Loading [MathJax]/jax/output/SVG/jax.js
高级检索

新型矿用组合折纹柱构件防冲吸能特性分析

许海亮, 郭旭, 宋义敏, 安栋

许海亮,郭 旭,宋义敏,等. 新型矿用组合折纹柱构件防冲吸能特性分析[J]. 煤炭科学技术,2023,51(3):225−232

. DOI: 10.13199/j.cnki.cst.2021-0460
引用本文:

许海亮,郭 旭,宋义敏,等. 新型矿用组合折纹柱构件防冲吸能特性分析[J]. 煤炭科学技术,2023,51(3):225−232

. DOI: 10.13199/j.cnki.cst.2021-0460

XU Hailiang,GUO Xu,SONG Yimin,et al. Analysis on characteristics of anti-impact and energy absorption of new type of composite folding column used in mining[J]. Coal Science and Technology,2023,51(3):225−232

. DOI: 10.13199/j.cnki.cst.2021-0460
Citation:

XU Hailiang,GUO Xu,SONG Yimin,et al. Analysis on characteristics of anti-impact and energy absorption of new type of composite folding column used in mining[J]. Coal Science and Technology,2023,51(3):225−232

. DOI: 10.13199/j.cnki.cst.2021-0460

新型矿用组合折纹柱构件防冲吸能特性分析

基金项目: 

国家自然科学基金资助项目(51774015)

详细信息
    作者简介:

    许海亮: (1978—),男,河北保定人,副教授,硕士生导师,博士。E-mail: hailiang_xu@126.com

  • 中图分类号: TD353

Analysis on characteristics of anti-impact and energy absorption of new type of composite folding column used in mining

Funds: 

National Natural Science Foundation of China (51774015)

  • 摘要:

    巷道防冲吸能支护能有效防治冲击地压发生,减小突发灾害带来的人员伤亡和财产损失,已取得较好的应用效果。防冲吸能支护中最为关键部位是防冲吸能构件,为提高防冲吸能构件的性能,针对现有矿用防冲吸能构件中存在的不足,依据塑性变形区域最大化原则,提出了一种新型矿用组合折纹柱构件。采用有限元数值模拟方法对新型矿用组合折纹柱构件与现有矿用方形预折纹构件进行对比分析,同时对新型矿用组合折纹柱构件在不同侧壁坡度、不同壁厚情况下吸能特性进行研究,使新型矿用组合折纹柱构件结构达到最优。结果表明:①在相同璧厚情况下,新型矿用组合折纹柱构件其峰值承载力、平均压溃承载力、总吸能、比吸能均有增长,其中平均压溃承载力提升34.2%、总吸能提升近33.6%,比吸能提高127.4%,新型矿用组合折纹柱构件防冲吸能性能优势明显;②随着侧壁坡度降低,压溃峰值承载力、承载力波动系数降低,平均压溃承载力增加,总吸能与比吸能轻微增加;③随着新型矿用组合折纹柱构件薄壁厚度增加,压溃峰值承载力、压溃平均承载力、总吸能与比吸能增加,承载力波动系数先减小后增加。通过对新型矿用组合折纹柱构件侧壁坡度与壁厚防冲吸能特性分析,当新型防冲吸能构件侧壁坡度为1.2、构件厚度为7 mm时,构件满足恒阻与大变形的要求;④可以通过平衡侧壁厚度和构件与刚性板接触摩擦因数来进一步降低承载力曲线波动。

    Abstract:

    The roadway anti-impact energy absorption support can effectively prevent the occurrence of rock burst, reduce the casualties and property losses caused by sudden disasters, and has achieved good application effect. The most important part is the energy absorption and anti-impact energy absorbing component. According to the principle of maximizing the plastic deformation area, a new type of energy absorption and anti-impact device with arc thin wall was presented to improve the shortcomings of the traditional device. In order to optimize the structure of the thin-wall energy absorption and anti-impact device, the properties of it was analyzed by using the method of finite element numerical simulation. At the same time, the energy absorption characteristics of the new type of composite corrugated column component for mining under different sidewall slopes and wall thicknesses are studied, so that the structure of the new type of composite corrugated column component for mining can reach the optimum. The results showed that: ①Under the same wall thickness, the peak bearing capacityFmax, the average crushing bearing capacityFmean, the total energy absorptionE, and specific energy absorption ESA of the new device are higher than those of the traditional device, among which the average crushing bearing capacityFmean has increased by 34.2%, total energy absorption has increased by nearly 33.6%, and specific energy absorption has increased by 127.4%. The new type of energy absorption device has obvious anti-impact performance advantages. ②With the decrease of the side wall slope, the peak crushing capacityFmax and the fluctuation coefficient of the bearing capacity decrease, the average crushing capacityFmean increases, and the total energy absorptionEand the specific energy absorptionESA slightly increase. ③ As the thin-wall thickness of new device decreases, the crushing peak load, crushing average load, total energy absorption and specific energy absorption all decrease, while the load fluctuation coefficient decreases first and then increases. Through the analysis of the results, it is concluded that the structure of the new energy absorption device can meet the requirements of constant resistance and large deformation when the slope of side wall is 1.2 and the thickness is 7 mm, the component meets the requirements of constant resistance and large deformation; ④The fluctuation of bearing capacity curve can be further reduced by balancing the sidewall thickness and the contact friction coefficient between members and rigid plates.

