高级检索

祁东煤矿构造控水特征和地下水运移规律

张培森, 李复兴, 付翔, 田志兆, 牛辉, 许大强

张培森,李复兴,付 翔,等. 祁东煤矿构造控水特征和地下水运移规律[J]. 煤炭科学技术,2023,51(2):292−305. DOI: 10.13199/j.cnki.cst.2022-0996
引用本文: 张培森,李复兴,付 翔,等. 祁东煤矿构造控水特征和地下水运移规律[J]. 煤炭科学技术,2023,51(2):292−305. DOI: 10.13199/j.cnki.cst.2022-0996
ZHANG Peisen,LI Fuxing,FU Xiang,et al. Characteristics of structural water control and groundwater migration in Qidong Coal Mine[J]. Coal Science and Technology,2023,51(2):292−305. DOI: 10.13199/j.cnki.cst.2022-0996
Citation: ZHANG Peisen,LI Fuxing,FU Xiang,et al. Characteristics of structural water control and groundwater migration in Qidong Coal Mine[J]. Coal Science and Technology,2023,51(2):292−305. DOI: 10.13199/j.cnki.cst.2022-0996

祁东煤矿构造控水特征和地下水运移规律

基金项目: 

国家重点研发计划资助项目(2018YFC0604702);国家自然科学基金资助项目(51379119);山东省自然科学基金资助项目(ZR2021ME086)

详细信息
    作者简介:

    张培森: (1977—),男,山东曹县人,教授,博士。E-mail:peisen_sky@163.com

    通讯作者:

    李复兴: (1998—),男,山东济宁人,硕士研究生。E-mail:lfxsdust@qq.com

  • 中图分类号: TD745

Characteristics of structural water control and groundwater migration in Qidong Coal Mine

Funds: 

National Key Research and Development Program of China (2018YFC0604702); National Natural Science Foundation of China (51379119); Natural Science Foundation of Shandong Province (ZR2021ME086)

  • 摘要:

    以祁东煤矿为例,通过研究矿井地下水运移规律及其所在区域的构造控水特征,以期为煤矿水害的超前精准治理和区域防治提供借鉴参考。利用构造控水理论结合祁东煤矿及其所在矿区、煤田的地质构造背景,对构造控水的逐级控制作用和构造控水作用方式进行研究,结果如下:祁东煤矿基岩地层形态整体受宿南向斜控制,局部受魏庙断层等构造控制,新生界地层形态亦受到构造的间接控制;在宿南向斜控制下,矿井内或矿井外南部风化后的二叠系煤系砂岩裂隙含水层、太灰、奥灰与四含角度不整合接触;在魏庙断层控制下,在矿井南部采区部分二叠系煤系砂岩裂隙含水层含水层再次露头,与四含角度不整合接触,不整合接触使得含水层间可产生水力联系。总结分析结果,认为:①地质构造通过对地层形态的控制,对地下含水层水起到控制作用;②地质构造通过控制含水层间的接触,对含水层间的水力联系起到控制作用。为进一步验证含水层间的水力联系,利用水位变化的对比分析和皮尔逊(Person)相关系数,对放水试验期间南部采区四含、太灰和正常水位观测期间四含、太灰、奥灰的钻孔水位观测结果进行分析,得出:①南部采区放水试验期间,四含(SQ10-14)与太灰(ST4)水位变化基本同步,相关性极强;②正常水位观测期间,四含(SQ10)、太灰(ST4)、奥灰(SO2)两两之间水位变化具有极强的相关性,同一含水层内不同观测孔间水位变化的相关性差异较大。证实:受构造控制,在矿井局部,四含与基岩含水层角度不整合接触区域,存在水力联系。利用地下水数值模拟软件Groundwater Model System(GMS)结合参数反演Parameter Estimation(PEST),对四含水位分布和径流规律进行研究,得出:四含水位在−7~−57 m,南部水位比北部水位高,在魏庙断层处,水力梯度较大;四含水径流集中在矿井西南部和中部,西南部整体向北径流,中部以东西向径流为主,四含径流有绕过魏庙断层。

