高级检索

考虑工作面出煤柱尺度效应的下位回采巷道布置优化

吕凯, 何富连, 许旭辉, 王福忠, 秦宾宾, 李亮

吕 凯,何富连,许旭辉,等. 考虑工作面出煤柱尺度效应的下位回采巷道布置优化[J]. 煤炭科学技术,2023,51(3):52−60. DOI: 10.13199/j.cnki.cst.2021-0610
引用本文: 吕 凯,何富连,许旭辉,等. 考虑工作面出煤柱尺度效应的下位回采巷道布置优化[J]. 煤炭科学技术,2023,51(3):52−60. DOI: 10.13199/j.cnki.cst.2021-0610
LYU Kai,HE Fulian,XU Xuhui,et al. Layout of roadway under goaf based on scale effect of mining cross upper coal pillar[J]. Coal Science and Technology,2023,51(3):52−60. DOI: 10.13199/j.cnki.cst.2021-0610
Citation: LYU Kai,HE Fulian,XU Xuhui,et al. Layout of roadway under goaf based on scale effect of mining cross upper coal pillar[J]. Coal Science and Technology,2023,51(3):52−60. DOI: 10.13199/j.cnki.cst.2021-0610

考虑工作面出煤柱尺度效应的下位回采巷道布置优化

基金项目: 

国家自然科学基金资助项目(51974317);中央高校基本科研业务费专项资金资助项目(2022YJSNY09)

详细信息
    作者简介:

    吕凯: (1993—),男,山西大同人,博士研究生。E-mail:18810179556@163.com

    通讯作者:

    许旭辉: (1994—),男,山西吕梁人,博士研究生。E-mail:Xuxh72638@163.com

  • 中图分类号: TD322

Layout of roadway under goaf based on scale effect of mining cross upper coal pillar

Funds: 

National Natural Science Foundation of China (51974317); Central University Basic Research Funds Project (2022YJSNY09)

  • 摘要:

    针对遗留煤柱对下位巷道及采场产生的不利影响,以近距离煤层下行开采为背景,采用理论解析及现场实测等方法,对煤柱下底板偏应力不变量的区域特征、工作面出煤柱压架灾害的发生机理及其尺度效应展开研究。结果表明:①当上煤层相邻工作面开切眼位置不平齐时,下位巷道通过采取平错式布置,在保障巷道自身稳定的前提下,成功将工作面全长出一侧采空煤柱转化为2次小范围的出煤柱过程,实现对采场压架灾害的提前防治。②采用偏应力第二不变量(J2)、偏应力第三不变量(J3)和偏应力第二不变量(J2)水平变化率解析煤柱下方底板岩层的应力状态,并对底板进行分区,确定下位巷道平错距离的下限值为24 m。③工作面出煤柱期间,初次来压或周期来压与顶板-煤柱系统突变失稳产生的动载矿压耦合叠加形成冲击是压架灾害发生的根本原因,计算出煤柱尺度效应,得到平错距离上限值为36 m。燕子山煤矿工业性实践验证了下位巷道采取平错式布置且平错距离为30 m的可行性与合理性。

    Abstract:

    With the condition of contugous double-thick coal seams downward mining as the background, in view of the adverse effects of upper remaining coal pillars on the stability of mining roadway and stope, the field measurement and theoretical analysis are adopted to study the regional characteristics of the deviatoric stress invariant under section coal pillar, the mechanism of strong strata behaviors during mining cross the upper boundary coal pillar and its scale effect. The research shows that: ① When the position of open-off cuts is not even in the upper seam, a transverse translation layout is adopted for the lower mining roadway, which not only place the roadway in a stable stress environment, but also prevent the collapse disaster by transform the whole mining cross the upper coal pillar into twice small-range processes. ② The stress state of floor rock under section coal pillar is analyzed with the second deviatoric stress invariant (J2) intensity, the third deviatoric stress invariant (J3) intensity, and the second deviatoric stress invariant (J2) horizontal gradient. The floor is partitioned by the three indexes, and the minimum horizontal distance between roadway and section coal pillar is determined to be 24 m. ③ During the mining cross the upper coal pillar, the combined interaction of the first or periodical weighting and the sudden instability of roof and coal pillar system is the basic reasons for the strong strata behaviors. Based on the scale effect of mining cross the upper coal pillar, the maximum horizontal distance between mining roadway and section coal pillar is determined to be 36 m. The feasibility and rationality of the transverse translation layout of 30 m in lower mining roadway was verified by the field measurement of typical coal mine.

