Processing math: 100%
高级检索

多层浅埋煤层开采触发岩溶坡体动力崩滑机制研究

崔芳鹏, 武强, 李滨, 熊晨, 刘新荣, 李江山, 刘小瑜

崔芳鹏,武 强,李 滨,等. 多层浅埋煤层开采触发岩溶坡体动力崩滑机制研究[J]. 煤炭科学技术,2023,51(2):317−333

. DOI: 10.13199/j.cnki.cst.2022-0002
引用本文:

崔芳鹏,武 强,李 滨,等. 多层浅埋煤层开采触发岩溶坡体动力崩滑机制研究[J]. 煤炭科学技术,2023,51(2):317−333

. DOI: 10.13199/j.cnki.cst.2022-0002

CUI Fangpeng,WU Qiang,LI Bin,et al. Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams[J]. Coal Science and Technology,2023,51(2):317−333

. DOI: 10.13199/j.cnki.cst.2022-0002
Citation:

CUI Fangpeng,WU Qiang,LI Bin,et al. Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams[J]. Coal Science and Technology,2023,51(2):317−333

. DOI: 10.13199/j.cnki.cst.2022-0002

多层浅埋煤层开采触发岩溶坡体动力崩滑机制研究

基金项目: 

国家自然科学基金面上资助项目(42272335);国家重点研发计划资助项目(2018YFC1504802)

详细信息
    作者简介:

    崔芳鹏: (1979—),男,河南新乡人,副教授,博士生导师。E-mail: cuifp@cumtb.edu.cn

    通讯作者:

    熊晨: (1995—),女,江西宜春人,博士研究生。E-mail: xiongc@student.cumtb.edu.cn

  • 中图分类号: P642

Dynamic formation mechanism of a karst landslide triggered by mining of multiple-layer & shallow-seated coal seams

Funds: 

National Natural Science Foundation of China (42272335); National Key Research and Development Program of China (2018YFC1504802)

  • 摘要:

    因内外动力地质作用活跃和人类工程活动频繁致使我国西南岩溶山区坡体灾害频发,进行该类灾害防控的相关研究必要而迫切。采用原位地质详查、全域块体离散元数值模拟和工程地质力学理论分析,选择贵州纳雍张家湾普洒滑坡为研究对象,系统提出了该类“井工开采诱发型”滑坡的致灾特征、主控触发因素和动力成灾机制。结果表明:①该滑坡动力崩滑的影响因素包括高陡坡体微地貌、“上硬下软”岩性组合、斜坡岩体结构和物理化学风化等主导因素和多层浅埋采空区、强降雨和采掘爆破振动等触发因素,其中前者的存在或长期作用较为明显地降低了原始坡体的稳定性,而后者的存在或短期作用急剧地劣化了坡体地质条件并最终触发了坡体的“临界崩滑”;②该滑坡在采空区和强降雨作用下形成的“渐进变形”具有明显的“整体下座”和“顺时针旋转”特征,其中“整体下座”为“井工开采诱发型”滑坡的典型特征,其为受区内井工开采引起的地表开采沉陷所致;③邻近坡体的采掘爆破振动最终触发该滑坡形成“临界崩滑”后,其后续动力响应可细化为“解体破碎→铲刮滑床→碎屑流动→堆积稳定”4个阶段。最后,基于分析驱动该滑坡各阶段动力响应的力学作用类型及其效应,即:坡体岩溶裂隙渗透压力、竖向和水平爆破振动应力、坡脚处剪切应力、采空区边界卸荷应力和采空区中冒落岩块压实过程产生的侧向膨胀应力等及其岩体破裂效应,系统提出了考虑其崩滑全程力学模式演变的动力崩滑机制。

    Abstract:

    Catastrophic geo-hazards have occurred frequently in the karst areas of Southwestern China for these years because of internal, external geologic processes and human engineering activities, which makes it urgently necessary to reveal their triggering mechanisms for their consequences controlling. Detailed site geological investigation, full-scale block distinct-element-code modeling and related engineering geological analysis were conducted to recognize main characteristics, controlling factors and dynamic formation mechanism of a so-called underground mining-induced landslide. Results on the Pusa landslide show its dynamic formation is influenced by micro-landform, rock strata types, rock mass structure, weathering, goaf, heavy rainfall and, especially blasting vibration during underground developing and mining, i.e. controlling factor. Based on the numerical modeling, whole subsidence and clock-wise rotation are obvious characteristics of deformation caused by the goaf and the heavy rainfall during pre-failure of the landslide. What’s more, the whole subsidence which was caused by the goaf is one of the key characteristics of the underground mining-induced landslide. After the landslide behaves its critical failure, following dynamic responses include shattering, scraping off part top of the bed, debris flowing and final depositing. Finally, the dynamic formation mechanism is proposed based on evolution of main forces contributing the Pusa landslide. The forces are actuated by the seepage stress, vertical and horizontal blasting stresses, shear stress, unloading stress and dilation stress caused by the caved rock mass.