  • 图  1   新型防冲吸能构件示意

    Figure  1.   Schematic of new anti-impact energy absorbing component

    图  2   新型防冲吸能构件模型

    Figure  2.   Model of a new anti-impact and energy-absorbing device

    图  3   方形预折纹构件

    Figure  3.   Square pre-folding device

    图  4   新型防冲吸能构件与方形预折纹构件变形过程

    Figure  4.   Deformation process of new anti-impact and energy-absorbing device and square pre-folding device

    图  5   新型防冲构件与方形预折纹构件承载力曲线

    Figure  5.   Bearing capacity curve of new anti-impact member and square prefolding member

    图  6   不同侧壁坡度新型防冲吸能构件变形过程

    Figure  6.   Deformation process of new anti-impact and energy-absorbing components with different side wall slopes

    图  7   不同侧壁坡度新型防冲吸能构件承载力曲线

    Figure  7.   Bearing capacity curve of new anti-impact and energy-absorbing components with different side wall slopes

    图  8   不同壁厚新型防冲吸能构件变形过程

    Figure  8.   Deformation process of energy absorbing device with different wall thickness

    图  9   不同壁厚构件的承载力曲线

    Figure  9.   Axial crushing force-axial crushing distance curves of devices with different wall thicknesses

    表  1   新型防冲吸能构件与方形预折纹构件防冲吸能特性

    Table  1   Anti-impact and energy-absorbing characteristics of new type anti-impact and energy-absorbing device and square pre-folding device

    项目Fmax/103 NFmean/103 NΔE/103 JESA/103 (J·kg−1
    组合预折纹2 3481 7111.3717130.7
    方形预折纹1 7501 2751.3712813.5
    下载: 导出CSV

    表  2   新型防冲吸能构件的几何尺寸

    Table  2   Geometric dimensions of the device

    编号h/mmαθ/(°)堆叠层数壁厚/mm
    1843.71918
    2421.83728
    3281.25338
    4210.96748
    下载: 导出CSV

    表  3   不同侧壁坡度新型防冲吸能构件防冲吸能特性

    Table  3   Anti-impact and energy-absorbing characteristics of new anti-impact and energy-absorbing components with different side wall slopes

    编号Fmax/103 NFmean/kNΔE/kJESA/103 (J·kg−1
    12 9301 6181.8116128.9
    22 3481 7111.3717130.7
    32 1971 7721.2417731.8
    42 1051 8061.1718032.3
    下载: 导出CSV

    表  4   新型防冲吸能构件几何尺寸

    Table  4   Geometric dimensions of device

    编号h/mmαθ/(°)堆叠层数壁厚/mm
    1281.25335
    2281.25336
    3281.25337
    4281.25338
    5281.25339
    下载: 导出CSV

    表  5   不同壁厚新型防冲吸能构件防冲吸能特性

    Table  5   Energy absorption characteristics of devices with different wall thicknesses

    编号Fmax/103 NFmean/103 NΔE/103 JESA/103 (J·kg−1
    11 1878631.388725
    21 5131 1671.311828.2
    31 8511 4761.2514930.6
    42 1971 7721.2417731.8
    52 5492 0471.2520733
    下载: 导出CSV
  • [1] 潘一山,李忠华,章梦涛. 我国冲击地压分布、类型、机制及防治研究[J]. 岩石力学与工程学报,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    PAN Yishan,LI Zhonghua,ZHANG Mengtao. Distribution, type, mechanism and prevention ofrockbrust in China[J]. Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1844−1851. doi: 10.3321/j.issn:1000-6915.2003.11.019

