高级检索

煤层气开发井网密度和井距优化研究以韩城北区块为例

王之朕, 张松航, 唐书恒, 王凯峰, 张迁, 林文姬

王之朕,张松航,唐书恒,等. 煤层气开发井网密度和井距优化研究−以韩城北区块为例[J]. 煤炭科学技术,2023,51(3):148−157

. DOI: 10.13199/j.cnki.cst.2022-0477
引用本文:

王之朕,张松航,唐书恒,等. 煤层气开发井网密度和井距优化研究−以韩城北区块为例[J]. 煤炭科学技术,2023,51(3):148−157

. DOI: 10.13199/j.cnki.cst.2022-0477

WANG Zhizhen,ZHANG Songhang,TANG Shuheng,et al. Study on well pattern density and well spacing of coalbed methane development: taking Hanchengbei Block as an example[J]. Coal Science and Technology,2023,51(3):148−157

. DOI: 10.13199/j.cnki.cst.2022-0477
Citation:

WANG Zhizhen,ZHANG Songhang,TANG Shuheng,et al. Study on well pattern density and well spacing of coalbed methane development: taking Hanchengbei Block as an example[J]. Coal Science and Technology,2023,51(3):148−157

. DOI: 10.13199/j.cnki.cst.2022-0477

煤层气开发井网密度和井距优化研究—以韩城北区块为例

基金项目: 

NSFC-山西煤基低碳联合基金重点资助项目(U1910205);国家自然科学基金资助项目(41872178);中石油科技课题资助项目(2019D-5009-18)

详细信息
    作者简介:

    王之朕: (1997—),男,山西太原人,硕士研究生。E-mail:978023286@qq.com

    通讯作者:

    唐书恒: (1965—),男,河北正定人,教授,博士生导师。E-mail:tangsh@cugb.edu.cn

  • 中图分类号: TE132

Study on well pattern density and well spacing of coalbed methane development: taking Hanchengbei Block as an example

Funds: 

NSFC- Shanxi Coal-Based Low-carbon Joint Key Project (U1910205); National Natural Science Foundation of China (41872178); Petrochina Science and Technology Project (2019D-5009-18)

  • 摘要:

    煤层气井网密度及井距优化是影响煤层气产量和经济效益的重要因素,井网密度及井距的设计优化是煤层气开发方案的重要组成部分。当前对于煤层气开发井距的研究大多单一考虑产能因素或者是经济因素,对于二者综合评价研究较少。为探究煤层气开发井网密度和井距的最优方案,并综合评价煤层气井的产能与经济效益,以韩城北区块为研究对象,基于区块基本地质条件和煤储层物性资料,确定了煤层气开发适用的井网样式和井网方位。通过经验对比法、单井合理控制储量法、经济极限井距法、规定单井产能法和经济极限井网密度法计算并讨论了韩城北区块煤层气开发井网密度和井距部署方案。利用煤层气产能数值模拟软件Comet3,模拟和评价了不同井距开发方案下的产能,并采用折现现金流法进一步从经济评价角度优化了煤层气开发井网密度。结果显示,韩城北区块煤层气开发适用的井网样式为矩形井网;井网方位为NE49°;数值模拟结果表明,当井距为200 m×250 m时煤层气井稳产期产能最高,累计产量最多;依据1 km2不同井距布井方案的经济评价对比显示,当井网密度大于10口/km2时,该区块煤层气开发具有经济效益,其中井网密度为20口/km2即井距为200 m×250 m的方案内部收益率为11.27%,净现值为1 437万元,投资回收期为7.49年,经济指标最优。综合分析认为,韩城北区块最佳开发井网密度为20口/km2,最佳井距方案为200 m×250 m。

    Abstract:

