高级检索

基于多路径自适应信息增强的矿井图像超分辨率重建方法

Super-resolution reconstruction method of mine image based on multi-path adaptive information enhancement

  • 摘要: 煤矿井下环境复杂,光照条件差,高湿度与悬浮粉尘易形成水雾和辉光,导致高频信息缺失与边缘细节模糊,同时叠加噪声干扰。为提升矿井图像质量,解决矿井场景下超分辨率重建中噪声抑制与细节恢复的协同难题,提出一种基于多路径自适应信息增强的矿井图像超分辨率重建方法。方法上,首先设计残差多路径特征聚集块(Residual Multi-path Feature Aggregation Block, RMFAB),通过残差学习和多路径自适应卷积网络(Multi-path Adaptive Convolution Network, MACN)充分利用不同路径的特征,增强全局与局部高频信息建模能力;其次,引入多注意力融合模块,在通道和空间维度聚焦图像中的高频信息,提升特征表达能力;最后,构建大核感知块(Large Kernel Perception Block, LKPA),利用多尺度卷积扩展感受野并实现层次特征融合,从而优化图像纹理与结构细节。实验在公开矿井数据集CMUID上开展,结果显示该算法在峰值信噪比(Peak Signal-to-Noise Ratio, PSNR)和结构相似性(Structural Similarity, SSIM)指标上优于其他主流先进算法。尤其在缩放因子为4时,该算法在PSNR指标上较Bicubic、CRAFT-SR、PAN、ESRGCNN、DiVANet及SMAFNet分别提升2.88、2.04、1.94、1.52、0.53、0.36 dB;SSIM指标分别提升4.32%、3.37%、3.20%、2.74%、3.19%、1.08%。实验结果表明,该方法实现了对矿井图像多层次特征的精细化提取与融合,在抑制噪声干扰的同时有效恢复了复杂纹理特征,提升了矿井图像的超分辨率重建质量,为煤矿井下智能感知提供了技术支持。

     

    Abstract: The complex underground coal mine environment suffers from poor illumination, high humidity, and suspended dust-conditions that easily form water mist and glare. These factors lead to the loss of high-frequency information and blurring of edge details in captured images, while also superimposing noise interference. To improve mine image quality and address the challenge of synergistically suppressing noise and restoring details in mine scene super-resolution reconstruction, a mine image super-resolution reconstruction method based on multi-path adaptive information enhancement is proposed. Methodologically, a Residual Multi-path Feature Aggregation Block (RMFAB) is designed first, leveraging residual learning and a Multi-path Adaptive Convolution Network (MACN) to fully utilize features from different paths, significantly enhancing the modeling capability for both global and local high-frequency information. Second, a Multi-attention Fusion Module is introduced to focus on high-frequency information across channel and spatial dimensions, improving feature representation. Finally, a Large Kernel Perception Block (LKPA) is constructed, employing multi-scale convolution to expand the receptive field and fuse hierarchical features, optimizing texture and structural details. Experimental results on the public CMUID mine dataset demonstrate that the proposed method outperforms existing state-of-the-art algorithms in both Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). Particularly at a scaling factor of 4, the algorithm achieves PSNR improvements of 2.88, 2.04, 1.94, 1.52, 0.53, 0.36 dB over Bicubic, CRAFT-SR, PAN, ESRGCNN, DiVANet, and SMAFNet, respectively. Corresponding SSIM improvements are 4.32%, 3.37%, 3.20%, 2.74%, 3.19%, 1.08%. The method achieves refined extraction and fusion of multi-level features in mine images, effectively suppressing noise interference while restoring complex texture features. This enhances the super-resolution reconstruction quality of mine images, thus contributing to intelligent perception in coal mine environments.

     

/

返回文章
返回