高级检索

基于遗传算法与BP神经网络的支架跟机自动化研究

王虹, 尤秀松, 李首滨, 魏文艳

王虹, 尤秀松, 李首滨, 魏文艳. 基于遗传算法与BP神经网络的支架跟机自动化研究[J]. 煤炭科学技术, 2021, 49(1): 272-277. DOI: 10.13199/j.cnki.cst.2021.01.024
引用本文: 王虹, 尤秀松, 李首滨, 魏文艳. 基于遗传算法与BP神经网络的支架跟机自动化研究[J]. 煤炭科学技术, 2021, 49(1): 272-277. DOI: 10.13199/j.cnki.cst.2021.01.024
WANG Hong, YOU Xiusong, LI Shoubin, WEI Wenyan. Research on automation of support based on genetic algorithm and BP neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 272-277. DOI: 10.13199/j.cnki.cst.2021.01.024
Citation: WANG Hong, YOU Xiusong, LI Shoubin, WEI Wenyan. Research on automation of support based on genetic algorithm and BP neural network[J]. COAL SCIENCE AND TECHNOLOGY, 2021, 49(1): 272-277. DOI: 10.13199/j.cnki.cst.2021.01.024

基于遗传算法与BP神经网络的支架跟机自动化研究

Research on automation of support based on genetic algorithm and BP neural network

  • 摘要: 针对综采工作面液压支架跟机自动化过程中移架动作存在的丢架、推移不到位等问题,提出了基于遗传算法(GA)与BP神经网络组合模型的控制方法。通过建立BP神经网络控制器为主体的反馈控制,将支架的运动参数作为模型的输入,神经网络控制器用来计算实际输出与理想输出之间误差,判别是否需要回调控制,并添加遗传算法来优化更新模型的各层阈值和权值,从而得到网络模型的最优解,最终由执行部分来完成输出动作。组合网络模型具有良好的非线性特性,可以更好的满足非线性环境,利用神经网络的预测值与实际输出的差值来得到拟合曲线。通过对BP神经网络模型、GA模型、GA-BP组合模型的均方误差(mse)分析,判断出GA-BP组合模型具有更快的训练速度和更高的预测准确率。相比较于单一的BP神经网络模型和GA模型,GA-BP组合模型可以很大程度地提高液压支架跟机过程中的推移精度,从而更好地适应综采工作面的环境和设备变化。基于对模型稳定性的分析,绘制组合网络的适应度曲线,种群在第5次迭代后趋于收敛,在第5次到第15次迭代的适应度值就已基本达到稳定,在迭代第15次后种群已达到最优参数集且恒定不变。采用上述方案的液压支架电液控制系统能够自主感知设备各项运动参数的变化,实现支架自身的静态调整和动态演化,可为综采工作面无人化建设提供技术支撑。
    Abstract: In view of the problems of frame loss and improper support movement in the automatic process of hydraulic support following machine in fully mechanized mining working, a control method was proposed based on Genetic Algorithm (GA) and BP neural network combined model. Through the establishment of BP neural network controller as the main feedback control, the motion parameters of the support are used as the input of the model. The neural network controller is used to calculate the error between the actual output and the ideal output, to determine whether callback control is required. In order to optimize the thresholds and weights of each layer of the updated model to obtain the optimal solution of the network model, and finally get the optimal solution of the network model, and the execution part completes the output action. The combined network model has good nonlinear characteristics and can better meet the nonlinear environment. The difference between the predicted value of the neural network and the actual output is used to obtain the fitting curve. By analyzing the mean square error (mse) of the BP neural network model, GA model, and BP-GA combined model, it is justified that the GA-BP combined model has faster training speed and higher prediction accuracy. Compared with a single BP neural network model and GA model, the GA-BP combined model can greatly improve the accuracy of the hydraulic support in the process of following the machine, so as to better adapt to the changes in the environment and equipment in the fully mechanized mining working. Based on the analysis of model stability, the fitness curve of the combined model was drawn. The population tends to converge after the 5th iteration, and the fitness value from the 5th to 15th iteration is basically stable, and after the 15th iteration the population has reached the optimal parameter and became constant. The hydraulic support electro-hydraulic control system adopting the above schemecan autonomously sense the changes of various motion parameters of the equipment, realizethe static adjustment and dynamic evolution of the support itself, and provide technical support for the unmanned operation of the fully mechanized mining faces.
  •   BP神经网络结构