    Abstract:

    Taking Qidong Coal Mine as an example, this paper studies the law of groundwater migration and the characteristics of structural water control in the region, in order to provide reference for advanced precise control and regional prevention of coal mine water disasters. Based on the theory of structural water control and combined with the geological and structural background of Qidong Coal Mine and its mining area and coalfield, the step-by-step control effect of structural water control and the mode of structural water control are studied. The results are as follows: The bedrock formation morphology of Qidong Coal Mine is controlled by Sunan syncline as a whole, partly by Weimiao fault and other structures, and the Cenozoic formation morphology is also indirectly controlled by structures. Under the control of Sunan syncline, Permian coal-bearing sandstone fractured aquifer, Taihui, Ordovician limestone and aquifer IV angle unconformity contact after weathering inside or outside the mine; under the control of Weimiao fault, the aquifer of partial Permian coal-bearing sandstone fractured aquifer in the southern mining area of the mine outcrops again, and contacts with the aquifer IV angle unconformity, which makes the hydraulic connection between the aquifers. Based on the analysis results, it is considered that ① the geological structure controls the underground aquifer water by controlling the formation morphology ; ② Geological structure controls the hydraulic connection between aquifers by controlling the contact between aquifers. In order to further verify the hydraulic connection between aquifers, using the comparative analysis of water level changes and Pearson correlation coefficient, the borehole water level observation results of aquifer IV, Taihui and aquifer IV, Taihui and Ordovician limestone in the southern mining area during the water discharge test and normal water level observation period were analyzed. The results show that: ① During the water discharge test in the southern mining area, the water level changes of aquifer IV (SQ10-14) and Taihui (ST4) are basically synchronous and highly correlated; ② During the normal water level observation, there is a strong correlation between the water level changes of aquifer IV (SQ10), Taihui (ST4) and Ordovician limestone (SO2), and the correlation between different observation holes in the same aquifer is quite different. It is confirmed that, controlled by the structure, there is hydraulic connection in the angular unconformity contact area between the fourth aquifer and the bedrock aquifer in the local area of the mine. The groundwater model system (GMS) and parameter estimation (PEST) are used to study the distribution and runoff law of four water levels. The results show that the four water levels are about−7−−57m, the water level in the south is higher than that in the north, and the hydraulic gradient is larger at the Weimiao fault. The four water-bearing runoff is concentrated in the southwest and central part of the mine. The southwest runoff is northward as a whole, and the central part is mainly east-west runoff. The four water-bearing runoff bypasses the Weimiao fault.

  • 图  1   祁东煤矿及其所在矿区、煤田构造示意

    Figure  1.   Structure of Qidong Coal Mine, its mining area and coalfield

    图  2   矿井水文地质柱状图

    Figure  2.   Hydrogeological histogram of mine

    图  3   构造与基岩含水层露头分布示意

    Figure  3.   Schematic of structure and outcrop distribution of bedrock aquifer

    图  4   放水试验钻孔布置示意

    Figure  4.   The schematic of borehole layout in water discharge test

    图  5   放水试验期间观测孔水位变化

    Figure  5.   Water level change of observation hole during discharge test

    图  6   正常水位观测期间观测孔水位变化

    Figure  6.   Water level change of observation hole during normal water level observation

    图  7   放水试验期间ST4孔与SQ10孔水位变化

    Figure  7.   Water level changes of ST4 and SQ10 boreholes during discharge test

    图  8   正常水位观测期间ST4孔与SQ10孔水位变化

    Figure  8.   Water level changes of ST4 and SQ10 boreholes during normal water level observation

