beta=\frac{\mu_z}{\sigma_z}=\frac{\mu_0-\mu}{\sqrt{\sigma_0^2+\sigma^2}} $$ (43)

    式中:$ \mu_0, \sigma_0$为允许的极限位移输出误差均值和标准差;$\mu, \sigma$为所求位移特征值;$ \beta $为可靠性指标,$ \varPhi (\beta ) $为正态分布表下对应可靠性指标$ \beta $的函数值。

    在分析了综合误差对机构可靠度影响后,通过引入误差传递函数概念(即各杆长与铰链间隙误差公式中的均值系数)来反映各杆件的长度误差和铰链间隙误差对输出误差的影响程度。设杆长误差传递函数$ U_i \quad(i=1,2,3,5)$,铰链误差传递函数$ {K_j} $,$ j = A,B,C,D,E $:

    $$ \left\{\begin{array}{l} U_1=\dfrac{\partial \varphi_3}{\partial l_1}=\dfrac{\cos \left(\varphi_2-\varphi_1\right)}{l_3 \sin \left(\varphi_2-\varphi_3\right)} \\ U_2=\dfrac{\partial \varphi_3}{\partial l_2}=\dfrac{1}{l_3 \sin \left(\varphi_2-\varphi_3\right)} \\ U_3=\dfrac{\partial \varphi_3}{\partial l_3}=-\dfrac{\cos \left(\varphi_3-\varphi_2\right)}{l_3 \sin \left(\varphi_2-\varphi_3\right)} \\ U_5=\dfrac{l_5}{\sqrt{l_5^2-\left(l_3^{\prime} \sin \alpha+e\right)^2}} \end{array}\right. $$ (44)
    $$ \left\{\begin{array}{l} K_A=\dfrac{1}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \mu_{q_{1,1}} \\ K_B=\dfrac{1}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \mu_{\Delta q_{1,2}} \\ K_C=\dfrac{1}{l_3 \sin \left(\varphi_3-\varphi_2\right)} \mu_{\Delta q_{2,3}} \\ K_D=\cos \alpha+\dfrac{\left(e-l_3^{\prime} \sin \alpha\right) \sin \alpha}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}} \\ K_E=\dfrac{l_5}{\sqrt{l_5^2-\left(e-l_3^{\prime} \sin \alpha\right)^2}} \end{array}\right. $$ (45)

    以钉扣机定位穿钉机构为研究对象,研究该机构在运行过程中各杆长误差与铰链误差对机构输出误差的影响程度。为分析尺寸与间隙误差对机构运动可靠性的影响,可主要分为以下3种情况,情况Ι:仅考虑杆长误差;情况 Ⅱ:仅考虑铰链间隙;情况Ⅲ:综合考虑杆长误差与铰链间隙误差。机构各参数:$ l_1=35_{-0.05}^{+0.05}, l_2=48_{-0.125}^{+0.125}, l_3=85_{-0.125}^{+0.125}, l_3^{\prime}=46_{-0.125}^{+0.125} $,l4=93,$ {l_5} = 13_{ - 0.05}^{ + 0.05} $为便于得到各情况下的机构运动可靠度,假设机构中铰链间隙误差均为$\mu_{\Delta q_{s k}}=0.2, \sigma_{\Delta q_{s k}}=0.1 $,给定机构允许运动误差$ {\mu _Y} = 0.4,{\sigma _Y} = 0.1 $。该机构在3种情况下的可靠性指标$ \beta $和可靠度的计算结果如图5所示。图5为仅考虑杆长误差引起的输出误差均值图。从图中可看出随着输入角度的增大,输出误差在0.5 rad内中单调递增,在0.5 rad处达到极值点0.2 ,在0.5~0.62 rad单调递减,在0.62 rad时钉扣已穿入输送带。

    图  5  仅考虑杆长误差引起的输出误差均值
    Figure  5.  Average value of output error only considering rod length error

    图6为仅考虑铰链间隙误差引起的输出误差均值图。从图6中可看出,此时输出误差随着输入角度的增加呈现周期性波动。

    图  6  仅考虑铰链间隙误差引起的输出误差均值
    Figure  6.  Average value of output error only considering hinge clearance error