      GA-BP组合模型移架距离预测

      GA-BP组合模型预测误差百分比

      回归系数

      GA-BP组合模型均方误差

      BP神经网络模型均方误差

      GA模型均方误差

      适应度曲线

  • 期刊类型引用(17)

    1. 余洋,董银涛,李云波,包宇,张立侠,孙浩. 基于改进SSA-BPNN的煤层气直井井底流压预测研究. 油气藏评价与开发. 2025(02): 250-256 . 百度学术
    2. 张强,张吉雄,宗庭成,杨康,金子山,吕浩南,白雨,邓攀博. 煤矿固体智能充填支护机器人及其关键技术. 煤炭学报. 2025(02): 1376-1392 . 百度学术
    3. 余桂兰. 基于GA-BP的水利工程项目造价预测研究. 水利科技与经济. 2024(06): 95-99 . 百度学术
    4. 薛艳军. 综采面液压支架自动跟机控制工艺技术实践. 江西煤炭科技. 2024(03): 126-129 . 百度学术
    5. 姚钰鹏,商楚浩,刘清. 基于工艺引擎的规划放煤控制系统. 工矿自动化. 2024(09): 41-46+107 . 百度学术
    6. 崔耀,李天越,叶壮,刘军伟. 综采跟机工艺数字孪生系统架构与关键技术. 工矿自动化. 2023(02): 56-62+76 . 百度学术
    7. 任怀伟,张帅,薛国华,赵叔吉,张玉良,李建. 液压支架自动跟机动态规律研究. 工矿自动化. 2023(09): 47-54 . 百度学术
    8. 宋健. 高校音乐教育课程评价指标建立与系统构建研究. 黑河学院学报. 2023(09): 75-77+90 . 百度学术
    9. 崔启迪. 基于区位熵与GA优化算法的产业聚集水平测度系统设计研究. 自动化与仪器仪表. 2023(11): 103-107 . 百度学术
    10. 冷祥彪,陈保刚,蒋亮,梁春宇,欧镜锋. 基于遗传算法的塔式起重机自动控制方法. 机械与电子. 2023(12): 43-47 . 百度学术
    11. 罗正亮,潘虹,赵雷,唐魏,郑源. 基于PCA-GA-BP神经网络的水电机组状态异常辨别方法. 排灌机械工程学报. 2022(04): 372-377+403 . 百度学术
    12. 张君. 基于WOA-FOPID算法的钻锚机器人机械臂运动控制研究. 煤炭科学技术. 2022(06): 292-302 . 本站查看
    13. 任怀伟,张帅,张德生,周杰,任长忠,苗兴,刘科,侯炜. 液压支架精准推移与快速跟机技术研究现状及发展趋势. 工矿自动化. 2022(08): 1-9+15 . 百度学术
    14. 吴杰,陈辉. 空气质量监测数据校准研究. 芜湖职业技术学院学报. 2022(02): 58-63 . 百度学术
    15. 马强. 智能化采煤工作面液压支架移架速度测试方法及系统研究. 煤矿机电. 2022(04): 41-45 . 百度学术
    16. 迟双宝,张仁生,赵香. 基于路面辨识和改进PID控制的电缆收放车防滑处理技术. 煤炭科学技术. 2022(S2): 320-326 . 本站查看
    17. 李丹宁,郑闯. 一种模糊神经网络的采煤机滚筒温度实时故障预警方法. 煤炭科学技术. 2021(S1): 161-166 . 本站查看

    其他类型引用(15)

图(8)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  3
  • PDF下载量:  426
  • 被引次数: 32
出版历程
  • 网络出版日期:  2023-04-02
  • 发布日期:  2021-01-24

目录

    /

    返回文章
    返回