  • 煤矸石是煤炭开采和分选过程中产生的工业固体废弃物,其化学组成主要为碳C (25%~30%)、硅SiO2 (40%~60%)、铝Al2O3 (15%~40%)等[-]。目前,针对煤矸石的资源化利用方式包括燃烧发电[]、充填筑路[]、建材生产[]、农业利用[]、元素回收[]、功能材料制备[]等。在这些利用过程中,对于煤矸石中无机灰分和有机质的资源化主要采用单独利用的方式,特别是在无机灰分的利用工艺中,通常也是先脱碳后利用,由此造成了碳排放量高、资源利用率低等的问题。而以煤矸石为原料,通过特定工艺制备碳−硅或碳−铝硅复合材料(如活性炭−介孔硅、活性炭−沸石等)是一种将煤矸石中无机质和有机碳耦合利用的高附加值利用方式。目前,关于煤矸石制备复合材料已有相关研究报道,如:崔明日等[]以NaOH为活化剂,在Ar气氛下对煤矸石碱熔活化,后经NaOH水热反应,制得晶型完好的活性炭−沸石复合材料,对SO2吸附量为50.3 mg/g;ZHANG等[]以KOH为活化剂,在N2气氛下对煤矸石进行酸浸−碱熔活化,得到多孔网状交联结构C/SiOx复合材料,在0.1 A/g下具有1175.8 mAh/g的高可逆容量,库仑效率达99.8%。LI等[]以NaOH为活化剂,在CO2气氛下对煤矸石(辅以少量煤粉)碱熔活化,后经NaOH和NaAlO2水热反应制得比表面积为669.4 m2/g的活性炭−沸石复合材料,对Cu2+和罗丹明B的吸附量分别可达116.7 mg/g和32.8 mg/g;石凯等[]以ZnCl2为活化剂,在He气氛下对煤矸石碱熔活化,后经HCl酸浸制得比表面积为412.23 m2/g,平均孔径为4.9 nm的活性炭−介孔硅复合材料,对罗丹明B的平衡吸附量达到49.81 mg/g。这些研究均证实了利用煤矸石制备复合材料的可行性;而且通过对比发现,以煤矸石为原料制备活性炭−介孔硅复合材料的工艺流程更为简单、产品性能更易调控。纵观现有研究,目前关于煤矸石制备活性炭−介孔硅复合材料的研究多侧重于制备工艺的建立和反应条件的探索,对于制备过程物相转变规律的认识尚不清晰,致使制备工艺的改进和优化方向难以确定,产品性能难以有效提升。

    以煤矸石为主要原料,通过碱熔、酸浸等过程制备活性炭−介孔硅复合材料,考察了不同反应条件对煤矸石基活性炭−介孔硅复合材料孔容和比表面积的影响规律,并通过XRD、FTIR等分析方法研究了煤矸石基活性炭−介孔硅复合材料制备过程的物相转变机理,为煤矸石制备活性炭−介孔硅复合材料提供理论指导和技术支撑。

    试验所用煤矸石取自山西省朔州市中煤平朔安太堡露天煤矿选煤厂,经颚式破碎、行星式球磨后,粒径控制在<80 μm;粉磨样品于105 °C下烘干24 h后,贮于自封袋内保存备用。此外,试验所用其他化学试剂,如氢氧化钾(KOH)、盐酸(37% HCl)等,均为分析纯试剂。

    采用GB/T 212—2008《煤的工业分析方法》对煤矸石进行了工业分析,并通过X射线荧光光谱仪测定了煤矸石的灰分组成,结果见表1。选用煤矸石原料的无机灰组成为:SiO2 (35.16%)、Al2O3 (25.90%)、Fe2O3 (3.81%)等,固定碳含量为13.04%。

    表  1  煤矸石的工业分析及灰组成
    Table  1.  Industrial analysis and ash composition of coal gangue
    Mad/%Vad/%FCad/%灰分组成及含量/%
    SiO2Al2O3Fe2O3TiO2MgOCaOK2O其他
    1.3316.8113.0435.1625.903.811.340.200.670.671.07
    下载: 导出CSV 
    | 显示表格

    以煤矸石为主要原料,通过碱熔、酸浸等过程制备活性炭−介孔硅复合材料的工艺流程如图1所示:

    图 1 煤矸石制备活性炭−介孔硅复合材料的工艺流程
    图  1  煤矸石制备活性炭−介孔硅复合材料的工艺流程
    Figure  1.  Preparation process of activated carbon-mesoporous silica composite from coal gangue

    将煤矸石按照固液质量比为1∶5置于不同浓度(3.6~19.4 mol/L)KOH溶液中,于室温下搅拌24 h,经固液分离、干燥、研磨制得煤矸石浸渍样;在管式气氛滑轨炉(BTF-1200C-SC,安徽贝意克设备技术有限公司)中还原焙烧煤矸石浸渍样,焙烧气氛为N2气氛,焙烧温度为500~900 °C,焙烧时间为30~120 min;将煤矸石碱熔焙烧样按照固液质量比为1∶5置于不同浓度(1.4~7.8 mol/L)盐酸溶液中,在三口烧瓶中进行酸浸处理,酸浸温度为20~105 °C,酸浸时间为30~150 min;待到达反应设定时间后,将酸浸浆液进行固液分离,并用去离子水反复冲洗酸浸渣至中性,烘干所得样品即为活性炭−介孔硅复合材料(AC-SiO2)。

    比表面积与孔结构:采用Micromeritics公司制造的ASAP2460物理吸附仪(Brunner Emmet Teller Measurement,BET),对制得样品的比表面积、孔容和孔径进行测定分析,测定条件:样品经120 °C真空预处理8 h后,于−196 °C下进行N2吸脱附等温线测定,以相对压力范围为0.6~0.15的吸附等温线为基础,由相对压力为0.95时的液氮吸附值换算成液氮体积得到孔容V;通过Brunner Emmet Teller方法计算比表面积(SBET);基于非限定域密度泛函理论(NLDFT)计算样品微孔−介孔全范围分布[]

    物相组成和特征基团分析:采用D2 PHASER型X射线衍射仪(X-ray Diffraction,XRD),对制得样品物相组成进行测定分析,测试条件:光源Cu Kα靶,电压30 kV,电流10 mA,扫描范围10°~80°,扫描间隔0.02°,步长0.1 s[];采用Spectrum II傅里叶变换红外吸收光谱仪(Fourier Transform Infrared Spectroscopy,FTIR),对制得样品特征基团进行测定分析,测试条件:KBr压片法,激光功率1 mW,波长532 nm,扫描范围为4000~500 cm−1,分辨率 ≤ 2 cm−1[]

    其他产品性能分析:采用JSM-7001F型热场发射扫描电子显微镜(Scanning Electron Microscope Energy Dispersive Spectrometer,SEM-EDS),对制得样品的微观形貌和元素分布进行测定分析,测试条件:待测样品通过导电胶固定于载样台上,经喷金预处理后,以背散射电子或二次电子成像模式观察样品形貌及其元素分布,电压10.0 kV,电流84.6 μA[];采用754PC型紫外分光光度计(UV spectrophotometer),通过测定样品吸附反应前后溶液中甲基橙和罗丹明B的吸光度变化,评价AC-SiO2产品对不同分子量有机物的吸附性能,吸附条件:甲基橙或罗丹明B的初始质量浓度100 mg/L,pH=4,温度45 °C,吸附材料的投加量0.05 g/L[-]

