高级检索

瓦斯非均衡赋存煤层精准冲孔增透技术及应用

刘厅, 林柏泉, 赵洋, 翟成, 邹全乐

刘 厅,林柏泉,赵 洋,等. 瓦斯非均衡赋存煤层精准冲孔增透技术及应用[J]. 煤炭科学技术,2023,51(2):217−231

. DOI: 10.13199/j.cnki.cst.2022-0969
引用本文:

刘 厅,林柏泉,赵 洋,等. 瓦斯非均衡赋存煤层精准冲孔增透技术及应用[J]. 煤炭科学技术,2023,51(2):217−231

. DOI: 10.13199/j.cnki.cst.2022-0969

LIU Ting,LIN Baiquan,ZHAO Yang,et al. Precise permeability enhancement technique with hydraulic flushing for coal seams with non-uniformly distributed gas[J]. Coal Science and Technology,2023,51(2):217−231

. DOI: 10.13199/j.cnki.cst.2022-0969
Citation:

LIU Ting,LIN Baiquan,ZHAO Yang,et al. Precise permeability enhancement technique with hydraulic flushing for coal seams with non-uniformly distributed gas[J]. Coal Science and Technology,2023,51(2):217−231

. DOI: 10.13199/j.cnki.cst.2022-0969

瓦斯非均衡赋存煤层精准冲孔增透技术及应用

基金项目: 

国家自然科学基金资助项目(52004276);江苏省自然科学基金资助项目(BK20200636)

详细信息
    作者简介:

    刘厅: (1991—),男,江苏连云港人,副教授,博士。Email:tingliu@cumt.edu.cn

  • 中图分类号: TD712

Precise permeability enhancement technique with hydraulic flushing for coal seams with non-uniformly distributed gas

Funds: 

National Natural Science Foundation of China (52004276); Natural Science Foundation of Jiangsu Province (BK20200636)

  • 摘要:

    为实现瓦斯非均衡赋存煤层的精准卸压增透,基于理论建模、数值模拟和现场试验的方法研究了水力冲孔关键工艺参数的判定准则和优化方法。构建了卸压煤层多场耦合模型,分析了冲孔最优出煤量的判定指标体系,提出了冲孔最优出煤量的判定准则及方法,绘制了水力冲孔关键工艺参数优化图谱,提出了瓦斯非均衡赋存煤层梯级精准增透强化抽采技术。结果表明:①抽采时间一定时,随着冲孔出煤量的增加,煤层残余瓦斯含量逐渐降低,而由于孔间应力集中程度的升高,残余瓦斯压力先降低后升高;②冲孔最优出煤量的判定准则包括瓦斯抽采达标约束和巷道失稳风险和施工成本最小化约束,当残余瓦斯含量和压力均小于临界值时,认为抽采达标,在满足抽采达标的前提下,应尽量减小冲孔出煤量以保证煤巷稳定、降低工程成本;③冲孔最优出煤量随地应力的升高而降低,随黏聚力、瓦斯压力和钻孔间距的增大而升高。对于给定煤层,冲孔出煤量存在最大值,抽采达标时间存在最小值;④综合考虑煤层瓦斯压力、出煤量、钻孔间距及抽采达标时间之间的关联关系,绘制了冲孔关键参数的优化图谱,提出了瓦斯非均衡赋存煤层梯级精准增透强化抽采技术,融合煤层瓦斯赋存特征和冲孔关键参数的优化图谱,确定不同瓦斯赋存区域对应的冲孔工艺参数,实现瓦斯非均衡赋存煤层的精准卸压增透。

    Abstract:

    To realize the precise stress relief and permeability enhancement of the coal seam with non-uniformly distributed gas, the criterion and optimization method of key construction parameters of hydraulic flushing was studied by modeling, numerical simulation and field tests. First, the multiphysics coupling model for stress-relieved coal seam was developed and index of optimal coal discharged was analyzed. Then the criterion and determination method of optimal coal discharged was put forward. Finally, the determination map of key construction parameters of hydraulic flushing was drawn, and a precise permeability enhancement technique for coal seam with non-uniformly distributed gas was proposed. The main conclusions are shown as follows: ① for a given gas extraction time, the residual gas content decreases while the residual gas pressure reduces followed by an increase with a rise of coal discharged; ② the criterion of optimal coal discharged includes the constraints of gas extraction reaching standard and minimization of roadway instability risk and construction cost. When the residual gas content and pressure are less than the critical values, it is considered that the gas extraction reaches the standard. On the premise of meeting the standard of extraction, the coal discharged should be reduced as far as possible to ensure the stability of coal roadway and reduce the project cost; ③ The optimal coal discharged decreases with the increase of ground stress, and increases with the increase of cohesion, gas pressure and borehole spacing. For a given coal seam, there is a maximum value of coal discharged and a minimum value of extraction time reaching standard; ④ comprehensively considering the correlation between coal seam gas pressure, coal yield, borehole spacing and extraction time reaching standard, the optimization map of key parameters of hydraulic flushing is drawn. Based on the map, a precise pressure relief and permeability enhancement technology for coal seams with non-uniformly distributed gas is put forward. In this technique, the construction parameters of hydraulic flushing corresponding to various gas occurrence areas can be determined, with the combination of gas occurrence and optimization map of key parameters, realizing the precise permeability enhancement of the coal seams with non-uniformly distributed gas.

  • 图  1   等效裂隙煤体模型及其在卸压煤体结构表征方面的应用

    Figure  1.   Equivalent fractured coal model and its application in characterization of coal structure

    图  2   几何模型与边界条件

    Figure  2.   Geometric model and boundary conditions

    图  3   不同冲孔出煤量下煤层残余瓦斯含量的变化规律

    Figure  3.   Change of residual gas content with time under various coal discharged

    图  4   不同冲孔出煤量下煤层残余瓦斯压力的变化规律

    Figure  4.   Change of residual gas pressure with time under various coal discharged

    图  5   不同出煤量下煤层应力和渗透率的分布规律

    Figure  5.   Distributions of stress and permeability under various coal discharged

    图  6   基于残余瓦斯压力的冲孔最优出煤量判定准则

    Figure  6.   Criterion of optimal coal discharged based on residual gas pressure

    图  7   冲孔最优出煤量的判定准则

    Figure  7.   Criterion of coal discharged by hydraulic flushing

    图  8   冲孔最优出煤量的判定方法

    Figure  8.   Determination method of optimal coal discharged by hydraulic flushing

    图  9   冲孔最优出煤量的单因素影响规律

    Figure  9.   Influence of single factor on coal discharged by hydraulic flushing

    图  10   模型预测值与真实值之间的关系

    Figure  10.   Relation between predicting value and actual value

    图  11   地质–工程因素交互作用对最优出煤量的影响规律

    Figure  11.   Effect of interaction of geological and engineering factors on optimal coal discharged

    图  12   地质–工程多因素耦合对抽采达标时间的影响规律

    Figure  12.   Effect of interaction of geological and engineering factors on time reaching standard

    图  13   水力冲孔关键工艺参数优化图谱

    Figure  13.   Optimization maps of key parameters of hydraulic flushing

    图  14   瓦斯非均衡赋存煤层梯级精准增透强化抽采技术

    Figure  14.   Precise permeability enhancement technique for coal seams with non-uniformly distributed gas

    图  15   试验地点工作面布置示意及煤层瓦斯含量测试结果

    Figure  15.   Layout of working face at the test site and coal seam gas content

    图  16   百米钻孔瓦斯抽采流量随抽采时间的变化规律

    Figure  16.   Change of gas flowrate with extraction time

    表  1   模型输入参数

    Table  1   Parameter input in the model

    参数取值参数取值
    煤体黏聚力C0/MPa1.98煤层初始渗透率k0/m21.15×10−17
    内摩擦角φ/(°)25.2Langmuir体积常数VL/(m3·kg−1)0.018
    煤层弹性模量E/GPa0.81Langmuir压力常数pL/MPa0.75
    泊松比ν0.32煤层初始裂隙率φf00.02
    残余段起点塑性应变εbcp0.012基质初始孔隙率φm00.045
    煤层温度T/K303煤体密度ρc/(t·m−3)1.120
    原始煤层吸附时间τ0/d10甲烷动力黏度μ/(Pa·s)1.84×10−5
    裂隙压缩系数Kf/MPa12煤基质的体积模量Em/GPa8.4
    下载: 导出CSV
  • [1] 谢和平,高 峰,鞠 杨,等. 深部开采的定量界定与分析[J]. 煤炭学报,2015,40(1):1−10. doi: 10.13225/j.cnki.jccs.2014.1690

    XIE Heping,GAO Feng,JU Yang,et al. Quantitative definition and investigation of deep mining[J]. Journal of China Coal Society,2015,40(1):1−10. doi: 10.13225/j.cnki.jccs.2014.1690