    图7为考虑综合因素引起的输出误差方差图。根据方差定义,此图表示综合误差引起的输出误差均值的离散程度。从图7中可看出机构在0.25 rad内离散程度较好,而随着钉扣侵入输送带的过程的进行,离散程度逐渐增加,在输入角度0.5 rad附近离散程度最大。

    图  7  考虑综合因素引起的输出误差方差
    Figure  7.  Variance of output error caused by comprehensive factors

    图5图7可以得到,随着机构输入角度的增加,仅考虑杆长误差时机构的输出误差在0~0.5 rad缓慢增加,在0.5 rad处达到极值点,随后在0.5~0.62 rad处逐渐减小;而仅考虑铰链间隙误差时机构的输出误差随着输入角度的变化而呈现一定规律的上下波动;且在扣钉穿入输送带的过程中,铰链间隙误差引起的输出误差均值均比杆长误差引起的输出误差均值大。由于概率论中方差用来度量随机变量和均值之间的偏离程度,将两误差综合考虑后可以看出机构误差离散程度在0~0.25 rad均较好,而在输入角为0.5 rad时离散程度最大,0.62 rad离散程度最小,此时表示钉扣已完成穿入输送带过程,符合实际钉扣过程。

    表1为3种情况下的可靠性指标与可靠度计算结果,根据算例与表1可知,情况Ⅱ与情况Ⅲ的情况得到的可靠度更为接近,即在综合考虑杆长误差和铰链间隙误差对机构可靠度的影响程度中,铰链误差对可靠度的影响程度比杆长误差大4.45%。此结果与图7分析得到结果一致。因此,有必要控制机构的铰链间隙误差,以提高运动精度。

    表  1  3种情况下的可靠性指标与可靠度
    Table  1.  Reliability index and reliability in three cases
    变量情况Ι情况Ⅱ情况Ⅲ
    可靠性指标$ {R_m} $3.67741.70111.3629
    可靠度$ {Z_m} $0.99990.95540.9147
    下载: 导出CSV 
    | 显示表格

    图8为当$\sigma_{\Delta q_{s k}}=0.1\; \mathrm{mm} $时可靠度随铰链间隙误差均值的变化规律图。可知可靠度与铰链误差均值呈近一次线性关系。若定义机构可靠度在0.9以上则符合实际工程需要,当铰链误差均值控制在0.25 mm以内时,此时机构可靠度较高。

    图  8  可靠度随铰链误差均值变化
    Figure  8.  Reliability varying with mean hinge error

    图9为当$\mu_{\Delta q_{s k}}=0.2 \mathrm{~mm}$时可靠度随铰链间隙误差方差的变化。反映了可靠度与铰链误差方差呈近反比例函数的关系。同样,若定义机构可靠度在0.9以上时,则当铰链误差方差控制在$0.12 \;{\rm{mm}} $内时,此时机构可靠度较高。

    图  9  可靠度随铰链间隙误差方差变化
    Figure  9.  Variation of reliability with variance of hinge clearance error

    根据误差传递函数定义,用Matlab进行仿真分析各杆长误差和铰链间隙误差对输出误差的影响程度。

    图10为尺寸误差传递函数。图中可看出,$ {l _1}、{l _2} $和$ {l_3} $杆件的误差传递函数随原动件输入角$ {\varphi _1} $值的变化幅度较小,而杆件$ {l_5} $的误差传递函数随着机构的运行在0.4、0.5 rad处均出现极值,对整个机构影响较大。同时为减少中间角$ {\varphi _3} $随$ {\varphi _1} $值的波动,构件$ {l _2} $和构件$ {l _3}$的长度公差尽可能取小值且各为正负,这样也可以使构件$ {l _2} $和$ {l _3} $长度变化对中间角$ {\varphi _3} $的影响相互抵消,同时针对对于输出误差影响较大的$ {l_5} $杆件则可以进一步优化仿真。

