Method and application of coal-based solid waste filling in multi-layer three-dimensional space of coal mining
-
摘要:
矿山煤基固废资源化利用是破解“安全−技术−经济−环境”融合发展的主攻方向,也是煤炭行业高质量绿色发展的关键。煤基固废井下充填开采在实现减损开采、固废处置、资源置换和生态保护等方面具有显著的技术独创性优势,已成为资源化、规模化和绿色化处置煤基固废的关键路径之一。但现有的充填开采技术存在对覆岩控制效果有限、缺乏多种充填方式间的联动效应和对煤基固废的综合利用率偏低等问题。因此,通过概述我国典型煤基固废的资源化利用现状和存在问题,从经济、技术、环境、政策和空间5个维度阐明了煤基固废充填开采的可行性。基于此,提出了煤矿开采多层位立体空间煤基固废充填方法,系统阐述了该方法的内涵和整体思路,主要包括高位充填、原位充填和低位充填。结合层次分析法初步建立了具有15项评价指标的多层位立体空间煤基固废充填方法评价体系。煤矿开采多层位立体空间煤基固废充填方法的规模化应用主要存在充填材料高效精准制备机理、充填料浆管道输送特性、充填空间结构演化规律和充填材料−充填空间交互作用不明等4项关键技术难题。围绕以上关键技术难题,主要开展煤基固废充填材料成浆机理、充填材料精准制备技术框架、充填料浆流场稳态控制、充填料浆管道输送关键参数、充填空间空隙结构演化、充填材料扩散/承载特性、充填材料−围岩系统协同作用机制和充填材料−环境多场耦合机制8项研究内容。根据宁夏煤业任家庄煤矿、山西省霍尔辛赫煤矿的开采技术、充填工艺及地质条件,分别针对性提出低位垮落带注浆充填和高位离层区注浆充填方法,实现了矿区煤基固废的安全绿色处置,有效控制了地表沉陷与变形,形成了良好的区域型示范效应。多层位立体空间煤基固废充填方法创新了煤矿井下煤基固废规模化处置的新模式,完善了绿色充填开采技术体系,实现了煤矿采动覆岩全空间协同控制与固废资源化技术跃升,可推动煤炭企业由“环境代价型”向“生态增值型”的根本转变。
Abstract:The resource utilization of coal-based solid waste in mines is the main direction to solve the integrated development of 'safety-technology-economy-environment', and it is also the key to the high-quality green development of the coal industry. Underground filling mining of coal-based solid waste has obvious technical originality advantages in loss reduction mining, solid waste disposal, resource replacement and ecological protection, and has become one of the key paths for resource, scale and green disposal of coal-based solid waste. However, the existing filling mining technology has problems such as limited control effect on overlying strata, lack of linkage effect between multiple filling methods, and low comprehensive utilization rate of coal-based solid waste. Therefore, by summarizing the current situation and existing problems of resource utilization of typical coal-based solid waste in China, the feasibility of coal-based solid waste filling mining is clarified from five dimensions of economy, technology, environment, policy and space. Based on this, the coal-based solid waste filling method in multi-layer three-dimensional space of coal mining was proposed. The connotation and overall idea of this method were systematically expounded, including high-level filling, in-situ filling and low-level filling. Based on the Analytic Hierarchy Process (AHP), an evaluation system of coal-based solid waste filling with 15 evaluation indexes was established. The large-scale application of multi-level three-dimensional space coal based solid waste filling method in coal mining mainly faces 4 key technical challenges, including efficient and accurate preparation of filling materials, pipeline transportation characteristics of filling slurry, evolution law of filling spatial structure and interaction between filling material-space. Focusing on the above key technical challenges, 8 research contents were mainly carried out, including the slurry formation mechanism of coal-based solid waste filling materials, the technical framework of precise preparation of filling materials, the steady-state control mechanism of filling slurry flow field, the key parameters of filling slurry pipeline transportation, the evolution of filling space void structure, the diffusion/bearing characteristics of filling materials, the synergistic mechanism of filling materials-surrounding rock and the multi-field coupling mechanism of filling materials-environment. Based on the mining technology, filling process, and geological conditions of Renjiazhuang Coal Mine in Ningxia Coal Industry and Horxinhe Coal Mine in Shanxi Province, the grouting filling methods in low-level caving zone and high-level separation zone were proposed respectively, which realized the safe and green disposal of coal base solid waste in mining area, effectively controlled the surface subsidence and deformation, and established a good regional demonstration effect. The multi-layer three-dimensional space coal-based solid waste filling method has innovated the new mode of large-scale disposal of coal-based solid waste in underground coal mines, improved the green filling mining technology system, and realized the coordinated control of the whole space of coal mining overburden rock and the leap of solid waste recycling technology, which can promote the fundamental transformation of coal enterprises from “environmental cost type” to “ecological value-added type”.