    [2] 袁 亮,林柏泉,杨 威. 我国煤矿水力化技术瓦斯治理研究进展及发展方向[J]. 煤炭科学技术,2015,43(1):45−49. doi: 10.13199/j.cnki.cst.2015.01.011

    YUAN Liang,LIN Baiquan,YANG Wei. Research progress and development direction of gas control with mine hydraulic technology in China coal mine[J]. Coal Science and Technology,2015,43(1):45−49. doi: 10.13199/j.cnki.cst.2015.01.011

    [3] 王 亮,陈大鹏,郭品坤,等. 深部煤层渗透特征及首采关键层卸压改造技术[J]. 煤炭科学技术,2017,45(6):17−23. doi: 10.13199/j.cnki.cst.2017.06.003

    WANG Liang,CHEN Dapeng,GUO Pinkun,et al. Permeability characteristics of deep coal seam and pressure relief technologies of the key first mined coal seam[J]. Coal Science and Techology,2017,45(6):17−23. doi: 10.13199/j.cnki.cst.2017.06.003

    [4] 袁 亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6. doi: 10.13225/j.cnki.jccs.2015.9027

    YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6. doi: 10.13225/j.cnki.jccs.2015.9027

    [5] 王 伟,程远平,袁 亮,等. 深部近距离上保护层底板裂隙演化及卸压瓦斯抽采时效性[J]. 煤炭学报,2016,41(1):138−148.

    WANG Wei,CHENG Yuanping,YUAN Liang,et al. Floor fracture evolution and relief gas drainage timeliness in deeper underground short-distance upper protective coal seam extraction[J]. Journal of China Coal Society,2016,41(1):138−148.

    [6] 王耀锋,何学秋,王恩元,等. 水力化煤层增透技术研究进展及发展趋势[J]. 煤炭学报,2014,39(10):1945−1955. doi: 10.13225/j.cnki.jccs.2014.0760

    WANG Yaofeng,HE Xueqiu,WANG Enyuan,et al. Research progress and development tendency of the hydraulic technology for increasing the permeability of coal seams[J]. Journal of China Coal Society,2014,39(10):1945−1955. doi: 10.13225/j.cnki.jccs.2014.0760

    [7] 林柏泉,邹全乐,沈春明,等. 双动力协同钻进高效卸压特性研究及应用[J]. 煤炭学报,2013,38(6):911−917.

    LIN Baiquan,ZOU Quanle,SHEN Chunming,et al. Investigation on highly effective depressurization property of dual-power drilling and its application[J]. Journal of China Coal Society,2013,38(6):911−917.

    [8] 蔺海晓,苏现波,刘 晓,等. 煤储层造缝及卸压增透实验研究[J]. 煤炭学报,2014,39(S2):432−435. doi: 10.13225/j.cnki.jccs.2013.1159

    LIN Haixiao,SU Xianbo,LIU Xiao,et al. Experimental study of permeability enhancement in coal layers by fracture making or unloading[J]. Journal of China Coal Society,2014,39(S2):432−435. doi: 10.13225/j.cnki.jccs.2013.1159

    [9] 高亚斌,林柏泉,杨 威,等. 高突煤层穿层钻孔“钻–冲-割”耦合卸压技术及应用[J]. 采矿与安全工程学报,2017,34(1):177−184.

    GAO Yabin,LIN Baiquan,YANG Wei,et al. “Drilling-flushing-slotting” intercoupling pressure-relief technology of cross-measure boreholes and its application in high gassy outburst coal seam[J]. Journal of Mining and Safety Engineering,2017,34(1):177−184.

    [10]

    YANG Wei,LIN Baiquan,GAO Yabin,et al. Optimal coal discharge of hydraulic cutting inside coal seams for stimulating gas production: A case study in Pingmei coalfield[J]. Journal of Natural Gas Science and Engineering,2016,28:379−388. doi: 10.1016/j.jngse.2015.12.004

    [11] 王 凯,李 波,魏建平,等. 水力冲孔钻孔周围煤层透气性变化规律[J]. 采矿与安全工程学报,2013,30(5):778−784.

    WANG Kai,LI Bo,WEI Jianping,et al. Change regulation of coal seam permeability around hydraulic flushing borehole[J]. Journal of Mining and Safety Engineering,2013,30(5):778−784.