    对不同制备条件下所得AC-SiO2孔容和比表面积进行分析,结果如图2所示。

    图 2 不同碱熔−酸浸条件下AC-SiO2的孔容和比表面积变化
    图  2  不同碱熔−酸浸条件下AC-SiO2的孔容和比表面积变化
    Figure  2.  Changes of pore volume and specific surface area of AC-SiO2 obtained from different conditions

    图2所示,在碱熔过程中,随着KOH浸渍液浓度、焙烧温度、焙烧时间的增加,AC-SiO2的孔容和比表面积整体呈现上升趋势。其中,KOH浸渍液浓度对孔容和比表面积的影响较大,当浓度从3.6 mol/L增加至17.9 mol/L,AC-SiO2的比表面积由198.51 m2/g增加至782.1 m2/g,孔容由0.17 cm3/g增加至0.53 cm3/g;进一步提高浓度至19.6 mol/L,AC-SiO2的孔容和比表面积均不发生明显变化。而焙烧温度超过850 °C或者焙烧时间超过90 min后,AC-SiO2的孔容和比表面积均出现小幅下降,这可能与反应温度过高、反应时间过长导致样品发生熔融,导致孔道被堵塞有关。同样,在酸浸过程中,随着HCl酸浸浓度、酸浸温度、酸浸时间的增加,AC-SiO2的孔容和比表面积整体也呈现上升趋势。其中,HCl酸浸浓度对孔容和比表面积的影响较大,当浓度从1.4 mol/L增加至4.4 mol/L,AC-SiO2的比表面积由141.13 m2/g增加至627.40 m2/g,孔由0.2 cm3/g增加至0.51 cm3/g;进一步提高浓度超过6.0 mol/L时,AC-SiO2的孔容不发生明显变化,但比表面积出现一定程度下降,这可能与酸浸浓度过高导致溶出反应剧烈,介孔尺寸偏大有关。

    采用XRD分析方法,对煤矸石原料、焙烧样和酸浸渣进行物相组成测定,结果如图3所示。

    图 3 煤矸石原样、焙烧样和酸浸渣的XRD衍射图谱
    图  3  煤矸石原样、焙烧样和酸浸渣的XRD衍射图谱
    Figure  3.  XRD patterns of raw coal gangue, roasted sample and acid-leached slag

    煤矸石原样的物相组成主要包括石英(SiO2)、高岭石(Al2O3·2SiO2·2H2O)等。经KOH浸渍后,焙烧样的物相组成发生明显变化,高岭石衍射峰消失,而出现了钾霞石(KAlSiO4)和硅酸钾(K2SiO3)衍射峰,表明在此过程中发生了高岭石向钾霞石和硅酸钾物相的转变,具体反应见式(1)—式(2)[]。焙烧样再经HCl酸浸处理后,钾霞石和硅酸钾物相溶解,其中KCl和AlCl3以离子形式存在于溶液,而SiO2则富集于酸浸渣,形成多孔的AC-SiO2产品,具体反应见式(3)—式(4)[]。另外,酸浸渣的XRD图谱中,仅呈现漫反射“鼓包”,表明AC-SiO2产品主要以无定型形式存在[]

    Al2O32SiO22H2O (高岭石) +2KOH2KAlSiO4 (钾霞石) +3H2O (1)
    SiO2 (石英) +2KOHK2SiO3 (硅酸钾) +H2O (2)
    KAlSiO4()+4HClSiO2()+KCl+AlCl3+2H2O (3)
    K2SiO3()+2HClSiO2()+2KCl+H2O (4)

    对不同碱熔−酸浸条件下制得AC-SiO2产品的物相组成进行分析,结果如图4所示。从图2图4中可以看出,KOH浸渍液浓度和HCl酸浸浓度对AC-SiO2产品的孔容、比表面积和物相组成影响较大。在KOH浸渍液浓度较低(≤ 7.1 mol/L)或HCl酸浸浓度较低(≤1.4 mol/L)时,XRD图谱中仍有明显的石英或钾霞石衍射峰(图4a图4b),前者是由于较少的KOH未能将石英完全转化所致,而后者则是由于较少的HCl未能将钾霞石完全溶解所致。相应地,该条件下制得AC-SiO2产品的孔容和比表面积均较小。当KOH浸渍液浓度超过10.7 mol/L,HCl酸浸浓度超过2.9 mol/L后, XRD图谱仅呈现无定形漫反射“鼓包”,说明原煤矸石经碱熔、酸浸处理后已转变为无定型结构;该条件下制得AC-SiO2的孔容和比表面积有所提升,但提升幅度仍有限。进一步提高KOH浸渍液浓度或HCl酸浸浓度,XRD图谱中漫反射“鼓包”逐渐宽化。特别是,当HCl酸浸浓度超过6 mol/L时,漫反射“鼓包”由原本集中分布在29°左右变为广泛分布在15°~35°,这主要与AC-SiO2产品中介孔硅占比逐渐提升有关。

    图 4 不同条件下AC-SiO2的XRD衍射图谱
    图  4  不同条件下AC-SiO2的XRD衍射图谱
    Figure  4.  XRD patterns of AC-SiO2 obtained from different conditions

    此外,焙烧温度也将对AC-SiO2产品的孔容、比表面积和物相组成造成影响。当焙烧温度较低(≤ 600 °C)时,XRD图谱中仍呈现较弱的高岭石和石英衍射峰(图4c);相应地,AC-SiO2产品的孔容和比表面积均较小(图2c)。而当焙烧温度升高至800 °C后,高岭石和石英的衍射峰消失,AC-SiO2产品的孔容和比表面积也得到显著提升,表明煤矸石中的铝硅酸盐矿物的转化程度影响着AC-SiO2产品的孔容和比表面积。与KOH浸渍液浓度、HCl酸浸浓度和焙烧温度相比,焙烧时间、酸浸温度和酸浸时间等因素对AC-SiO2产品的孔容、比表面积和物相组成影响则较小。该结果与图2中碱熔−酸浸条件对AC-SiO2产品的孔容和比表面积影响规律一致。