  • 图  1   近距离煤层3类典型工作面布置方式

    Figure  1.   Three typical layout of working face in contugous coal seams

    图  2   山4号煤层与C3号煤层层间关系对照

    Figure  2.   Relationship of No.4 and No.C3 coal seam

    图  3   煤柱底板载荷传递模型

    Figure  3.   Load transfer model of floor under coal pillar

    图  4   偏应力不变量分布规律

    Figure  4.   Distribution law of deviatoric stress invariant

    图  5   下位回采巷道布置区域示意

    Figure  5.   Schematic diagram of lower roadway layout area

    图  6   下位回采巷道偏应力不变量层位特征

    Figure  6.   The position characteristic of the deviatoric stress invariant in the lower mining roadway

    图  7   出煤柱阶段覆岩结构垮落型态

    Figure  7.   Characteristics of overburden structure during mining cross the upper pillar

    图  8   顶板-煤柱系统计算模型

    Figure  8.   Mechanical model of roof and coal pillar system

    图  9   出煤柱期间支架液压值变化特征

    Figure  9.   Variation of the support pressure during mining cross the upper pillar

    图  10   巷道围岩变形量监测曲线

    Figure  10.   Monitoring curves of roadway surface displacement

  • [1] 戴文祥,潘卫东,李 猛,等. 近距离煤层强扰动巷道布置与支护技术研究[J]. 煤炭科学技术,2020,48(12):61−67. doi: 10.13199/j.cnki.cst.2020.12.006

    DAI Wenxiang,PAN Weidong,LI Meng,et al. Study on layout and support technology of strongly disturbed roadway in contiguous coal seam[J]. Coal Science and Technology,2020,48(12):61−67. doi: 10.13199/j.cnki.cst.2020.12.006

    [2] 付 兴,王 鑫,苏志刚,等. 浅埋极近距离采空区下工作面矿压显现规律研究[J]. 煤炭科学技术,2019,47(7):149−155. doi: 10.13199/j.cnki.cst.2019.07.018

    FU Xing,WANG Xin,SU Zhigang,et al. Study on law of strata behavior in shallow-buried working face under contiguous gobs[J]. Coal Science and Technology,2019,47(7):149−155. doi: 10.13199/j.cnki.cst.2019.07.018

    [3] 张百胜. 极近距离煤层开采围岩控制理论及技术研究[D]. 太原: 太原理工大学, 2008.

    ZHANG Baisheng. Research on surrounding rock control theory and technology of very close coal seam mining[D]. Taiyuan: Taiyuan University of Technology, 2008.

    [4] 张百胜,杨双锁,康立勋,等. 极近距离煤层回采巷道合理位置确定方法探讨[J]. 岩石力学与工程学报,2008,27(1):97−101. doi: 10.3321/j.issn:1000-6915.2008.01.015

    ZHANG Baisheng,YANG Shuangsuo,KANG Lixun,et al. Discussion on method for determining reasonable position of roadway for ultra-close multi-seam[J]. Chinese Journal of Rock Mechanics and Engineering,2008,27(1):97−101. doi: 10.3321/j.issn:1000-6915.2008.01.015

    [5] 许 磊,张海亮,耿东坤,等. 煤柱底板主应力差演化特征及巷道布置[J]. 采矿与安全工程学报,2015,32(3):478−484.

    XU Lei,ZHANG Hailiang,GENG Dongkun,et al. Principal stress difference evolution in floor under pillar and roadway layout[J]. Journal of Mining & Safety Engineering,2015,32(3):478−484.

    [6] 鞠金峰,许家林,朱卫兵,等. 神东矿区近距离煤层出一侧采空煤柱压架机制[J]. 岩石力学与工程学报,2013,32(7):1321−1330. doi: 10.3969/j.issn.1000-6915.2013.07.005

    JU Jinfeng,XU Jialin,ZHU Weibing,et al. Mechanism of support crushing while mining out of upper goaf-side coal pillar in close distance seams of Shendong mining area[J]. Chinese Journal of Rock Mechanics and Engineering,2013,32(7):1321−1330. doi: 10.3969/j.issn.1000-6915.2013.07.005

    [7] 鞠金峰,许家林. 倾向煤柱边界超前失稳对工作面出煤柱动载矿压的影响[J]. 煤炭学报,2012,37(7):1080−1087. doi: 10.13225/j.cnki.jccs.2012.07.011

    JU Jinfeng,XU Jialin. Influence of leading instability in the upper dip coal pillar boundary to the strong strata behaviors during the working face out of the pillar[J]. Journal of China Coal Society,2012,37(7):1080−1087. doi: 10.13225/j.cnki.jccs.2012.07.011

    [8] 徐敬民,朱卫兵,鞠金峰. 浅埋房采区下近距离煤层开采动载矿压机理[J]. 煤炭学报,2017,42(2):500−509.