    图  10  尺寸误差传递函数
    Figure  10.  Size error transfer function diagram

    图11为铰链误差传递函数图。可得到传动机构各铰链对输出误差的影响规律:铰链A、B、D对机构输出误差影响较小,可忽略不计。而铰链C随着输入角的增加,呈现上下波动趋势,铰链E的误差传递则保持在1附近小幅波动。由此可知,铰链C、E的误差对整个机构运动误差影响较大,在设计与制造过程中,应尽量控制杆铰链C、E的铰链间隙误差,可有效提高机构运动精度。

    图  11  铰链误差传递函数图
    Figure  11.  Hinge error transfer function

    1)建立了输送带钉扣机穿钉机构运动学模型,得到了输入角度和输出位移的运动规律。分析了尺寸误差和铰链间隙误差对机构运动输出误差的影响,利用有效长度理论与有效接触型模型得到了输出误差的均值与方差。

    2)结合可靠性理论模型,分别比较了杆长误差、铰链误差与两误差叠加对输出误差的影响规律。当控制铰链误差方差为$ 0.1 \;\mathrm{mm} $,铰链误差均值控制在$ 0.25\; \mathrm{mm} $内时,此时机构可靠度较高;当控制铰链误差均值恒为$ 0.2\; \mathrm{mm} $,铰链误差方差控制在$ 0.12 \;\mathrm{mm} $内时,机构可靠度较高,该结论对钉扣机传动系统的设计和加工制造有一定的指导意义。

    3)通过引入误差传递函数这一概念,仿真分析得到传动机构中杆长尺寸误差与铰链间隙误差对输出误差的影响规律。其中传动杆件$ 4_{5} $,铰链C和铰链E对运动输出误差的影响最大,重点限制铰链C和E的间隙误差可以进一步减小输出误差。

    4)以输送带钉扣机定位穿钉机构为研究对象,有效分析了综合误差影响下的钉扣机穿钉机构运动可靠性,对指导相同机构运动可靠性设计具有一定指导意义。而在多源不确定性误差下的机构运动可靠性,可进一步建立运动可靠性优化模型,以提高机构运动可靠性。

  • 图  1   钉扣机穿钉机构三维模型

    Figure  1.   Three-dimensional model of nailing mechanism of nailing machine

    图  2   钉扣机穿钉机构简图

    Figure  2.   Schematic diagram of nailing mechanism of nailing machine

    图  3   铰链副内部连接示意

    Figure  3.   Schematic of secondary internal connection of hinge

    图  4   运动副有效连接示意

    Figure  4.   Schematic of effective connection of kinematic pair

    图  5   仅考虑杆长误差引起的输出误差均值

    Figure  5.   Average value of output error only considering rod length error

    图  6   仅考虑铰链间隙误差引起的输出误差均值

    Figure  6.   Average value of output error only considering hinge clearance error

    图  7   考虑综合因素引起的输出误差方差

    Figure  7.   Variance of output error caused by comprehensive factors

    图  8   可靠度随铰链误差均值变化

    Figure  8.   Reliability varying with mean hinge error

    图  9   可靠度随铰链间隙误差方差变化

    Figure  9.   Variation of reliability with variance of hinge clearance error

    图  10   尺寸误差传递函数

    Figure  10.   Size error transfer function diagram

    图  11   铰链误差传递函数图

    Figure  11.   Hinge error transfer function

    表  1   3种情况下的可靠性指标与可靠度

    Table  1   Reliability index and reliability in three cases

    变量情况Ι情况Ⅱ情况Ⅲ
    可靠性指标$ {R_m} $3.67741.70111.3629
    可靠度$ {Z_m} $0.99990.95540.9147
    下载: 导出CSV
  • [1] 陈道炯,蒋 俊,祁玉新,等. 输送带扣钉侵彻机理的研究[J]. 机械设计,2011,28(7):93−96.

    CHEN Daojiong,JIANG Jun,QI Yuxin,et al. Study on the penetration mechanism of conveyor belt buckle nail[J]. Mechanical Design,2011,28(7):93−96.