    采用FT-IR对煤矸石原料、焙烧样和酸浸渣进行了分析,结果如图5所示。煤矸石原样在3692、3620和914 cm−1处存在吸收峰,是由煤矸石中高岭石矿相的羟基伸缩振动(外羟基、内羟基)和弯曲振动引起;1034、693和541 cm−1处呈现吸收峰,可归属于Si—O—Si、Al—O—Si或Al—O—Al的振动,表明煤矸石中含有大量铝硅酸盐物相;2921、2851和1383 cm−1处呈现吸收峰,源自于煤矸石中固定碳表面的C—H键伸缩振动和弯曲振动;而3432和1623 cm−1处吸收峰则是由于煤矸石样品中含有一定量的吸附水所导致的。KOH浸渍样经过焙烧处理后,羟基的特征吸收峰消失,C—H键的特征吸收峰变弱,且原本归属于高岭石中铝硅特征基团的吸收峰发生变化,这主要与焙烧样中生成大量钾霞石和硅酸钾(如1417 、987、891和693 cm−1)有关。焙烧样再经HCl酸浸处理后,钾霞石和硅酸钾的铝硅特征基团吸收峰消失,主要呈现1094 和964 cm−1处Si—O—Si反对称(对称)伸缩振动吸收峰和800 cm−1处Si—OH弯曲振动吸收峰,表明AC-SiO2产品中出现大量介孔硅[];另外,在2921、2851和1383 cm−1处还保留有C—H键伸缩振动和弯曲振动的吸收峰,表明AC-SiO2产品中也含有一定量的活性炭。

    图 5 煤矸石原样、焙烧样和酸浸渣的FT-IR图
    图  5  煤矸石原样、焙烧样和酸浸渣的FT-IR图
    Figure  5.  FT-IR spectra of raw coal gangue, roasted sample and acid-leached slag

    对不同碱熔−酸浸条件下制得AC-SiO2产品的特征基团进行分析,结果如图6所示。从图6中可以看出, KOH浸渍液浓度、焙烧温度、焙烧时间、酸浸温度、酸浸时间对AC-SiO2产品的FT-IR图谱影响不显著,而不同HCl酸浸浓度下所得AC-SiO2产品的FT-IR图谱则呈现一定差异性。当HCl酸浸浓度为1.4 mol/L时,688 cm−1处呈现明显的吸收峰,可归属于Al—O振动,表明产品中尚存未被溶解的钾霞石;继续升高浓度超过2.9 mol/L后,则该吸收峰则消失。同时,随着HCl酸浸浓度从1.4 mol/L增加至4.4 mol/L,1012 cm−1处的Si−O−Si反对称伸缩振动吸收逐步偏移至1094 cm−1处,表明在此过程介孔硅的存在形态不断发生变化。该变化将导致AC-SiO2产品的孔容和比表面积不断增大(图2b)。

    图 6 不同条件下AC-SiO2的FT-IR对比
    图  6  不同条件下AC-SiO2的FT-IR对比
    Figure  6.  FT-IR spectra of AC-SiO2 obtained from different conditions

    综合考虑不同碱熔−酸浸条件下AC-SiO2的孔容和比表面积变化,得出制备煤矸石基AC-SiO2的优化反应条件,即:KOH浸渍液浓度为19.6 mol/L、焙烧温度为850 °C、焙烧时间为90 min、HCl酸浸浓度为6.0 mol/L、酸浸温度为105 °C、酸浸时间为120 min。在此条件下,计算AC-SiO2产品得率,即:100 g煤矸石浸渍后质量变为156.5 g(主要源自负载的氢氧化钠),浸渍样经焙烧处理后质量变为113.07 g(主要源自煤矸石挥发分脱除、高岭石脱羟基以及氢氧化钠分解),焙烧样再经酸浸处理后质量变为40.2 g(主要源自酸浸过程中含铝物相的溶出)。在此过程中,煤矸石中碳、硅组分基本无损失,转化率高达90.28%(少量损失主要源自碳受热分解);相应地,活性炭−介孔硅复合材料的产品得率与原煤矸石中碳、硅含量有关,产率可达40.2%。

    对实验制得 AC-SiO2复合材料进行组分分析列于表2。从表2可以看出,AC-SiO2中主要包括固定碳16.89%和灰分 71.35%,其中灰分又以SiO2为主,即 AC-SiO2主要是由碳−硅组分构成。

    表  2  AC-SiO2复合材料的工业分析及灰组成
    Table  2.  Industrial analysis and ash composition of AC-SiO2
    Mad/%Vad/%FCad/%灰分组成及含量/%
    SiO2Al2O3Fe2O3TiO2CaOK2O其他
    5.086.6816.8970.550.090.200.260.040.060.14
    下载: 导出CSV 
    | 显示表格

    采用SEM-EDS考察了AC-SiO2的微观形貌以及碳、硅元素分布情况,结果如图7所示。从图7可以看出,AC-SiO2为不规则状颗粒,碳、硅元素在颗粒表面均匀分布,且颗粒表面分布着大小不一的孔道。通过测定AC-SiO2的N2气吸脱附曲线,发现所得吸脱附曲线为Ⅳ型标准曲线[],并伴有因毛细凝聚现象出现的H4回滞环,证实了AC-SiO2表面孔道主要是由层状结构堆积形成(图8a)。

    图 7 煤矸石基AC-SiO2的SEM-EDS图
    图  7  煤矸石基AC-SiO2的SEM-EDS图
    Figure  7.  SEM-EDS result of AC-SiO2 from coal gangue

    进一步考察了AC-SiO2的孔径分布,结果如图8所示。由图8分析可知,材料的比表面积可达835.1 m2/g,平均孔径为2.97 nm,总孔容为0.62 cm3/g,其中微孔和介孔各占近1/2。相较于孔径单一的活性炭或者介孔硅材料而言,AC-SiO2在吸附脱除多组分污染物方面的应用潜能更高。