    Coalbed methane (CBM) well network density and well spacing optimization are important factors affecting CBM production and economic efficiency, and are important components of CBM development programs. At present, most of the researches on well spacing for CBM development only consider productivity factors or economic factors, but there are few comprehensive evaluation studies on them. In order to explore the optimum scheme of well pattern density and well spacing for CBM development, and to comprehensively evaluate the productivity and economic benefits of CBM wells, based on the basic geological conditions of the Hanchengbei block and physical data of coal reservoir, the well pattern and well pattern orientation suitable for CBM development are determined in this paper. Through experience comparison method, single well reasonable control reserve method, economic limit well spacing method, specified single well productivity method and economic limit well pattern density method, the well pattern density and well spacing deployment scheme for CBM development in Hanchengbei block are calculated and discussed. Using numerical simulation software Comet3 of CBM productivity, the productivity under different well spacing development schemes is simulated and evaluated, and the density of well pattern for CBM development is further optimized from the perspective of economic evaluation by discounted cash flow method. The result shows that the suitable well pattern for CBM development in Hanchengbei block is rectangular well pattern. The well pattern orientation is NE49°. The numerical simulation results show that when the well spacing is 200 m×250 m, the stable production period productivity of CBM well is the highest and the cumulative production capacity is the highest. According to economic evaluation and comparison of different well spacing schemes in 1 km2, when well pattern density is more than 10 wells/km2, the development of CBM in this area has economic benefits, where well pattern density is 20 wells/km2 and well spacing is 200 m×250 m scheme is 11.27%, the net present value is 14.37 million yuan, and the payback period of investment is 7.49 years, the economic index is the best. Comprehensive analysis shows that the best development well pattern density of Hanchengbei block is 20 wells / km2, and the best well spacing scheme is 200 m×250 m.

  • 图  1   韩城北区块构造纲要

    Figure  1.   Tectonic outline map of Hanchengbei Block

    图  2   韩城北区块主力煤层的煤层气资源丰度等值线图

    Figure  2.   Contour map of CBM resource abundance of the main coal seam in the Hanchengbei Block

    图  3   韩城北区块主力煤层埋深等值线图

    Figure  3.   Contour map of the burial depth of the main coal seam in Hanchengbei Block

    图  4   韩城北区块主力煤层含气量等值线图

    Figure  4.   Contour map of gas content of the main coal seam in Hanchengbei Block

    图  5   韩城北区块W26井排采曲线

    Figure  5.   Drainage production curve of well W26 in Hanchengbei Block

    图  6   韩城北区块W23井组排采曲线

    Figure  6.   Drainage production curve of well cluster W23 in Hanchengbei Block

    图  7   韩城北区块部分生产井拟合效果

    Figure  7.   Fitting effect of some production wells in Hanchengbei Block

    图  8   韩城北区块不同井距年产气量预测结果

    Figure  8.   Forecast results of annual gas production from different well spacing in Hanchengbei Block

    图  9   韩城北区块不同井距累计产气量预测结果

    Figure  9.   Cumulative gas production forecast results for different well spacing in Hanchengbei Block

    图  10   不同方案井网布置示意(每个方格均为1 km×1 km)

    Figure  10.   Schematic of well network arrangement for different schemes (each square is 1 km×1 km)

    表  1   韩城北区块不同井距产量

    Table  1   Production from different well spacing in Hanchengbei Block

    井组井距/(m×m)稳产期产气量/(m3·d−1
    W12300×300800
    W22260×3501 000
    W23300×3501 100
    H01300×3001 200
    下载: 导出CSV

    表  2   不同井网密度及井距计算结果

    Table  2   Calculation results of different well network density and well spacing

    井距计算方法单井控制面积/km2井网密度/(口·km−2井距/(m×m)
    单井合理控制储量法0.063515.76225×282
    经济极限井距法0.045821.86191×239
    规定单井产能法0.065315.31229×286
    经济极限井网密度法0.036227.65170×213
    下载: 导出CSV

    表  3   韩城北区块主力煤层参数

    Table  3   Main coal seam parameters in Hanchengbei Block

    井号 埋深/m 厚度/m 渗透率/10−10 m2 含气量/(m3·t−1 储层压力/MPa 兰氏体积/(m3·t−1 兰氏压力/MPa
    5号井 600 6 3 16 6 36 2.2
    11号井 650 4 1 13 7 32 1.8
    下载: 导出CSV
    评价期/a15
    基准收益率/%6
    煤层气价格/(元·m−31.40
    商品率/%98
    弃置费总工程投资的5%
    资源税/%1
    增值税/%9
    国家教育费附加费/%3
    地方教育附加费/%2
    河道管理费/%1
    企业所得税/%25
    下载: 导出CSV