-
-
表 1 多层位立体空间充填评价指标的对比分析
Table 1 Comparative analysis of evaluation indexes for multi- layer three-dimensional space filling
指标属性 评价指标 高位充填 原位充填 低位充填 技术性能 充填材料性能 流动性要求高 承载性与稳定性要求高 流动性与泌水性要求高 充填效率 较高 较低 较高 适应能力 首采煤层或离层空间发育 直接顶坚硬且完整 直接顶破碎、随采随落 经济效益 成本投入 中等 较高 中等 产出效益 生态效益显著 经济效益显著 灾害控制效益显著 投资收益 周期较长 周期较短 周期适中 资源利用 材料来源 较广 较广 有限 资源节约 减少地表沉陷、保护土地资源 提高资源回收率 减少采空区灾害 固废处置 较好 较好 有限 安全性能 顶板控制 关键层控制较好 最佳 较好 围岩控制 较好、受离层空间限制 最佳 较好 灾害控制 有效控制采空区灾害 有效控制采空区灾害 有效解决破碎顶板灾害 环境减损 地表沉陷控制 最佳 较好 一般(处置固废为主) 生态修复 最佳 较好 一般 环境污染控制 较好 较好 一般 -
[1] 胡振琪,赵艳玲,毛缜. 煤矸石规模化生态利用原理与关键技术[J]. 煤炭学报,2024,49(2):978−987. HU Zhenqi,ZHAO Yanling,MAO Zhen. Principles and key technologies for the large-scale ecological utilization of coal gangue[J]. Journal of China Coal Society,2024,49(2):978−987.
[2] 张吉雄,周楠,高峰,等. 煤矿开采嗣后空间矸石注浆充填方法[J]. 煤炭学报,2023,48(1):150−162. ZHANG Jixiong,ZHOU Nan,GAO Feng,et al. Method of gangue grouting filling in subsequent space of coal mining[J]. Journal of China Coal Society,2023,48(1):150−162.
[3] 朱磊,古文哲,宋天奇,等. 采空区煤矸石浆体充填技术研究进展与展望[J]. 煤炭科学技术,2023,51(2):143−154. ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue slurry backfilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154.
[4] 杨科,赵新元,何祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216. YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source coal-based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
[5] 杨科,于祥,何祥,等. 不同含水状态矸石胶结充填体能量演化与损伤特性研究[J]. 岩土力学,2025,46(1):26−42. YANG Ke,YU Xiang,HE Xiang,et al. Energy evolution and damage characteristics of gangue cemented backfill in different water content states[J]. Rock and Soil Mechanics,2025,46(1):26−42.
[6] 朱磊,古文哲,袁超峰,等. 煤矸石浆体充填技术应用与展望[J]. 煤炭科学技术,2024,52(4):93−104. doi: 10.12438/cst.2023-1919 ZHU Lei,GU Wenzhe,YUAN Chaofeng,et al. Application and prospect of coal gangue slurry filling technology[J]. Coal Science and Technology,2024,52(4):93−104. doi: 10.12438/cst.2023-1919
[7] 董书宁,于树江,董兴玲,等. 煤基固废与高盐废水“固液协同” 充填处置关键技术[J]. 煤田地质与勘探,2025,53(1):163−173. doi: 10.12363/issn.1001-1986.25.01.0032 DONG Shuning,YU Shujiang,DONG Xingling,et al. A key technology for synergistic backfilling of coal-based solid waste and high-salinity wastewater[J]. Coal Geology & Exploration,2025,53(1):163−173. doi: 10.12363/issn.1001-1986.25.01.0032
[8] 赵康,伍俊,马超,等. 我国煤矿固、液、气“三废” 地质封存研究现状与生态环境协同发展的关系[J]. 煤炭学报,2024,49(6):2785−2798. ZHAO Kang,WU Jun,MA Chao,et al. Relationship between the current status of research on geological storage of solid,liquid and gas wastes in coal mines and the coordinated development of the ecological environment in China[J]. Journal of China Coal Society,2024,49(6):2785−2798.