    图 8 AC-SiO2材料的N2吸附-脱附曲线和孔径分布
    图  8  AC-SiO2材料的N2吸附-脱附曲线和孔径分布
    Figure  8.  N2 adsorption-desorption curve and pore size distribution of AC-SiO2

    选用分子量不同的甲基橙和罗丹明B作为目标污染物,在优化吸附条件下考察了AC-SiO2的吸附性能,结果如图9所示。由图9可知,当初始浓度100 mg/L、吸附剂投加量50 mg、温度45 °C、pH=4时,AC-SiO2对甲基橙和罗丹明B的吸附反应迅速进行,并在30 min左右达到吸附平衡,吸附容量分别为99.01 mg/g和99.87 mg/g。这进一步证实了所制得的AC-SiO2为多级孔材料,可用于吸附分子量不同的有机污染物。

    图 9 AC-SiO2材料的吸附性能
    图  9  AC-SiO2材料的吸附性能
    Figure  9.  Adsorption properties of AC-SiO2 for methyl

    1)煤矸石基AC-SiO2制备过程中,原料所含的高岭石、石英经碱熔焙烧后生成钾霞石和硅酸钾物相,后在酸性溶液发生溶解,形成无定型硅渣;与此同时,煤矸石中的碳经碱熔焙烧后生成活性炭,同样保留于酸浸渣中。在此过程中,KOH浸渍液浓度、焙烧温度和HCl酸浸浓度显著影响AC-SiO2产品品质,当KOH浸渍液浓度低于10.7 mol/L或者焙烧温度低于700 °C时,煤矸石中铝硅物相活化不完全,将残留在AC-SiO2产品,导致AC-SiO2产品的孔容和比表面积较低;当HCl酸浸浓度低于2.9 mol/L时,焙烧样中钾铝硅酸盐溶解不完全,同样会对AC-SiO2产品的孔容和比表面积也将造成影响。

    2)煤矸石经适宜条件的碱熔、酸浸等过程处理后,可制得AC-SiO2产品,优化反应条件为:KOH浸渍液浓度19.6 mol/L、焙烧温度850 °C、焙烧时间90 min、HCl酸浸浓度6.0 mol/L、酸浸温度105 °C、酸浸时间120 min;所制得的产品是由碳、硅为主要组分的复合材料,颗粒表面分布有层状结构堆积形成的微孔和介孔,比表面积可达835.1 m2/g,平均孔径为2.97 nm,总孔容为0.62 cm3/g,其中微孔和介孔各占近1/2;该材料可用于吸附分子量不同的有机污染物,对甲基橙和罗丹明B的吸附容量分别超过99.01 mg/g和99.87 mg/g。

  • 图  1   贵州纳雍张家湾普洒滑坡全貌

    Figure  1.   A full-view picture of the Pusa landslide in Zhangjiawan Town,Nayong County,Guizhou Province

    图  2   贵州张家湾普洒滑坡工程地质剖面图(沿主滑方向)

    Figure  2.   Geological profile of the Pusa landslide in Zhangjiawan Town,Guizhou Province along the main sliding direction

    图  3   贵州张家湾普洒滑坡的孕灾微地貌环境

    Figure  3.   Micro topography where the Pusa landslide originated in Zhangjiawan Town,Guizhou Province

    图  4   贵州张家湾普洒原始坡体组成岩性的“上硬下软”特征

    Figure  4.   The “hard upper & soft lower” lithology composition of the original Pusa slope in Zhangjiawan Town,Guizhou Province

    图  5   贵州张家湾普洒原始坡体中发育岩层

    Figure  5.   The microcrystalline limestone the marl and the silty mudstone composing the original Pusa slope in Zhangjiawan Town,G uizhou Province

    图  6   贵州张家湾普洒原始坡体中泥灰岩与粉砂质泥岩的物理风化

    Figure  6.   Physical weathering of the marl and the silty mudstone in the original Pusa slope in Zhangjiawan Town,Guizhou Province

    图  7   贵州张家湾普洒滑坡坡脚处岩层中存在的断层面(带)擦痕与阶步

    Figure  7.   Striations and steps on the fault planes at the slope toe of Pusa slope in Zhangjiawan Town,Guizhou Province

    图  8   贵州张家湾普洒滑坡原始坡体中发育的结构面

    Figure  8.   Discontinuities in the original Pusa slope in Zhangjiawan Town,Guizhou Province

    图  9   贵州张家湾普洒滑坡原始坡体中发育的岩溶深大裂隙

    Figure  9.   The large-scale karst fissures developed in the original Pusa slope in Zhangjiawan Town,Guizhou Province

    图  10   贵州张家湾普洒滑坡原始坡体中发育的岩层化学风化(岩溶微地貌)

    Figure  10.   Karst chemical weathering in the original Pusa slope in Zhangjiawan Town,Guizhou Province(karst microtopography)

    图  11   贵州张家湾普洒滑坡原始坡体坡脚处出露的煤线

    Figure  11.   Outcrop of the coal seam at the slope toe the original Pusa slope in Zhangjiawan Town,Guizhou Province

    图  12   贵州张家湾普洒滑坡原始坡体坡脚处修筑的斜井入口

    Figure  12.   The entrance of the inclined shaft at the toe of the original Pusa slope in Zhangjiawan Town,Guizhou Province

    图  13   贵州张家湾普洒滑坡附近煤层采掘延时爆破于地面形成的水平与竖向速度时程曲线

    Figure  13.   The horizontal and vertical velocity histories triggered by the delay blasting during the underground coal mining of Pusa slope in Zhangjiawan Town,Guizhou Province

    图  14   贵州张家湾普洒村煤矿日常爆破回采引起紧邻坡体形成的小规模崩塌和滚石

    Figure  14.   Some minor blasting-induced rock falls occurred near the original slope before its critical failure in Zhangjiawan Town Pusa Village,Guizhou Province

    图  15   贵州张家湾普洒原始坡体UDEC离散元数值模型

    Figure  15.   A discrete element model of the original slope

    图  16   原位实测的坡脚处地表阶梯形开采沉陷差值

    Figure  16.   The stepped mining subsidence difference at the toe of the slope

    图  17   数值模型计算的坡脚处地表阶梯状沉陷差值

    Figure  17.   Stepped mining subsidence difference at toe of the slope in numerical model