    表  4   不同方案的经济评价结果

    Table  4   Results of economic evaluation of different programs

    方案年产气量/万m3总投资/万元成本费用/万元年均收入/万元内部收益率/%净现值/万元投资回收期/a
    方案1724.394 380267.66993.8611.27%14397.49
    方案2485.253 067183.00665.778.56%5029.18
    方案3383.922 626155.77526.747.99%3299.53
    方案4284.772 190124.91390.714.96%−13311.31
    下载: 导出CSV
  • [1] 孟召平, 张 昆, 杨焦生, 等. 沁南东区块煤储层特征及煤层气开发井网距优化[J]. 煤炭学报, 2018, 43(9): 2525−2533.

    Meng Zhaoping, Zhang Kun, Yang Jiaosheng, et al. Characteristics of lump coal reservoir and optimization of well spacing for coalbed methane development in Eastern Qinnan [J] Journal of China Coal Society, 2018, 43 (9): 2525−2533

    [2] 杨秀春,叶建平. 煤层气开发井网部署与优化方法[J]. 中国煤层气,2008,5(1):13−17. doi: 10.3969/j.issn.1672-3074.2008.01.004

    YANG Xiuchun,YE Jianping. Well pattern optimization design for CBM development[J]. China Coalbed Methane,2008,5(1):13−17. doi: 10.3969/j.issn.1672-3074.2008.01.004

    [3] 石军太,李相方,张冬玲,等. 煤层气直井开发井网适应性优选[J]. 煤田地质与勘探,2012,40(2):28−30. doi: 10.3969/j.issn.1001-1986.2012.02.007

    SHI Juntai,LI Xiangfang,ZHANG Dongling,et al. Optimal adaptation of well network for CBM direct well development[J]. Coal Gelogy & Exploration,2012,40(2):28−30. doi: 10.3969/j.issn.1001-1986.2012.02.007

    [4]

    CHEN Jingyuan,WEI Yunsheng,WANG Junlei,et al. Inter-well interference and well spacing optimization for shale gas reservoirs[J]. Journal of Natural Gas Geoscience,2021,6:301−312. doi: 10.1016/j.jnggs.2021.09.001

    [5] 赵 欣,姜 波,徐 强,等. 煤层气开发井网设计与优化部署[J]. 石油勘探与开发,2016,43(1):84−90.

    ZHAO Xin,JIANG Bo,XU Qiang,et al. Well pattern designand deployment for coalbed methane development[J]. Petroleum Exploration and Development,2016,43(1):84−90.

    [6] 接敬涛. 韩城矿区煤层气开发技术优化[D]. 秦皇岛: 燕山大学, 2016.

    JIE Jingtao. Optimization of Coalbed Methane Development Technology in Hancheng Mining Area[D]. Qinhuangdao: Yanshan University, 2016.

    [7] 王凯峰, 唐书恒, 张松航, 等. 柿庄南区块煤层气高产潜力井低产因素分析[J]. 煤炭科学技术, 2018, 46(6): 85−91, 113.

    WANG Kaifeng, TANG Shuheng, ZHANG Songhang, et al. Analysis on low production factors of high-yield potential wells of coalbed methane in Shizhuang South Block[J]. Coal Science And Technology, 2018, 46 (6): 85−91, 113

    [8] 程 伟. 延川南煤层气开发试验区井网部署与优化研究[J]. 中国煤层气,2012,9(4):25−28. doi: 10.3969/j.issn.1672-3074.2012.04.007

    CHENG Wei. Study on well network deployment and optimization in Yanchuan South CBM development pilot area[J]. China Coalbed Methane,2012,9(4):25−28. doi: 10.3969/j.issn.1672-3074.2012.04.007

    [9] 赵希正. 韩城北区煤层结构的测井响应特征[J]. 中国煤炭地质,2018,30(5):82−87. doi: 10.3969/j.issn.1674-1803.2018.05.16

    ZHAO Xizheng. Logging response characteristics of coal seam structure in Hancheng North District[J]. China Coal Geology,2018,30(5):82−87. doi: 10.3969/j.issn.1674-1803.2018.05.16

    [10] 姚 征,李华兵,李 宁. 韩城矿区山西组煤层气储层特征研究[J]. 煤炭技术,2021,40(5):96−99.