    [2] 邢 欣, 陈道炯, 高上忠, 等. 钉扣机构的拓扑优化设计[J]. 机械设计. 2009, 26(2): 63−65.

    XING Xin, CHEN Daojiong, GAO Shangzhong, et al. Topology optimization design of fastening mechanism [J]. Mechanical design, 2009, 26(2): 63−65.

    [3] 张 淳,闫利军. 传输带钉扣机工作部件传动方案的改进设计[J]. 机床与液压,2005(9):185−186. doi: 10.3969/j.issn.1001-3881.2005.09.076

    ZHANG Chun,YAN Lijun,et al. Improved design of transmission scheme for working parts of transmission belt fastener[J]. Machine Tool and Hydraulics,2005(9):185−186. doi: 10.3969/j.issn.1001-3881.2005.09.076

    [4] 张义民. 机械可靠性设计的内涵与递进[J]. 机械工程学报,2010,46(14):167−188. doi: 10.3901/JME.2010.14.167

    ZHANG Yimin. Connotation and development of mechanical reliability-based design[J]. Journal of Mechanical Engineering,2010,46(14):167−188. doi: 10.3901/JME.2010.14.167

    [5] 李 昌,韩 兴,孙志礼. 基于机构运动精度的可靠性虚拟实验方法研究[J]. 机械设计,2007,24(11):17−21. doi: 10.3969/j.issn.1001-2354.2007.11.005

    LI Chang,HAN Xing,SUN Zhili,et al. Research on reliability virtual experiment method based on mechanism motion accuracy[J]. Machine Design,2007,24(11):17−21. doi: 10.3969/j.issn.1001-2354.2007.11.005

    [6] 张义民. 机械动态与渐变可靠性理论与技术评述[J]. 机械工程学报,2013,49(20):101−114. doi: 10.3901/JME.2013.20.101

    ZHANG Yimin. Review of theory and technology ofmechanical reliability for dynamic and gradual systems[J]. Journal of Mechanical Engineering,2013,49(20):101−114. doi: 10.3901/JME.2013.20.101

    [7] 何正嘉,曹宏瑞,訾艳阳,等. 机械设备运行可靠性评估的发展与思考[J]. 机械工程学报,2014,50(2):171−186.

    HE Zhengjia,CAO Hongrui,ZI Yanyang,et al. Developments and thoughts on operational reliability assessment of mechanical equipment[J]. Journal ofMechanical Engineering,2014,50(2):171−186.

    [8] 王汝贵,袁吉伟,戴建生. 仿生爬树机器人髋关节运动精度可靠性分析与优化[J]. 机械设计与研究,2019,35(1):53−60.

    WANG Rugui,YUAN Jiwei,DAI Jiansheng,et al. Reliability analysis and optimization of hip joint motion accuracy of bionic tree climbing robot[J]. Mechanical Design and Research,2019,35(1):53−60.

    [9]

    SU L,MENG Z,SUN Y,et al. Reliability-based optimization design of the latch needle mechanism in double-needle warp knitting machine[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering,2018,40(4):205.

    [10]

    ZHOU J , SUN Z , SONG Q , et al. Analysis of Flap Mechanism Reliability[C]//Proceedings of the 2nd International Conference on Mechatronics Engineering and Information Technology (ICMEIT 2017), 2017: 635-642.

    [11]

    HUANG P A , HUANG R , QIU Z P, et al. Non-probabilistic mechanism reliability analysis with interval dimension and clearance variables[C]//Proceedings of 2015 International Conference on Artificial Intelligence and Industrial Engineering(AIIE 2015), Phuket Island, Thailand, 2015: 426−429.

    [12]

    LI C,MA X G,HAN X,et al. Motion Reliability Analysis of the PUMA560 Series Mechanism[J]. Applied Mechanics & Materials,2013,365-366:913−916.

    [13]

    HU Y , PENG Z , HUI W, et al. Performance reliability simulation analysis for the complex mechanical system[C]// Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE), 2013 International Conference on IEEE, Emeishan China, 2013: 256−259.