    图  18   贵州张家湾普洒坡体下伏主采煤层开采形成的采空区示意

    Figure  18.   A sketch of mined-out areas in the numerical model of Pusa slope in Zhangjiawan Town,Guizhou Province

    图  19   坡体下伏煤层开采和强降雨引起的上覆岩层和坡体变形特征

    Figure  19.   Deformation of the overlying strata and the slope triggered by coal mining and heavy rainfall

    图  20   坡体下伏煤层开采和强降雨引起的坡肩各部位位移演变曲线

    Figure  20.   Displacement evolutions of the slope shoulder caused by coal mining and heavy rainfall

    图  21   采掘爆破振动作用6 s后坡体形成整体临界崩滑时的滑体/床水平位移监测曲线

    Figure  21.   Horizontal displacement histories of the slide body and slide bed at the time of the overall critical collapse

    图  22   采掘爆破振动所致的普洒滑坡动力崩滑演变全过程

    Figure  22.   The dynamic evolution of the Pusa slope caused by mine blasting vibrations

    图  23   贵州张家湾普洒滑坡动力崩滑演变的力学模式

    Figure  23.   Mechanical-mode evolution of Pusa landslide in Zhangjiawan Town,Guizhou Province

    表  1   坡体主要岩性物理力学参数建议取值

    Table  1   Recommended physical and mechanical parameters of main lithology of slope

    岩 性密 度/(kg·m−3)体积模量/GPa剪切模量/GPa黏聚力/MPa内摩擦角/(°)抗拉强度/MPa
    微晶灰岩2 70036.5820.325.60363.00
    泥灰岩2 50029.8616.984.26321.60
    泥质粉砂岩2 60025.2214.124.86352.20
    粉砂质泥岩2 40013.308.783.23281.18
    煤层1 3003.201.982.80260.48
    岩溶裂隙充填物1 8001.200.821.20200.22
    坡肩风化带(天然)2 620
    (饱和)2 680
    18.1012.083.98301.30
    下载: 导出CSV

    表  2   坡体结构面力学参数

    Table  2   Mechanical parameters of structural planes in slope

    结构面类型法向刚度/GPa切向刚度/GPa黏聚力/MPa内摩擦角/(°)抗拉强度/MPa
    断层面689.602.0×104462.0×104
    微晶灰岩节理260.603.00320.20
    泥灰岩节理280.502.30280.10
    泥质粉砂岩节理360.602.80300.18
    粉砂质泥岩节理420.462.00240.08
    煤层节理380.421.70200.04
    坡肩风化带节理(天然)260.120.80160.003
    (饱和)230.100.60130.002
    岩溶裂隙充填物节理220.401.60220.02
    下载: 导出CSV
  • [1]

    YIN Y P,SUN P,ZHU J L,et al. Research on catastrophic rock avalanche at Guanling, Guizhou, China[J]. Landslides,2011,8(4):517−525. doi: 10.1007/s10346-011-0266-8

    [2]

    YIN Y P,SUN P,ZHANG M,et al. Mechanism on apparent dip sliding of oblique inclined bedding rockslide at Jiweishan, Chongqing, China[J]. Landslides,2011,8(1):49−65. doi: 10.1007/s10346-010-0237-5

    [3]

    FAN X M,XU Q,SCARINGI G,et al. The “long” runout rock avalanche in Pusa, China, on August 28, 2017: a preliminary report[J]. Landslides,2019,16(1):139−154. doi: 10.1007/s10346-018-1084-z

    [4] 殷跃平. 斜倾厚层山体滑坡视向滑动机制研究: 以重庆武隆鸡尾山滑坡为例[J]. 岩石力学与工程学报,2010,29(2):217−226.

    YIN Yueping. Mechanism of apparent dip slide of inclined bedding rockslide—a case study of Jiweishan rockslide in Wulong, Chongqing[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(2):217−226.

    [5] 李 滨,殷跃平,高 杨,等. 西南岩溶山区大型崩滑灾害研究的关键问题[J]. 水文地质工程地质,2020,47(4):5−13.

    LI Bin,YIN Yueping,GAO Yang,et al. Critical issues in rock avalanches in the karst mountain areas of southwest China[J]. Hydrogeology & Engineering Geology,2020,47(4):5−13.

    [6] 杨忠平,蒋源文,李 滨,等. 采动作用下岩溶山体深大裂隙扩展贯通机理研究[J]. 地质力学学报,2020,26(4):459−470.

    YANG Zhongping,JIANG Yuanwen,LI Bin,et al. Study on the mechanism of deep and large fracture propagation and transfixion in karst slope under the action of mining[J]. Journal of Geomechanics,2020,26(4):459−470.

    [7] 熊 飞, 刘新荣, 冉 乔, 等. 采动-裂隙水耦合下含深大裂隙岩溶山体失稳破坏机理[J]. 煤炭学报. 2021, 46(11): 3445−3458.

    XIONG Fei, LIU Xinrong, RAN Qiao, et al. Instability failure mechanism of karst mountain with deep and large fissures under the mining-fissure water coupling [J]. Journal of China Coal Society. 2021, 46(11): 3445−3458.

    [8] 崔芳鹏,李 滨,杨忠平,等. 贵州纳雍普洒滑坡动力触发机制离散元模拟分析[J]. 中国岩溶,2020,39(4):524−534.

    CUI Fangpeng,LI Bin,YANG Zhongping,et al. Discrete element modelling on dynamic triggering mechanism of the Pusa landslide in Nayong county, Guizhou Province[J]. Carsologica Sinica,2020,39(4):524−534.

    [9] 刘新荣,许 彬,刘永权,等. 频发微小地震下顺层岩质边坡累积损伤及稳定性分析[J]. 岩土工程学报,2020,42(4):632−641.

    LIU Xinrong,XU Bin,LIU Yongquan,et al. Cumulative damage and stability analysis of bedding rock slope under frequent microseisms[J]. Chinese Journal of Geotechnical Engineering,2020,42(4):632−641.

    [10] 李 军,褚宏亮,李 滨,等. 西南煤系地层山区采动型崩滑灾害研究关键问题[J]. 中国岩溶,2020,39(4):453−466.