    图  9   建立地下水数值模型的主要步骤流程

    Figure  9.   Flow of main steps for establishing groundwater numerical model

    图  10   四含初始水位分布

    Figure  10.   Aquifer IV Initial water level distribution

    图  11   四含的三维地质模型

    Figure  11.   3D geological model of aquifer IV

    图  12   模型源汇项设置示意

    Figure  12.   Model source and sink item setting

    图  13   参数反演运算流程

    Figure  13.   Flow of parameter inversion

    图  14   四含观测水位与模拟水位

    Figure  14.   aquifer IV Observational and simulated water levels

    图  15   四含模拟水位分布

    Figure  15.   Water level distribution map of aquifer IV simulation

    图  16   四含内地下水径流速度向量

    Figure  16.   Velocity vector diagram of groundwater runoff in aquifer IV

    表  1   放水试验期间观测孔水位变化情况

    Table  1   Water level changes of observation holes during discharge test

    钻孔预放水试验阶段水位恢复阶段正式放水试验阶段
    2014-03-15水位/m2014-05-20水位/m水位变化/m2014-07-03水位/m水位变化/m2014-07-22水位/m水位变化/m
    SQ10−11.14−14.63−3.49−12.122.51−13.85−1.73
    SQ11−24.33−26.56−2.23−24.891.67−26.06−1.17
    SQ12−17.5−19.67−2.17−18.091.58−19.25−1.16
    SQ13−30.17−27.013.16−28.97−1.96
    SQ14−31.68−25.446.24−29.95−4.51
    ST4−10.47−12.63−2.16−11.161.47−12.26−1.1
    下载: 导出CSV

    表  2   放水试验期间观测孔水位变化的相关性

    Table  2   Correlation of water level changes of observation holes during discharge test

    孔号孔水位变化相关性
    SQ10ST4SQ12SQ11SQ14SQ13
    SQ101.001.000.981.000.920.84
    ST41.001.000.971.000.960.87
    SQ120.980.971.000.980.870.79
    SQ111.001.000.981.000.930.84
    SQ140.920.960.870.931.000.86
    SQ130.840.870.790.840.861.00
    下载: 导出CSV

    表  3   正常水位观测期间各钻孔水位间的相关性

    Table  3   Correlation between long-term observation borehole water level of each aquifer

    孔号孔水位变化相关性
    SO2ST4SQ10ST1ST3SQ7SQ1SQ6SQ8
    SO210.810.84−0.680.590.730.560.43−0.54
    ST40.8110.900.39−0.190.540.360.460.39
    SQ100.840.901−0.680.620.810.770.64−0.36
    ST1−0.680.39−0.681−0.69−0.82−0.46−0.250.62
    ST30.59−0.190.62−0.6910.560.290.13−0.61
    SQ70.730.540.81−0.820.5610.820.70−0.46
    SQ10.560.360.77−0.460.290.8210.96−0.04
    SQ60.430.460.64−0.250.130.700.9610.13
    SQ8−0.540.39−0.360.62−0.61−0.46−0.040.131
    下载: 导出CSV

    表  4   祁东煤矿四含的补、径、排情况

    Table  4   Supplement, diameter and drainage of aquifer IV in Qidong Coal Mine

    补给项数值/(m3·d−1排泄项数值/(m3·d−1
    已知水位孔35.75652888已知水位孔2.191012621
    抽水井0抽水井0.353078
    补给区24.97032833补给区0
    岩层储水95.91781616岩层放水128.375061
    径流补给16.77161254径流排泄38.94797101
    总补给173.4162859总排泄169.8671227
    下载: 导出CSV
  • [1] 国家统计局. 中华人民共和国2021年国民经济和社会发展统计公报[N]. 中国信息报, 2022-03-01(001).
    [2] 国务院安全生产委员会. 国务院安全生产委员会关于印发《“十四五”国家安全生产规划》的通知[EB/OL]. 中华人民共和国应急部. (2021-04-12) [2022-07-19]. https://www.mem.gov.cn/gk/zfxxgkpt/fdzdgknr/202204/t20220412_411518.shtml.
    [3] 张培森,李复兴,朱慧聪,等. 2008—2020年煤矿事故统计分析及防范对策[J]. 矿业安全与环保,2022,49(1):128−134.