    XU Jingmin,ZHU Weibing,JU Jinfeng. Mechanism of dynamic mine pressure occurring below adjacent upper chamber mining goaf with shallow cover depth[J]. Journal of China Coal Society,2017,42(2):500−509.

    [9] 神文龙,柏建彪,赵志勇,等. 近距离残留承载煤柱下巷道布置三指标法[J]. 采矿与安全工程学报,2018,35(3):465−472.

    SHEN Wenlong,BAI Jianbiao,ZHAO Zhiyong,et al. Three indexes method for roadway layout below the closed residual bearing coal pillar[J]. Journal of Mining & Safety Engineering,2018,35(3):465−472.

    [10] 程 辉,赵洪宝,徐建峰,等. 基于滑移线场理论的巷道底鼓机理与防治技术研究[J]. 矿业科学学报,2021,6(3):314−323. doi: 10.19606/j.cnki.jmst.2021.03.008

    CHENG Hui,ZHAO Hongbao,XU Jianfeng,et al. Study on floor heave mechanism and control technology of roadway based on slip line field theory[J]. Journal of Mining Science and Technology,2021,6(3):314−323. doi: 10.19606/j.cnki.jmst.2021.03.008

    [11] 赵洪宝,刘一洪,程 辉,等. 回坡底煤矿回采巷道非对称底鼓机理及防治措施[J]. 矿业科学学报,2020,5(6):638−647.

    ZHAO Hongbao,LIU Yihong,CHENG Hui,et al. Mechanism and prevention measures of asymmetric floor heave in mining roadway of Huipodi Coal Mine[J]. Journal of Mining Science and Technology,2020,5(6):638−647.

    [12]

    WANG Xiangyu,BAI Jianbiao,LI Wei,et al. Evaluating the coal bump potential for gate road design in multiple-seam longwall mining: a case study[J]. Journal of the Southern African Institute of Mining and Metallurgy,2015,115(8):755−760. doi: 10.17159/2411-9717/2015/v115n8a12

    [13] 张广超. 综放松软窄煤柱沿空巷道顶板不对称破坏机制与调控系统[D]. 北京: 中国矿业大学(北京), 2017.

    ZHANG Guangchao. Asymmetric failure mechanism and regulation system of gob-side entry roof with fully-mechanized caving mining and a loose and weak coal pillar[D]. Beijing: China University of mining and Technology-Beijing, 2017.

    [14] 刘金海,姜福兴,朱斯陶. 长壁采场动、静支承压力演化规律及应用研究[J]. 岩石力学与工程学报,2015,34(9):1815−1827. doi: 10.13722/j.cnki.jrme.2014.1599

    LIU Jinhai,JIANG Fuxing,ZHU Sitao. Study of dynamic and static abutment pressure around longwall face and its application[J]. Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1815−1827. doi: 10.13722/j.cnki.jrme.2014.1599

    [15] 徐芝纶. 弹性力学(第4版)[M]. 北京: 高等教育出版社, 2006.
    [16] 许 磊,魏海霞,肖祯雁. 煤柱下底板偏应力区域特征及案例[J]. 岩土力学,2015,36(2):561−568. doi: 10.16285/j.rsm.2015.02.036

    XU Lei,WEI Haixia,XIAO Zhenyan. Engineering cases and characteristics of deviatoric stress under coal pillar in regional floor[J]. Rock and Soil Mechanics,2015,36(2):561−568. doi: 10.16285/j.rsm.2015.02.036

    [17] 陈明祥. 弹塑性力学[M]. 北京: 科学出版社, 2007: 421−429.
    [18] 许磊. 近距离煤柱群底板偏应力不变量分布特征及应用[D]. 北京: 中国矿业大学(北京), 2014.