    LI Jun,CHU Hongliang,LI Bin,et al. Key scientific issues in research on landslide hazard induced by underground mining in mountainous areas with coal-bearing strata of southwestern China[J]. Carsologica Sinica,2020,39(4):453−466.

    [11]

    LI B,FENG Z,WANG G Z,et al. Processes and behaviors of block topple avalanches resulting from carbonate slope failures due to underground mining[J]. Environmental Earth Sciences,2016,75(8):694. doi: 10.1007/s12665-016-5529-1

    [12] 李 滨, 冯 振, 张 勤, 等. 岩溶山区特大崩滑灾害成灾模式与早期识别研究[M]. 北京: 科学出版社, 2016.

    LI Bin, FENG Zhen, ZHANG Qin, et al. Study on the formation pattern and early identification of mega landslides in karst mountains [M]. Beijing: Science Press, 2016.

    [13] 李腾飞,陈洪涛,王瑞青. 湖北宜昌盐池河滑坡成因机理分析[J]. 工程地质学报,2016,24(4):578−583.

    LI Tengfei,CHEN Hongtao,WANG Ruiqing. Formation mechanism of Yanchihe landslide in Yichang city, Hubei Province[J]. Journal of Engineering Geology,2016,24(4):578−583.

    [14] 殷跃平,刘传正,陈红旗,等. 2013年1月11日云南镇雄赵家沟特大滑坡灾害研究[J]. 工程地质学报,2013,21(1):6−15.

    YIN Yueping,LIU Chuanzheng,CHEN Hongqi,et al. Investigation on catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong county, Yunnan Province[J]. Journal of Engineering Geology,2013,21(1):6−15.

    [15] 殷跃平,朱继良,杨胜元. 贵州关岭大寨高速远程滑坡—碎屑流研究[J]. 工程地质学报,2010,18(4):445−454.

    YIN Yueping,ZHU Jiliang,YANG Shengyuan. Investigation of a high speed and long run-out rockslide-debris flow at Dazhai in Guanling of Guizhou Province[J]. Journal of Engineering Geology,2010,18(4):445−454.

    [16] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433−454.

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433−454.

    [17] 唐 川. 昭通头寨沟特大型灾害性滑坡研究[J]. 云南地理环境研究,1991,3(2):64−71.

    TANG Chuan. A study on large-scale catastrophic landslide at Touzhai gully of Zhaotong[J]. Yunnan Geographic Environment Research,1991,3(2):64−71.

    [18] 郑 光,许 强,刘秀伟,等. 2019年7月23日贵州水城县鸡场镇滑坡-碎屑流特征与成因机理研究[J]. 工程地质学报,2020,28(3):541−556.

    ZHENG Guang,XU Qiang,LIU Xiuwei,et al. The Jichang landslide on July 23, 2019 in Shuicheng, Guizhou: characteristics and failure mechanism[J]. Journal of Engineering Geology,2020,28(3):541−556.

    [19] 殷坤龙,姜清辉,汪 洋. 新滩滑坡运动全过程的非连续变形分析与仿真模拟[J]. 岩石力学与工程学报,2002,21(7):959−962.

    YIN Kunlong,JIANG Qinghui,WANG Yang. Numerical simulation on the movement process of Xintan landslide by DDA method[J]. Chinese Journal of Rock Mechanics and Engineering,2002,21(7):959−962.

    [20] 周迎庆,雷明堂,徐金台. 四川巫溪南门湾崩滑的形成机制探讨[J]. 成都地质学院学报,1989,16(1):102−107.

    ZHOU Yingqing,LEI Mingtang,XU Jintai. The formation mechanism of Nanmenwan toppling-slide in Wuxi county, Sichuan[J]. Journal of Chengdu College of Geology,1989,16(1):102−107.

    [21] 满作武. 四川巫溪中阳村滑坡发生机制分析[J]. 地质灾害与防治,1991,2(1):73−79.

    MAN Zuowu. Analysis of the mechanism of landslide taken place in Zhongyang village, Wuxi district, Sichuan Province[J]. Journal of Geological Hazard and Control,1991,2(1):73−79.

    [22] 姜 云,尹金平. 华蓥山溪口滑坡—碎屑流[J]. 地质灾害与环境保护,1992,3(2):51−58.

    JIANG Yun,YIN Jinping. Rock avalanche of Xikou in Huayinshan[J]. Geological Hazards and Environment Preservation,1992,3(2):51−58.

    [23] 王国章,李 滨,冯 振,等. 重庆武隆鸡冠岭岩质崩滑-碎屑流过程模拟[J]. 水文地质工程地质,2014,41(5):101−106.

    WANG Guozhang,LI Bin,FENG Zhen,et al. Simulation of the process of the Jiguanling rock avalanche in Wulong of Chongqing[J]. Hydrogeology & Engineering Geology,2014,41(5):101−106.

    [24] 金德山. 云南元阳老金山滑坡[J]. 中国地质灾害与防治学报,1998,9(4):81,99−102.

    JIN Deshan. Laojinshan landslide in Yuanyang county, Yunnan Province[J]. The Chinese Journal of Geological Hazard and Control,1998,9(4):81,99−102.

    [25]

    JONES D B, SIDDLE H J, REDDISH D J, et al. Landslides and undermining: slope stability interaction with mining subsidence behavior [C]//Proceedings of the 7th International Society of Rock Mechanics Congress. Aachen: Rotterdam, 1991: 893−898.

    [26]

    DONNELLY L J, CRUZ H D L, Asmar I, et al. The monitoring and prediction of mining subsidence in the Amaga, Angelopolis, Venecia and Bolombolo Regions, Antioquia, Colombia. Engineering Geology [J]. 2001, 59(1/2): 103−114.