    [2] 孔令海. 煤矿采场围岩微震事件与支承压力分布关系[J]. 采矿与安全工程学报,2014,3l(4):525−531. doi: 10.13545/j.issn1673-3363.2014.04.005

    KONG Linghai. Relationship between microseismic events and abutment pressure distribution in coalmine stope[J]. Journal of Mining and Safety Engineering,2014,3l(4):525−531. doi: 10.13545/j.issn1673-3363.2014.04.005

    [3] 金 淦,王连国,李兆霖,等. 深部半煤岩回采巷道变形破坏机理及支护对策研究[J]. 采矿与安全工程学报,2015,32(6):963−967. doi: 10.13545/j.cnki.jmse.2015.06.015

    JIN Gan,WANG Lianguo,LI Zhaolin,et al. Study on the gateway rock failure mechanism and supporting practice of half-coal-rock extraction roadway in deep coal mine[J]. Journal of Mining and Safety Engineering,2015,32(6):963−967. doi: 10.13545/j.cnki.jmse.2015.06.015

    [4] 张宏伟,杜 凯,荣 海,等. 冲击地压的构造应力条件[J]. 辽宁工程技术大学学报(自然科学版),2015,34(2):165−169. doi: 10.11956/j.issn.1008-0562.2015.02.005

    ZHANG Hongwei,DU Kai,RONG Hai,et al. Tectonic stress conditions of rock burst[J]. Journal of Liaoning Technology University (Natural Science),2015,34(2):165−169. doi: 10.11956/j.issn.1008-0562.2015.02.005

    [5] 李兆福,张升祥,曹 伟,等. 抗冲击巷道液压支架研制与应用[J]. 煤炭科学技术,2007(1):54−55,58. doi: 10.3969/j.issn.0253-2336.2007.01.015

    LI Zhaofu,ZHANG Shengxiang,CAO Wei,et al. Development and application of anti bumping gateway hydraulic powered support[J]. Coal Science and Technology,2007(1):54−55,58. doi: 10.3969/j.issn.0253-2336.2007.01.015

    [6] 于志宏,关文涛. 采取综合措施使用防冲巷道支架保证严重冲击地压区安全生产[J]. 露天采矿技术,2013(5):81−84. doi: 10.3969/j.issn.1671-9816.2013.05.030

    YU Zhihong,GUAN Wentao. Adopts comprehensive measures to use anti-impact roadway support to ensure safe production in serious rock impact area[J]. Opencast Mining Technology,2013(5):81−84. doi: 10.3969/j.issn.1671-9816.2013.05.030

    [7] 高明仕,杨青松,赵一超,等. 高应力大变形巷道让压锚索支护技术及构件研[J]. 采矿与安全工程学报,2016,33(1):7−11.

    GAO Mingshi,YANG Qingsong,ZHAO Yichao,et al. Developmen to fhigh pressure and large deformation roadway support technology and device[J]. Journal of Mining and Safety Engineering,2016,33(1):7−11.

    [8] 潘一山. 冲击地压发生和破坏过程研究[D]. 北京: 清华大学, 1999: 1−47.

    PAN Yishan.Study on the occurrence and failure process of rock burst[D]. Beijing: Tsinghua University, 1999: 1−47.

    [9] 钱鸣高. 加强煤炭开采理论研究实现科学开采[J]. 采矿与安全工程学报,2017,34(4):615.

    QIAN Minggao. Strengthening theoretical research on coal mining and realizing scientific mining[J]. Journal of Mining and Safety Engineering,2017,34(4):615.

    [10] 齐庆新, 窦林名. 冲击地压理论与技术[M]. 徐州: 中国矿业大学出版社, 2008: 1−4.
    [11] 蓝 航,杜涛涛,彭永伟,等. 浅埋深回采工作面冲击地压发生机理及防治[J]. 煤炭学报,2012,37(10):1618−1623. doi: 10.13225/j.cnki.jccs.2012.10.015

    LAN Hang,DU Taotao,PENG Yongwei,et al. Rock-burst mechanism and prevention in working face of shallow buried coal-seam[J]. Journal of China Coal Society,2012,37(10):1618−1623. doi: 10.13225/j.cnki.jccs.2012.10.015

    [12] 潘一山,肖永惠,李忠华,等. 冲击地压矿井巷道支护理论研究及应用[J]. 煤炭学报,2014,39(2):222−228. doi: 10.13225/j.cnki.jccs.2013.2015