    ZHANG Peisen,LI Fuxing,ZHU Huicong,et al. Statistical analysis and prevention countermeasures of coal mine accidents from 2008 to 2020[J]. Mining Safety & Environmental Protection,2022,49(1):128−134.

    [4] 曾 文. 宿南矿区地下水系统演化规律模拟研究[D]. 合肥: 合肥工业大学, 2017.

    ZENG Wen. Simulation study on the evolution of groundwater system in Sunan mining area [D]. Hefei: Hefei University of Technology, 2017.

    [5] 冯晓青. 华北隐伏型煤田松散承压含水层下开采顶板突水预测与防治技术研究[D]. 合肥: 合肥工业大学, 2016.

    FENG Xiaoqing. Water inrush prediction and prevention technology of roof mining under loose confined aquifer in North China concealed coalfield [D]. Hefei: Hefei University of Technology, 2016.

    [6] 张开弦. 祁东煤矿四含富水性分区及其下开采覆岩变形破坏规律研究[D]. 合肥: 合肥工业大学, 2018.

    ZHANG Kaixian. Study on the deformation and failure law of mining rock under the four water-rich zones of Qidong Coal Mine [D]. Hefei: Hefei University of Technology, 2018.

    [7] 徐 刚,黄志增,范志忠,等. 工作面顶板灾害类型、监测与防治技术体系[J]. 煤炭科学技术,2021,49(2):1−11.

    XU Gang,HUANG Zhizeng,FAN Zhizhong,et al. Types, monitoring and prevention technology system of roof disasters in mining face[J]. Coal Science and Technology,2021,49(2):1−11.

    [8] 李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28−47. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201002

    LI Quansheng,LI Xiaobin,XU Jialin,et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology[J]. Coal Science and Technology,2022,50(1):28−47. doi: 10.3969/j.issn.0253-2336.2022.1.mtkxjs202201002

    [9] 蔡祖煌. 构造水文地质学[J]. 地球科学进展,1991(3):96−97.

    CAI Zuhuang. Tectonic hydrology geology[J]. Geoscience progress,1991(3):96−97.

    [10] 刘东升. 构造控水的理论探讨[J]. 山东煤炭科技,1998(4):43−45.

    LIU Dongsheng. Theoretical discussion on structural water control[J]. Shandong Coal Science and Technology,1998(4):43−45.

    [11] 佟凤健,孟新华,刘生中. 构造控水理论在煤矿生产中的指导作用[J]. 煤矿安全,1999(5):11−12.

    TONG Fengjian,MENG Xinhua,LIU Shengzhong. Structural water control theory in coal mine production guidance[J]. Coal mine safety,1999(5):11−12.

    [12] 胡艳卉,张文泉,任仰辉,等. 安徽五沟煤矿1016面底板突水GMS模拟模型研究[J]. 山东科技大学学报(自然科学版),2009,28(4):35−39.

    HU Yanhui,ZHANG Wenquan,REN Yanghui,et al. Study on GMS simulation model of floor waterinrush in No. 1016 Coalface of Anhui Wugou Mine[J]. Journal of Shandong University of Science and Technology (Natural Science),2009,28(4):35−39.

    [13] 宋业杰. GMS在矿井涌水量预测中的应用[J]. 煤矿开采,2011,16(1):104−107.

    SONG Yejie. Applicating of GMS in forecasting mine groundwater inflow[J]. Coalmining Technology,2011,16(1):104−107.

    [14] 苗世超,刘 伟. 基于GMS的巍山煤矿煤系上伏含水层地下水数值模拟[J]. 煤炭技术,2015,34(7):133−136.

    MIAO Shichao,LIU Wei. Groundwater numerical simulation on overlying aquifer in coal measure in weishan mine based on GMS model[J]. Coal Technology,2015,34(7):133−136.

    [15] 王婷婷. 基于GMS的某矿区地下水数值模拟研究[D]. 太原: 中国辐射防护研究院, 2018.