    [12]

    CHEN Dongdong,HE Wenrui,XIE Shengrong,et al. Increased permeability and coal and gas outburst prevention using hydraulic flushing technology with cross-seam borehole[J]. Journal of Natural Gas Science and Engineering,2020,73:103067. doi: 10.1016/j.jngse.2019.103067

    [13]

    QIU Liming,SONG Dazhao,WANG Enyuan,et al. Determination of hydraulic flushing impact range by DC resistivity test method[J]. International Journal of Rock Mechanics and Mining Sciences,2018,107:127−135. doi: 10.1016/j.ijrmms.2018.04.040

    [14]

    SHEN Rongxi,QIU Liming,LYU Ganggang,et al. An effect evaluation method of coal seam hydraulic flushing by EMR[J]. Journal of Natural Gas Science and Engineering,2018,54:154−162. doi: 10.1016/j.jngse.2018.03.030

    [15] 王新新,石必明,穆朝民. 水力冲孔煤层瓦斯分区排放的形成机理研究[J]. 煤炭学报,2012,37(3):467−471. doi: 10.13225/j.cnki.jccs.2012.03.028

    WANG Xinxin,SHI Biming,MU Chaomin. Study on formation mechanism of gas emission partition in hydraulic flushing coal seam[J]. Journal of China Coal Society,2012,37(3):467−471. doi: 10.13225/j.cnki.jccs.2012.03.028

    [16]

    LIU Ting,LIN Baiquan,FU Xuehai,et al. Modeling coupled gas flow and geomechanics process in stimulated coal seam by hydraulic flushing[J]. International Journal of Rock Mechanics and Mining Sciences,2021,142:104769. doi: 10.1016/j.ijrmms.2021.104769

    [17] 林柏泉,刘 厅,杨 威. 基于动态扩散的煤层多场耦合模型建立及应用[J]. 中国矿业大学学报,2018,47(1):32−40. doi: 10.13247/j.cnki.jcumt.000811

    LIN Baiquan,LIU Ting,YANG Wei. Solid-gas coupling model for coal seams based on dynamic diffusion and its application[J]. Journal of China University of Mining & Technology,2018,47(1):32−40. doi: 10.13247/j.cnki.jcumt.000811

    [18] 卢义玉,贾亚杰,葛兆龙,等. 割缝后煤层瓦斯的流–固耦合模型及应用[J]. 中国矿业大学学报,2014,43(1):23−29.

    LU Yiyu,JIA Yajie,GE Zhaolong,et al. Coupled fluid-solid model of coal bed methane and its application after slotting by high-pressure water jet[J]. Journal of China University of Mining & Technology,2014,43(1):23−29.

    [19]

    LIU Ting,LIN Baiquan,FU Xuehai,et al. A new approach modeling permeability of mining-disturbed coal based on a conceptual model of equivalent fractured coal[J]. Journal of Natural Gas Science and Engineering,2020,79:103366. doi: 10.1016/j.jngse.2020.103366

    [20]

    LIU Ting,LIN Baiquan,YANG Wei. Impact of matrix–fracture interactions on coal permeability: model development and analysis[J]. Fuel,2017,207:522−532. doi: 10.1016/j.fuel.2017.06.125

    [21]

    CHEN Dong,PAN Zhejun,SHI Jiquan,et al. A novel approach for modelling coal permeability during transition from elastic to post-failure state using a modified logistic growth function[J]. International Journal of Coal Geology,2016,163:132−139. doi: 10.1016/j.coal.2016.07.007

    [22]

    LIU Ting,LIN Baiquan,FU Xuehai,et al. Modeling air leakage around gas extraction boreholes in mining-disturbed coal seams[J]. Process Safety and Environmental Protection,2020,141:202−214. doi: 10.1016/j.psep.2020.05.037

    [23] 张 超,王星龙,李树刚,等. 基于响应面法治理煤矿硫化氢的改性碱液配比优化[J]. 煤炭学报,2020,45(8):2926−2932. doi: 10.13225/j.cnki.jccs.2020.0094

    ZHANG Chao,WANG Xinglong,LI Shugang,et al. Optimization of the ratio of modified alkaline solution for hydrogen sulfide treatment in coal mine based on response surface method[J]. Journal of China Coal Society,2020,45(8):2926−2932. doi: 10.13225/j.cnki.jccs.2020.0094

    [24] 邹全乐,林柏泉,郑春山,等. 基于响应面法的钻割一体化喷嘴稳健性优化[J]. 中国矿业大学学报,2013,42(6):905−910. doi: 10.3969/j.issn.1000-1964.2013.06.002

    ZOU Quanle,LIN Baiquan,ZHENG Chunshan,et al. Robustness optimization of drilling-slotting integration nozzle based on response surface methodology[J]. Journal of China University of Mining & Technology,2013,42(6):905−910. doi: 10.3969/j.issn.1000-1964.2013.06.002

    [25] 林海飞,季鹏飞,孔祥国,等. 顺层钻孔预抽煤层瓦斯精准布孔模式及工程实践[J]. 煤炭学报,2022,47(3):1220−1234.