    PAN Yishan,XIAO Yonghui,LI Zhonghua,et al. Study of tunnel support theory of rockburst in coal mine and its application[J]. Journal of China Coal Society,2014,39(2):222−228. doi: 10.13225/j.cnki.jccs.2013.2015

    [13] 唐 治,潘一山,李 祁,等. 矿用防冲方形折纹薄壁构件吸能特性数值分析[J]. 振动与冲击,2014,33(23):87−191,115. doi: 10.13465/j.cnki.jvs.2014.23.016

    TANG Zhi,PAN Yishan,LI Qi,et al. Numerical analysis of energy-absorption properties of a thin-walled component with square folds for rock burst prevention in mine[J]. Journal of Vibration and Shock,2014,33(23):87−191,115. doi: 10.13465/j.cnki.jvs.2014.23.016

    [14] 潘一山,肖永惠,李国臻,等. 一种矿用消波耗能缓冲构件设计及试验初探[J]. 岩石力学与工程学报,2012,31(4):649−655.

    PAN Yishan,XIAO Yonghui,LI Guozhen,et al. Design and test of a wave dissipation energy dissipation device for mine[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(4):649−655.

    [15] 张 涛,徐治平,朱学康,等. 泡沫铝填充薄壁构件吸能分[J]. 舰船科学技术,2007(2):52−56.

    ZHANG Tao,XU Zhiping,ZHU Xuekang,et al. Dynamic crushing of thin-walled extrusions filled with aluminium-foam[J]. Journal of Marine Science and Technology,2007(2):52−56.

    [16] 桂良进, 范子杰, 王青春. 泡沫填充圆管的动态轴向压缩吸能特性[J]清华大学学报(自然科学版), 2004, 44(5): 709−712

    GUI Liangjin, FAN Zijie, WANG Qingchun. Energy absorption properties of foam-filled circular tubes subjected-to dynam is axial crushing[J]. Journal of Tsinghua University ( Natural science edition), 2004, 44( 5): 709−712.

    [17] 潘一山,肖永惠,李国臻. 巷道防冲液压支架研究及应用[J]. 煤炭学报,2020,45(1):90−99. doi: 10.13225/j.cnki.jccs.YG19.1762

    PAN Yishan,XIAO Yonghui,LI Guozhen. Roadway hydraulic support for rockburst prevention in coal mine and its application[J]. Journal of China Coal Society,2020,45(1):90−99. doi: 10.13225/j.cnki.jccs.YG19.1762

    [18] 王 博,周才华,由 衷. 预折纹管在低速冲击载荷作用下的能量吸收[J]. 爆炸与冲击,2015,35(4):473−481. doi: 10.11883/1001-1455(2015)04-0473-09

    WANG Bo,ZHOU Caihua,YOU Zhong. Energy absorption of pre-folded origami under low speed impact[J]. Explosion and Shock Waves,2015,35(4):473−481. doi: 10.11883/1001-1455(2015)04-0473-09

    [19] 唐 治,潘一山,朱小景,等. 六边薄壁构件径向压缩下的吸能防冲特性分析[J]. 煤炭科学技术,2016,44(11):56−61. doi: 10.13199/j.cnki.cst.2016.11.011

    TANG Zhi,PAN Yishan,ZHU Xiaojing,et al. Analysis on energy absorption and impact prevention features of hexagonal thin-wall component under radial compression[J]. Coal Science and Technology,2016,44(11):56−61. doi: 10.13199/j.cnki.cst.2016.11.011

    [20] 郝志勇,王率领,潘一山. 矿用防冲折纹筒屈曲吸能特性影响研究[J]. 振动与冲击,2018,37(13):141−148,170. doi: 10.13465/j.cnki.jvs.2018.13.022

    HAO Zhiyong,WANG Shuailing,PAN Yishan. Anti-impact folding barrels buckling energy absorbing characteristics[J]. Journal of Vibration and Shock,2018,37(13):141−148,170. doi: 10.13465/j.cnki.jvs.2018.13.022

    [21] 赵善坤, 刘 军, 王永仁, 等. 煤岩构件体多级应力控制防冲实践及动态调控[J]. 地下空间与工程学报, 2013, 9(5): 1057−1064, 1102.

    ZHAO Shankun, LIU Jun, WANG Yongren, et al. Dynamical control and multi-field stress control of rock burst prevention for coal-rock structure, 2013, 9(5): 1057−1064, 1102.