    WANG Tingting. Numerical simulation of groundwater in a mining area based on GMS [D]. Taiyuan: China Institute of Radiation Protection, 2018.

    [16] 彭 涛,龙良良,刘凯祥,等. 基于煤层顶板抽水试验的含水层水力联系研究[J]. 矿业安全与环保,2019,46(3):66−69,73.

    PENG Tao,LONG Liangliang,LIU Kaixiang,et al. Study on aqufier hydralic connection based on pumping test of coal seam roof[J]. Mining Safety & Environmental Protection,2019,46(3):66−69,73.

    [17] 李超峰. 采煤工作面顶板巨厚层状含水层涌水量预测研究[D]. 北京: 煤炭科学研究总院, 2019.
    [18] 王海军. 柳江盆地岩浆活动对主力煤田水文地质特征的影响[J]. 煤炭学报,2021,46(5):1670−1684.

    WANG Haijun. Influence of magmatic activities in Liujiang Basin on hydrogeological characteristics of main coalfields[J]. Journal of China Coal Society,2021,46(5):1670−1684.

    [19] 侯恩科,谢晓深,王双明,等. 中深埋厚煤层开采地下水位动态变化规律及形成机制[J]. 煤炭学报,2021,46(5):1404−1416.

    HOU Enke,XIE Xiaoshen,WANG Shuangming,et al. Dynamic law and mechanism of groundwater induced by me-dium-deep buried and thick coal seam mining[J]. Journal of China Coal Society,2021,46(5):1404−1416.

    [20] 胡雪峰,左文喆,康振兴,等. 基于多孔抽水试验的水文地质条件分析:以马城铁矿为例[J]. 地下水,2022,44(1):87−90,99.
    [21] 方 婷. 安徽淮北煤田构造特征和形成机制[D]. 南京: 南京大学, 2017.

    FANG Ting. The structural characteristics and formation mechanism of Huaibei coalfield in Anhui[D]. Nanjing : Nanjing University, 2017.

    [22] 彭 涛. 淮北煤田断裂构造系统及其形成演化机理[D]. 淮南: 安徽理工大学, 2015.

    PENG Tao. Huaibei coalfield fault structure system and its formation and evolution mechanism [D]. Huainan: Anhui University of Technology, 2015.

    [23] 陈陆望, 王迎新, 欧庆华, 等. 考虑覆岩结构影响的近松散层开采导水裂隙带发育高度预测模型研究: 以淮北煤田为例[J]. 工程地质学报, 29(4): 1048−1056.

    CHEN Luwang, WANG Yingxin, OU Qinghua, et al. Prediction model for development height of water-conducting fractured zone during mining near loose stratum considering influence of overburden structure: a case study of Huaibei coalfield[J]. Journal of Engineering Geology, 29(4): 1048−1056.

    [24] 李恒乐,秦 勇,张玉贵,等. 淮北矿区祁东井田构造对瓦斯赋存的控制作用[J]. 煤炭科学技术,2014,42(8):42−46,50.

    LI Hengle,QIN Yong,ZHANG Yugui,et al. Structure control on gas deposition in qidong minefield of Huaibei Mining Area[J]. Coal Science and Technology,2014,42(8):42−46,50.

    [25] 马 杰,桂和荣,孙林华,等. 淮北煤田地应力场分布特征及其构造演化研究[J]. 煤炭工程,2015,47(10):97−99,103. doi: 10.11799/ce201510031

    MA Jie,GUI Herong,SUN Linhua. Distribution characteristics of in-situ stress field and tectonic evolution in Huaibei Coalfield[J]. Coal Engineering,2015,47(10):97−99,103. doi: 10.11799/ce201510031

    [26] 李 佩. 淮北祁东煤矿构造煤中微量元素迁移聚集的构造控制[D]. 徐州: 中国矿业大学, 2015.