    YAO Zheng,LI Huabing,LI Ning. Study on the characteristics of coal-bed methane reservoirs in the Shanxi Formation of the Hancheng Mining District[J]. Coal Technology,2021,40(5):96−99.

    [11] 葛 毓,麻银娟,魏 晓,等. 韩城北部煤层气储层物性特征及其主控因素研究[J]. 煤矿安全,2021,52(10):157−165.

    GE Yu,MA Yinjuan,WEI Xiao,et al. Study on physical characteristics of coalbed methane reservoirs in northern Hancheng and its main control factors[J]. Safety in Coal Mines,2021,52(10):157−165.

    [12] 李 腾. 不同构造条件下多煤层区煤层气井井型井网优化设计[D]. 徐州: 中国矿业大学, 2014.

    LI Teng. Optimal design of coalbed methane well network in multi-seam area under different tectonic conditions[D]. Xuzhou: China University of Mining and Technology, 2014.

    [13] 史 进,吴晓东,韩国庆,等. 煤层气开发井网优化设计[J]. 煤田地质与勘探,2011,39(6):20−23. doi: 10.3969/j.issn.1001-1986.2011.06.005

    SHI Jin,WU Xiaodong,HAN Guoqing,et al. Optimization design ofCBM well grid patter[J]. Coal Geology & Exploration,2011,39(6):20−23. doi: 10.3969/j.issn.1001-1986.2011.06.005

    [14] 王振云,唐书恒,孙鹏杰,等. 沁水盆地寿阳区块煤层气井网优化及采收率预测[J]. 中国煤炭地质,2013,25(10):18−21. doi: 10.3969/j.issn.1674-1803.2013.10.04

    WANG ZY,TANG SHH,SUN PJ,et al. Optimization of coalbed methane well network and recovery rate prediction in Shouyang Block, Qinshui Basin[J]. China Coal Geology,2013,25(10):18−21. doi: 10.3969/j.issn.1674-1803.2013.10.04

    [15] 徐兵祥, 李相方, 邵长金, 等. 考虑压裂裂缝的煤层气藏井网井距确定方法[J].煤田地质与勘探, 2011, 39(4): 16-19.

    XU Bingxiang , LI Xiangfang , SHAO C , et al. Determination methods of well pattern and spacing for coalbed methane reservoir considering hydraulic fractures[J]. Coal Geology & Exploration, 2011.

    [16] 郭 晨,秦 勇,韦重韬. 潘庄区块煤层气井网优化设计与产能预测[J]. 煤炭科学技术,2011,39(8):104−106. doi: 10.13199/j.cst.2011.08.109.guoch.008

    GUO Chen,QIN Yong,WEI Chongtao. Optimized design and pro-duction prediction of coal bed methane well network in PanzhuangBlock[J]. Coal Science and Technology,2011,39(8):104−106. doi: 10.13199/j.cst.2011.08.109.guoch.008

    [17]

    LIU Y,WANG F,TANG H,et al. Well type and pattern optimization method based on fine numerica l simulation in coal-bed methane reservoir[J]. Environmental Earth Sciences,2015,73(10):5877−5890. doi: 10.1007/s12665-015-4375-x

    [18]

    DAI Youjin, LI Shiqun, XIA Liangyu, et al. A CBM development well type optimization method based on the long-run marginal cost[J]. Natural Gas Industry, 2019,6(2): 109−115.

    [19]

    LIANG Baosheng,DU Meilin,YANEZ Pablo-Paez. Subsurface well spacing optimization in the Permian Basin[J]. Journal of Petroleum Science and Engineering,2019,174:235−243. doi: 10.1016/j.petrol.2018.11.010

    [20] 刘娜娜,茹 婷. 贵州省对江南井田地面煤层气抽采经济可行性研究[J]. 资源与产业,2021,23(1):63−68.

    LIU Nana,RU Tin. Economic feasibility study of surface coalbed methane extraction from Jiangnan well field in Guizhou Province[J]. Resources and Industries,2021,23(1):63−68.