    [22] 田利军. “三硬”条件煤层压变区域失衡冲击理论及应用[J]. 地下空间与工程学报,2014,10(5):1192−1197.

    TIAN Lijun. The pressure changing area imbalance theory of “three hard”coal seam and its application[J]. Chinese Journal of Underground Space and Engineering,2014,10(5):1192−1197.

    [23] 王凯兴,孟村影,杨 月,等. 块系覆岩中摆型波传播对巷道支护动力响应影响[J]. 煤炭学报,2014,39(2):347−352. doi: 10.13225/j.cnki.jccs.2013.2020

    WANG Kaixing,MENG Cunying,YANG Yue,et al. Dynamic response of roadway support on pendulum type waves propagation in overburden block rock mass[J]. Journal of China Coal Society,2014,39(2):347−352. doi: 10.13225/j.cnki.jccs.2013.2020

  • 期刊类型引用(17)

    1. 赵少凡. 煤矿井下综采面回撤通道安全支护技术的优化分析. 煤矿现代化. 2025(04): 88-92+97 . 百度学术
    2. 牛佳波,杨文岗,宋阿林. 围岩稳定性数值模型在支护方案优选中的应用. 内蒙古石油化工. 2025(04): 16-20 . 百度学术
    3. 张军,朱友恒. 综采工作面末采期间让压间隔煤柱宽度研究. 煤炭科技. 2024(02): 27-31 . 百度学术
    4. 胡成军,李杰,张坤,潘格格,马健,郭刚,毕经龙,杜明超. 基于掘锚一体机的快速自动铺网技术研究. 煤炭科学技术. 2024(09): 103-111 . 本站查看
    5. 欧阳振华,许乾海,张宁博,张天姿,易海洋,史庆稳,李文帅,王佳嘉. 井工煤矿全生命周期冲击地压防治体系研究. 矿业科学学报. 2024(06): 932-942 . 百度学术
    6. 刘怡. 基于综采面液压支架安全回撤技术的研究. 机械管理开发. 2023(01): 260-261+264 . 百度学术
    7. 乔建永,王志强,李廷照. 矿压峰值点极限和无煤柱末采技术研究. 中南大学学报(自然科学版). 2023(03): 880-894 . 百度学术
    8. 樊胜杰. 综采工作面支架高效快速回撤方法优化及应用. 江西煤炭科技. 2023(02): 65-68 . 百度学术
    9. 史佳斌,刘虎生,崔东亮,姬智,段伟. 回撤通道覆岩破断特征及巷道围岩稳定性研究. 煤炭工程. 2023(S1): 43-48 . 百度学术
    10. 张锐. 综采工作面液压支架快速回撤工艺应用. 机械管理开发. 2022(04): 177-178 . 百度学术
    11. 胡滨,王志超,张晓. 混凝土支柱与锚杆(索)联合支护系统应用研究. 煤炭科学技术. 2022(04): 91-98 . 本站查看
    12. 彭林军,岳宁,安亮,李申龙,蔡逢华,冯振华,李明辉. 超大采高综采工作面回撤通道支护技术研究. 煤炭科学技术. 2022(06): 204-210 . 本站查看
    13. 娄杰,徐严军,柏建彪,张栋,李斌,卞卡,刘峰. 叠加扰动下剩余煤柱应力演化特征分析. 煤炭工程. 2022(08): 84-90 . 百度学术
    14. 王志强,田野,王树帅,牟皓奇,刘吟苍. 基于基本顶断裂位置分析剩余煤柱稳定性. 中国安全生产科学技术. 2022(08): 51-58 . 百度学术
    15. 郑铁华,李金刚. 补连塔煤矿浅埋近距离煤层过上覆煤柱强矿压灾害防治机理及应用. 煤炭科学技术. 2022(S1): 71-80 . 本站查看
    16. 霍建军,杨景惠,孙波. 综采辅巷多通道回撤工艺通风系统管理研究. 煤炭科学技术. 2022(S1): 142-146 . 本站查看
    17. 冀永林. 综采工作面液压支架安全快速回撤工艺应用. 机械管理开发. 2021(12): 203-204 . 百度学术

    其他类型引用(2)

图(9)  /  表(5)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  12
  • PDF下载量:  34
  • 被引次数: 19
出版历程
  • 收稿日期:  2022-03-07
  • 网络出版日期:  2023-04-26
  • 刊出日期:  2023-03-14

目录

    AN Dong

    1. On this Site
    2. On Google Scholar
    3. On PubMed

    /

    返回文章
    返回