    [14]

    HAN X M, BO Y C, LI Q, et al. Mechanism Movement Reliability Analysis of Galting Gun[J]. Advanced Materials Research. 2012, 605-607: 802-805.

    [15] 张义民,黄贤振,贺向东,等. 不完全概率信息牛头刨床机构运动精度可靠性稳健设计[J]. 机械工程学报,2009,45(4):105−110. doi: 10.3901/JME.2009.04.105

    ZHANG Yimin,HUANG Xianzhen,HE Xiangdong,et al. Robust design of motion accuracy and reliability of shaper mechanism with incomplete probability information[J]. Journal of Mechanical Engineering,2009,45(4):105−110. doi: 10.3901/JME.2009.04.105

    [16] 陈 放,李欣玲,佘 霞,等. 平面轨迹机构时变可靠性分析的联合概率方法[J]. 机械工程学报,2017,53(15):119−124. doi: 10.3901/JME.2017.15.119

    CHEN Fang,LI Xinling,SHE Xia,et al. Joint probability method for time-varying reliability analysis of planar trajectory mechanism[J]. Journal of Mechanical Engineering,2017,53(15):119−124. doi: 10.3901/JME.2017.15.119

    [17]

    ZHANG J,DU X. Time-dependent reliability analysis for function generation mechanisms with random joint clearances[J]. Mechanism & Machine Theory,2015,92:184−199.

    [18] 刘胜利,王兴东,孔建益,等. 多源不确定性下平面变胞机构运动可靠性分析[J]. 机械工程学报,2021,57(17):64−75. doi: 10.3901/JME.2021.17.064

    LIU Shengli,WANG Xingdong,KONG Jianyi,et al. Motion reliability analysis of planar metamorphic mechanism under multi-source uncertainty[J]. Journal of Mechanical Engineering,2021,57(17):64−75. doi: 10.3901/JME.2021.17.064

    [19]

    YOUN S J,NOH Y. Reliability-based design optimization of refrigerator door hinges using PIDO technology[J]. International Journal of Precision Engineering and Manufacturing,2015,16(4):7−15.

    [20] 周长聪,吉梦瑶,张屹尚,等. 多失效模式下起落架机构可靠性及灵敏度研究[J]. 西北工业大学学报,2021,39(1):46−54. doi: 10.3969/j.issn.1000-2758.2021.01.006

    ZHOU Changcong,JI Mengyao,ZHANG Yishang,et al. Study on reliability and sensitivity of landing gear mechanism under multiple failure modes[J]. Journal ofNorthwest University of technology,2021,39(1):46−54. doi: 10.3969/j.issn.1000-2758.2021.01.006

    [21] 孙志礼, 姬广振, 闫玉涛. 机构运动可靠性设计与分析技术[M]. 北京市: 国防工业出版社, 2015.

    SUN Zhili, Ji Guangzhen, YAN Yutao. Mechanism movement reliability design and analysis technology[M]. Beijing : National Defense Industry Press, 2015.

    [22] 黎小峰,巫世晶,李 星,等. 考虑运动副间隙的弹簧操动机构混沌特性研究[J]. 华中科技大学学报(自然科学版),2019,47(4):44−49.

    LI Xiaofeng,WU Shijing,LI Xing,et al. Study on chaotic characteristics of spring-operated mechanism considering the clearance of kinematic pairs[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition),2019,47(4):44−49.

    [23] 罗继曼,孙志礼,傅 莉,等. 盘形凸轮机构运动可靠性模型的研究[J]. 机械设计与制造,2002(3):11−13. doi: 10.3969/j.issn.1001-3997.2002.03.005

    LUO Jiman,SUN Zhili,FU Li,et al. Research on the motion reliability model of disk cam mechanism[J]. Mechanical Design and Manufacturing,2002(3):11−13. doi: 10.3969/j.issn.1001-3997.2002.03.005

图(11)  /  表(1)
计量
  • 文章访问数:  61
  • HTML全文浏览量:  2
  • PDF下载量:  19
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 网络出版日期:  2023-08-13
  • 刊出日期:  2023-05-31

目录

/

返回文章
返回