    LIN Haifei,JI Pengfei,KONG Xiangguo,et al. Precise borehole placement model and engineering practice for pre-draining coal seam gas by drilling along seam[J]. Journal of China Coal Society,2022,47(3):1220−1234.

  • 期刊类型引用(16)

    1. 郭瑜, 杨程涛, 陈锋, 姜沛汶, 李冰, 马彦操, 徐睿, 霍学松, 田咪, 武腾飞. 基于透反融合式激光的煤水混合物浓度测量装置. 工矿自动化. 2025(06) 百度学术
    2. 李小军,赵明炀,李淼. 基于深度学习的钻孔冲煤量智能识别方法. 煤田地质与勘探. 2025(01): 257-270 . 百度学术
    3. 尚林伟. 高瓦斯低渗煤层卸压增透钻孔有效影响范围监测技术研究. 陕西煤炭. 2025(03): 96-101+144 . 百度学术
    4. 刘佳佳,李元隆,高建良,王丹,张云龙. 超临界CO_2脉动作用对低阶煤微观-宏观结构损伤演化特征. 煤炭科学技术. 2025(02): 190-199 . 本站查看
    5. 郭瑜,杨程涛,马彦操,王飞,韩晓明,刘超峰,武腾飞. 底抽巷钻冲作业恒压供水系统在古汉山矿的应用. 能源与环保. 2025(05): 7-12 . 百度学术
    6. 傅师贵,刘泽功,常帅,杨帅,张健玉,乔国栋,张鑫. 深井高瓦斯低渗煤层深孔聚能爆破增透试验研究. 煤炭科学技术. 2025(05): 158-173 . 本站查看
    7. 刘厅,翟成,童校长,徐鹤翔,邹全乐,林柏泉,徐吉钊. 强突煤层地面丛式井造穴卸压辅助石门揭煤技术. 煤炭科学技术. 2025(05): 144-157 . 本站查看
    8. 张帅. 松软低渗突出煤层水力冲孔卸压增透研究. 煤矿安全. 2024(03): 66-72 . 百度学术
    9. 袁本庆. 煤层群保护层卸压强化抽采应力—渗流规律研究. 能源与环保. 2024(04): 7-13+19 . 百度学术
    10. 张金宝. 高位定向长钻孔水力输送对接筛管护孔技术研究. 煤炭科学技术. 2024(04): 255-264 . 本站查看
    11. 华明国,李安红,刘扬,赵宇杰,崔宝库,姚邦华. 煤层瓦斯抽采信息化APP智能系统开发与应用研究. 矿业研究与开发. 2024(09): 186-193 . 百度学术
    12. 高杰,赵米真,王力. 近距离煤层群相向采掘下伏煤层巷道变形破坏特征. 中国矿山工程. 2024(05): 28-35+45 . 百度学术
    13. 刘杰,赵长鑫,张浩,李志斌,王斌荣,潘如小. 白羊岭煤矿底抽巷穿层水力冲孔技术研究与应用. 煤炭科技. 2024(05): 169-175 . 百度学术
    14. 王亮,郑思文,陆壮,蒋长宝,刘超. 强突煤层群非连续开采应力叠加特征与瓦斯分区精准防治. 煤炭学报. 2024(S2): 934-945 . 百度学术
    15. 张海波,马伟杰,刘锋,连现忠. 软分层水力掏煤消突措施试验研究. 煤. 2023(10): 18-20 . 百度学术
    16. 翟成,丛钰洲,陈爱坤,丁熊,李宇杰,朱薪宇,徐鹤翔. 中国煤矿瓦斯突出灾害治理的若干思考及展望. 中国矿业大学学报. 2023(06): 1146-1161 . 百度学术

    其他类型引用(16)

图(16)  /  表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  22
  • PDF下载量:  65
  • 被引次数: 32
出版历程
  • 收稿日期:  2022-08-04
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-03-19

目录

    ZOU Quanle

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回