    [21] 贺娟萍. 煤矿区煤层气地面抽采项目经济评价研究[D]. 西安: 西安科技大学, 2014.

    HE Juanping. Study on the economic evaluation of coalbed methane surface extraction project in coal mining area[D]. Xi’an : Xi’an University of Science and Technology, 2014.

    [22] 曹 艳,王秀芝. 煤层气地面开发项目经济评价[J]. 天然气工业,2011,31(11):103−106,130−131. doi: 10.3787/j.issn.1000-0976.2011.11.026

    CAO Yan,WANG Xiuzhi. Economic evaluation of coalbed methane surface development projects[J]. Natural Gas Industry,2011,31(11):103−106,130−131. doi: 10.3787/j.issn.1000-0976.2011.11.026

    [23] 李 林. 鸡西盆地梨树煤矿煤层气储量计算及经济评价[J]. 煤炭科学技术, 2017, 45(5): 205−210.

    LI Lin Calculation and economic evaluation of coalbed methane reserves in Lishu Coal Mine in Jixi Basin [J] Coal Science And Technology, 2017, 45 (5): 205−210

    [24] 王 成,姜在炳. 煤矿区煤层气抽采项目经济评价方法及其应用[J]. 煤田地质与勘探,2012,40(5):27−30.

    WANG Cheng,JIANG Zaibing. Economic evaluation methods and their applications for coalbed methane extraction projects in coal mining areas[J]. Coal Gelogy & Exploration,2012,40(5):27−30.

    [25] 杨 凡. 煤层气低产直井增产方法及经济性评价[D]. 北京: 中国地质大学(北京), 2020.

    YANG Fan. Methodology and economic evaluation of low-production direct wells for increasing production of coalbed methane [D]. Beijing: China University of Geosciences (Beijing), 2020.

    [26] 吴艳婷. 多煤层区煤层气合层开发产能及经济性研究[D]. 北京: 中国矿业大学(北京), 2018.

    WU Yanting. Study on the production capacity and economics of coalbed methane co-bed development in multi-seam area[D]. Beijing: China University of Mining and Technology-Beijing, 2018.

    [27] 王屿涛,刘 如,熊维莉,等. 准噶尔盆地煤层气经济评价及单井商业气流标准研究[J]. 天然气工业,2017,37(3):127−131. doi: 10.3787/j.issn.1000-0976.2017.03.017

    WANG Yutao,LIU Ru,XIONG Weili,et al. Study on economic evaluation of coalbed methane and single-well commercial gas flow criteria in Junggar Basin[J]. Natural Gas Industry,2017,37(3):127−131. doi: 10.3787/j.issn.1000-0976.2017.03.017

  • 期刊类型引用(4)

    1. 赵阳,高胜利,张小奇,马涛,双立娜,赵小春,齐博,冯全宏,张文奕. 吴起油田楼坊坪油区深层含油层系开发井网密度研究. 非常规油气. 2024(04): 115-120 . 百度学术
    2. 竟亚飞,倪小明,张径硕,张亚飞,熊志文. 不同水力压裂顺序下煤层气井组应力干扰效应研究——以沁水盆地柿庄南区块为例. 地质与勘探. 2023(06): 1336-1346 . 百度学术
    3. 赵欣,段士川,王梓良,张尚锟,丁恋,李聪聪,王伟超,尹亚磊,董昌乐. 煤层气井位精细部署的地质工程一体化影响因素分析与科学优化. 煤炭科学技术. 2023(12): 42-51 . 本站查看
    4. 黄赞,周瑞琦,杨焦生,王玫珠,王大猛,马遵青,祁灵,门欣阳,方立羽. 煤层气开发井网样式和井距优化研究——以鄂尔多斯盆地大宁区块为例. 煤炭科学技术. 2023(S2): 121-131 . 本站查看

    其他类型引用(6)

图(10)  /  表(5)
计量
  • 文章访问数:  131
  • HTML全文浏览量:  18
  • PDF下载量:  50
  • 被引次数: 10
出版历程
  • 收稿日期:  2022-04-03
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-03-14

目录

    LIN Wenji

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回