    XU Lei. Distribution and application of floor deviatoric stress tensor invariants under contugous multiple pillars[D]. Beijing: China University of mining and Technology -Beijing, 2014.

    [19] 郝宪杰,孙卓文,赵毅鑫,等. 神东保德浅埋煤层覆岩裂隙带高度数值指标判别阈值及采高效应[J]. 矿业科学学报,2021,6(4):472−479. doi: 10.19606/j.cnki.jmst.2021.04.012

    HAO Xianjie,SUN Zhuowen,ZHAO Yixin,et al. Threshold value of numerical index and mining height effect of overburden fracture zone height in Shendong Baode shallow coal seam[J]. Journal of Mining Science and Technology,2021,6(4):472−479. doi: 10.19606/j.cnki.jmst.2021.04.012

    [20] 鞠金峰,许家林,朱卫兵,等. 近距离煤层工作面出倾向煤柱动载矿压机理研究[J]. 煤炭学报,2010,35(1):15−20.

    JU Jinfeng,XU Jialin,ZHU Weibing,et al. Mechanism of strong strata behaviors during the working face out of the upper dip coal pillar in contiguous seams[J]. Journal of China Coal Society,2010,35(1):15−20.

    [21] 钱鸣高, 石平五, 许家林. 矿山压力与岩层控制[M]. 徐州: 中国矿业大学出版社, 2010: 84−93.
    [22] 王晨龙. 浅埋近距离煤层覆岩结构失稳致灾机理及颗粒流分析[D]. 太原: 太原理工大学, 2018.

    WANG Chenlong. Research on the mechanism of mine accidents induced by the instability of overburden structure in shallow contugous coal seams and particle flow code simulation[D]. Taiyuan: Taiyuan University of Techno1ogy, 2018.

    [23] 付兴玉,李宏艳,李凤明,等. 房式采空区集中煤柱诱发动载矿压机理及防治[J]. 煤炭学报,2016,41(6):1375−1383. doi: 10.13225/j.cnki.jccs.2015.0880

    FU Xingyu,LI Hongyan,LI Fengming,et al. Mechanism and prevention of strong strata behaviors induced by the concentration coal pillar of a room mining goaf[J]. Journal of China Coal Society,2016,41(6):1375−1383. doi: 10.13225/j.cnki.jccs.2015.0880

    [24] 贺广零,黎都春,翟志文,等. 采空区煤柱-顶板系统失稳的力学分析[J]. 煤炭学报,2007,32(9):897−901. doi: 10.3321/j.issn:0253-9993.2007.09.001

    HE Guangling,LI Duchun,ZHAI Zhiwen,et al. Analysis of instability of coal pillar and stiff roof system[J]. Journal of China Coal Society,2007,32(9):897−901. doi: 10.3321/j.issn:0253-9993.2007.09.001

  • 期刊类型引用(6)

    1. 刘逸锟,刘伟,冯建业,郑晓东,牛昆,杨长德. 近距离煤层区段煤柱下巷道分区支护技术研究. 煤炭工程. 2025(04): 41-47 . 百度学术
    2. 赵敏. 短壁工作面回采巷道围岩变形破坏特征及控制技术研究. 当代化工研究. 2024(06): 159-161 . 百度学术
    3. 李冠,王沉,李子臣,张浩鑫,李奥立. 残留区段煤柱下近距离煤层回采巷道布置方式研究. 矿业研究与开发. 2024(08): 65-74 . 百度学术
    4. 张伟,张国俊,石永光,甄伟杰,王玉亮,李宜杭,李杨. 近距离煤层采空区下综放工作面巷道合理位置研究. 工矿自动化. 2024(09): 90-97 . 百度学术
    5. 杨伟,杨旭,孟凡燃,赵志鹏,孔令宇,高延玺. 采空区遗留煤柱影响下巷道合理位置的确定及围岩控制方法. 采矿技术. 2024(06): 189-196 . 百度学术
    6. 赵洪宝,戈海宾,程辉,张鸿伟. 基于PSO-AHP算法的三向应力条件下巷道布置优化及应用. 采矿与岩层控制工程学报. 2024(06): 21-32 . 百度学术

    其他类型引用(2)

图(10)
计量
  • 文章访问数:  117
  • HTML全文浏览量:  12
  • PDF下载量:  63
  • 被引次数: 8
出版历程
  • 收稿日期:  2022-06-09
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-03-14

目录

    LI Liang

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回