    [27]

    ZAHIRI H,PALAMARA D R,FLENTJE P,et al. A GIS-based weights-of-evidence model for mapping cliff instabilities associated with mine subsidence[J]. Environmental Geology,2006,51(3):377−386. doi: 10.1007/s00254-006-0333-y

    [28]

    ERGİNAL A E,TÜRKEŞ M,ERTEK T A,et al. Geomorphological investigation of the excavation‐induced dündar landslide, bursa-turkey[J]. Geografiska Annaler:Series A, Physical Geography,2008,90(2):109−123. doi: 10.1111/j.1468-0459.2008.00159.x

    [29]

    SINGH R,MANDAL P K,SINGH A K,et al. Upshot of strata movement during underground mining of a thick coal seam below hilly terrain[J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(1):29−46. doi: 10.1016/j.ijrmms.2007.03.006

    [30]

    FUENKAJORN K,ARCHEEPLOHA S. Prediction of cavern configurations from subsidence data[J]. Engineering Geology,2010,110(1/2):21−29. doi: 10.1016/j.enggeo.2009.10.003

    [31]

    MARSCHALKO M,YILMAZ I,BEDNÁRIK M,et al. Influence of underground mining activities on the slope deformation genesis: Doubrava Vrchovec, Doubrava Ujala and Staric case studies from Czech Republic[J]. Engineering Geology,2012,147/148:37−51. doi: 10.1016/j.enggeo.2012.07.014

    [32]

    YILMAZ I,MARSCHALKO M. A leaning historical monument formed by underground mining effect: an example from Czech Republic[J]. Engineering Geology,2012,133/134:43−48. doi: 10.1016/j.enggeo.2012.02.011

    [33]

    UNLU T,Akcin H,YILMAZ O. An integrated approach for the prediction of subsidence for coal mining basins[J]. Engineering Geology,2013,166:186−203. doi: 10.1016/j.enggeo.2013.07.014

    [34]

    LANA S M. Numerical modeling of failure mechanisms in phyllite mine slopes in Brazil[J]. International Journal of Mining Science and Technology,2014,24(6):777−782. doi: 10.1016/j.ijmst.2014.10.007

    [35]

    SALMI E F,NAZEM M,KARAKUS M. The effect of rock mass gradual deterioration on the mechanism of post-mining subsidence over shallow abandoned coal mines[J]. International Journal of Rock Mechanics and Mining Sciences,2017,91:59−71. doi: 10.1016/j.ijrmms.2016.11.012

    [36]

    FENG Z,LI B,YIN Y P,et al. Rockslides on limestone cliffs with sub horizontal bedding in the southwestern calcareous area of China[J]. Natural Hazards and Earth System Sciences,2014,14(9):2627−2635. doi: 10.5194/nhess-14-2627-2014

    [37]

    CHEN L Q,ZHAO C Y,LI B,et al. Deformation monitoring and failure mode research of mining-induced Jianshanying landslide in karst mountain area, China with ALOS/PALSAR-2 images[J]. Landslides,2021,18(8):2739−2750. doi: 10.1007/s10346-021-01678-6

    [38]

    SALMI E F,NAZEM M,KARAKUS M. Numerical analysis of a large landslide induced by coal mining subsidence[J]. Engineering Geology,2017,217:141−152. doi: 10.1016/j.enggeo.2016.12.021

    [39]

    ZHAO J J,XIAO J G,LEE M L,et al. Discrete element modeling of a mining-induced rock slide[J]. SpringerPlus,2016,5(1):1633. doi: 10.1186/s40064-016-3305-z

    [40]

    ZHAO J J, WAN X, SHI Y B, et al. Deformation behavior of mining beneath flat and sloping terrains in mountainous areas [J]. Geofluids, 2021.https://doi.org/10.1155/2021/6689966.

    [41]

    FANGPENG CUI,BIN LI,CHEN Xiong,et al. Dynamic triggering mechanism of the Pusa mining-induced landslide in Nayong County, Guizhou Province, China[J]. Geomatics, Natural Hazards and Risk,2022,13(1):123−147. doi: 10.1080/19475705.2021.2017020

    [42] 李智毅, 杨裕云. 工程地质学概论[M]. 武汉: 中国地质大学出版社, 1994.

    LI Zhiyi, YANG Yuyun. Introduction to engineering geology [M]. Wuhan: China University of Geosciences Press, 1994.

    [43] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010.

    QIAN Minggao, SHI Pingwu, XU Jialin. Mining pressure and strata control [M]. Xuzhou: China University of Mining and Technology Press, 2010.

    [44] 康永华,黄福昌,席京德. 综采重复开采的覆岩破坏规律[J]. 煤炭科学技术,2001,29(1):22−24. doi: 10.3969/j.issn.0253-2336.2001.01.009

    KANG Yonghua,HUANG Fuchang,XI Jingde. Overburden failure law of fully mechanized repeated mining[J]. Coal Science and Technology,2001,29(1):22−24. doi: 10.3969/j.issn.0253-2336.2001.01.009

  • 期刊类型引用(5)

    1. 李神勇, 秦身钧, 门长全, 侯佳佳, 吕大炜, 郑雪, 庞薇, 郝龙龙, 赵道远, 章少卓. 煤基纳米功能材料的制备与应用研究进展. 煤炭学报. 2025(07) 百度学术
    2. 朱磊,古文哲,袁超峰,刘成勇,潘浩,宋天奇,盛奉天. 煤矸石浆体充填技术应用与展望. 煤炭科学技术. 2024(04): 93-104 . 本站查看
    3. 田宇红,杨荣添,张李超,李林波. 煤矸石复合吸附材料制备及脱硫性能. 化学工业与工程. 2024(06): 120-127 . 百度学术
    4. 徐培杰,朱毅菲,曹永丹,曹钊,辛学铭. 煤矸石资源高值化利用研究进展. 环境工程学报. 2023(10): 3137-3147 . 百度学术
    5. 武浩洁. 碳硅复合介孔材料对水体中NO_3~-的吸附机制分析及研究. 山西化工. 2023(12): 13-14+25 . 百度学术

    其他类型引用(8)

图(23)  /  表(2)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  11
  • PDF下载量:  30
  • 被引次数: 13
出版历程
  • 收稿日期:  2021-12-31
  • 网络出版日期:  2023-04-20
  • 刊出日期:  2023-03-19

目录

LIU Xiaoyu

  1. On this Site
  2. On Google Scholar
  3. On PubMed

/

返回文章
返回