    LI Pei. Tectonic control on the migration and aggregation of trace elements in tectonically deformed coal in Qidong Coalmine, Huaibei Coalfield[D]. Xuzhou: China University of Mining and Technology, 2015.

    [27] 覃木广, 张子敏, 张玉贵, 等. 祁东煤矿构造演化对瓦斯分布的控制[C]//瓦斯地质与瓦斯防治进展, 北京: 煤炭工业出版社, 2007. 94−99.

    TAN Muguang, ZHANG Zhimin, ZHANG Yugui, et al. Control of gas distribution by tectonic evolution in Qidong Coal Mine[C]//Gas geology and gas prevention progress, Beijing: China Coal Industry Publishing House, 2007. 94−99.

    [28] 姜 波,秦 勇,琚宜文,等. 煤层气成藏的构造应力场研究[J]. 中国矿业大学学报,2005(5):564−569.

    JIANG Bo,QIN Yong,JU Yiwen,et al. Research on tectonic stress field of generate and reservoir of coalbed methane[J]. Journal of China University of Mining & Technology,2005(5):564−569.

    [29] 赫少攀, 张玉贵, 李恒乐, 等. 祁东井田构造变形系数与瓦斯地质单元划分[J]. 煤矿安全, 2013, 44(11): 172−174.

    HE Shaopan, ZHANG Yugui, LI Hengle, et al. Structural deformation coefficient and gas geological unit division in qidong coalfield[J]. Safety in Coal Mines, 2013, 44(11): 172−174.

    [30] 赵迎春,洪 荒. 祁东煤矿南部采区放水试验[J]. 能源技术与管理,2015,40(4):139−142. doi: 10.3969/j.issn.1672-9943.2015.04.054

    ZHAO Yingchun,HONG Huang. Drainage test in southern mining area of Qidong Coal Mine[J]. Energy Technology and Management,2015,40(4):139−142. doi: 10.3969/j.issn.1672-9943.2015.04.054

    [31] SL 320-2005, 水利水电工程钻孔抽水试验规程[S].
    [32] 李超峰. 水力联系系数法定量评价含水层之间水力联系[J]. 吉林大学学报(地球科学版),2021,51(6):1801−1810.

    LI Chaofeng. Hydraulic connection coefficient and quantitative evaluation of hydraulic connection between aquifers[J]. Journal of Jilin University (Earth Science Edition),2021,51(6):1801−1810.

    [33] 肖 勇,赵 云,涂治东,等. 基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J]. 电力系统保护与控制,2019,47(11):37−43.

    XIAO Yong,ZHAO Yun,TU Zhidong,et al. Topology checking method for low voltage distribution network based on improved Pearson correlation coefficient[J]. Power System Protection and Control,2019,47(11):37−43.

    [34] 曹伟伟. 采灌作用下地层变形与含水层水位变化的相关性分析及沉降预测[D]. 上海: 上海交通大学, 2020.

    CAO Weiwei. Correlation analysis of stratum deformation and water level variation of aquifers and land subsidence prediction concerning groundwater exploitation and recharge[D]. Shanghai: Shanghai Jiao Tong University, 2020.

    [35] 张家权. 辽河汛期水质水量相关性分析[J]. 陕西水利,2021(10):107−109.

    ZHANG Jiaquan. Correlation analysis of water quality and quantity of Liaohe River in flood season[J]. Shaanxi Water Resources,2021(10):107−109.

    [36] 余亚飞,温忠辉,商金华,等. 基于泉群流量与降水量相关性的明水泉域岩溶水强径流带识别[J]. 水资源保护,2021,37(3):56−60.

    YU Yafei,WEN Zhonghui,SHANG Jinhua,et al. Identification of karst water strong runoff zone in Mingshui spring area based on correlation between spring discharge and precipitation[J]. Water Resources Protection,2021,37(3):56−60.

    [37] 武 强,许 珂,张 维. 再论煤层顶板涌(突)水危险性预测评价的“三图-双预测法”[J]. 煤炭学报,2016,41(6):1341−1347.

    WU Qiang,XU Ke,ZHANG Wei. Further research on “three maps-two predictions” method for prediction on coal seam roof water bursting risk[J]. Journal of China Coal Society,2016,41(6):1341−1347.

    [38] 祝晓彬. 地下水模拟系统(GMS)软件[J]. 水文地质工程地质,2003(5):53−55. doi: 10.3969/j.issn.1000-3665.2003.05.012

    ZHU Xiaobin. Groundwater simulation system (GMS) software[J]. Hydrogeological engineering geology,2003(5):53−55. doi: 10.3969/j.issn.1000-3665.2003.05.012

    [39] 杜守营,鹿 帅,杜尚海. 基于GMS的地下水流数值模拟及参数敏感性分析[J]. 中国农村水利水电,2013(8):77−80.

    DU Shouying,LU Shuai,DU Shanghai. Numerical simulation of groundwater and sensitivity analysis of parameters based on GMS[J]. Rural Water Conservancy and Hydropower in China,2013(8):77−80.

    [40] 郭晓东,田 辉,张梅桂,等. 我国地下水数值模拟软件应用进展[J]. 地下水,2010,32(4):5−7. doi: 10.3969/j.issn.1004-1184.2010.04.002

    GUO Xiaodong,TIAN Hui,ZHANG Meigui,et al. Application progress of groundwater numerical simulation software in China[J]. Groundwater,2010,32(4):5−7. doi: 10.3969/j.issn.1004-1184.2010.04.002

    [41] 仝晓霞,宁立波,董少刚. 运用 GMS 模型对某垃圾场地下水污染的研究[J]. 环境科学与技术,2012,35(7):197−201.

    TONG Xiaoxia,NING Libo,DONG Shaogang. GMS model for assessment and prediction of groundwater pollution of a garbage dumpling site in Luoyang[J]. Environmental Science & Technology,2012,35(7):197−201.

    [42] 陈正华,周 斌,邓 智. 基于GMS的武山矿区水文地质结构可视化模型[J]. 安全与环境工程,2012,19(4):125−128.

    CHEN Zhenghua,ZHOU Bin,DENG Zhi. Hydrogeological structure visualization model of Wushan Mine based on GMS[J]. Safety and Environmental Engineering,2012,19(4):125−128.

    [43] 赵 研,郭嘉琳,施 洋,等. 基于GMS的抚顺西露天矿地下水涌水量模拟[J]. 环境工程,2021,39(1):75−79,129.

    ZHAO Yan,GUO Jialin,SHI Yang,et al. A groundwater inflow prediction method for Fushun West Open-pit Mine based on GMS[J]. Environmental Engineering,2021,39(1):75−79,129.

  • 期刊类型引用(4)

    1. 高银贵,詹绍奇,黄文迪,孔皖军,国伟,赵得荣,薛贤明,姜春露,郑刘根. 唐家会矿地下水化学特征及其在断层导水性识别中的应用. 煤炭工程. 2024(03): 143-148 . 百度学术
    2. 刘晓娟,许光泉,傅先杰,单崇雷. 疏放条件下新生界底部含水层数值模拟及排泄量评价. 煤矿安全. 2024(04): 197-203 . 百度学术
    3. 武志高,马文豪,周安朝,王晓强,曹宽坚,商培林. 地质构造对含水系统的控制作用及突水水源识别研究——以贾郭煤矿突水事件为例. 太原理工大学学报. 2024(06): 948-957 . 百度学术
    4. 左涛,熊小锋,戴柳珍. 数值模拟在地下水环境影响评价中的应用——以福泉市某尾矿库建设为例. 地下水. 2023(03): 1-3+12 . 百度学术

    其他类型引用(3)

图(16)  /  表(4)
计量
  • 文章访问数:  129
  • HTML全文浏览量:  8
  • PDF下载量:  65
  • 被引次数: 7
出版历程
  • 收稿日期:  2022-06-27
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-03-19

目录

    XU Daqiang

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回