[9] 中华人民共和国中央人民政府. “无废城市”建设试点工作方案[EB/OL]. [2019−01−21]. https://www.gov.cn/zhengce/content/2019-01/21/content_5359620.htm. [10] 中华人民共和国中央人民政府. 中华人民共和国固体废物污染环境防治法[EB/OL]. [2020−04−30]. http://www.gov.cn/xinwen/2020-04/30/content_5507561.htm. [11] 中华人民共和国中央人民政府. 中华人民共和国国民经济和社会发展第十四个五年规划和2035年远景目标纲要[EB/OL]. [2021−03−13]. https://www.gov.cn/xinwen/2021-03/13/content_5592681.htm. [12] 国家发展改革委员会. 关于“十四五”大宗固体废弃物综合利用的指导意见(发改环资〔2021〕381号)[EB/OL]. [2021−03−18]. https://www.gov.cn/zhengce/zhengceku/2021-03/25/content_5595566.htm. [13] 国家发展改革委员会. 关于加强煤炭清洁高效利用的意见(发改运行〔2024〕1345号)[EB/OL]. [2024−09−29]. https://www.ndrc.gov.cn/xxgk/zcfb/tz/202409/t20240929_1393429.html. [14] 刘建功,李新旺,何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150. LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.
[15] YU X,YANG K,HE X,et al. Research progress on multi-source coal-based solid waste (MCSW) resource utilization and backfill mining basic theory:A systematic literature review[J]. Process Safety and Environmental Protection,2025,195:106670. doi: 10.1016/j.psep.2024.12.051
[16] 刘建功,赵家巍,刘扬,等. 煤矿矿区普适性拓展型固体改性充填采煤技术与装备[J]. 煤炭学报,2024,49(1):380−399. LIU Jiangong,ZHAO Jiawei,LIU Yang,et al. General-purpose expasion type solid modlfication backfilling mining technology and equipment for coal mines[J]. Journal of China Coal Society,2024,49(1):380−399.
[17] 张强,杨康,曹津铭,等. 视频AI算法分析的煤矿固体智能充填开采方法[J]. 煤炭科学技术,2024,52(11):163−173. doi: 10.12438/cst.2024-0955 ZHANG Qiang,YANG Kang,CAO Jinming,et al. Solid intelligent backfill coal mining method with video ai algorithm analysis in coal mine[J]. Coal Science and Technology,2024,52(11):163−173. doi: 10.12438/cst.2024-0955
[18] 陈登红,李超,张治国. 宁东矿区气化渣基膏体充填材料性能优化研究[J]. 煤田地质与勘探,2022,50(12):41−50. doi: 10.12363/issn.1001-1986.22.05.0385 CHEN Denghong,LI Chao,ZHANG Zhiguo. Study on performance optimization of gasification slag based paste filling materials in Ningdong mining area[J]. Coal Geology & Exploration,2022,50(12):41−50. doi: 10.12363/issn.1001-1986.22.05.0385
[19] 李亚娇,罗阳,王铁,等. 粉煤灰基充填膏体制备过程中氨气释放的超声强化特性[J]. 煤炭学报,2024,49(7):3063−3073. LI Yajiao,LUO Yang,WANG Tie,et al. Ultrasonic strengthening characteristics of ammonia release during the preparation of fly ash based filling paste[J]. Journal of China Coal Society,2024,49(7):3063−3073.
[20] 吴少康,张俊文,徐佑林,等. 煤矿高水充填材料物理力学特性研究及工程应用[J]. 采矿与安全工程学报,2023,40(4):754−763. WU Shaokang,ZHANG Junwen,XU Youlin,et al. Research and engineering application on physical and mechanical properties of coal mine high water filling materials[J]. Journal of Mining & Safety Engineering,2023,40(4):754−763.
[21] 王雨利,路会娟,杨宇杰. 氟石膏对高水充填材料性能的影响[J]. 煤炭科学技术,2023,51(6):42−51. WANG Yuli,LU Huijuan,YANG Yujie. The effect of fluorogypsum on the properties of high-water filling materials[J]. Coal Science and Technology,2023,51(6):42−51.
[22] 韩磊,杨科,王天君,等. 采动覆岩离层注浆地表沉陷“四区” 控制模型及应用[J]. 煤炭科学技术,2023,51(8):23−35. HAN Lei,YANG Ke,WANG Tianjun,et al. “Four Zones” control model and application for surface subsidence of bed separation grouting mining[J]. Coal Science and Technology,2023,51(8):23−35.
[23] 郭文兵,李龙翔,杨伟强,等. 覆岩离层注浆层位判定及隔浆层稳定性研究[J]. 煤炭学报,2025,50(1):264−280. GUO Wenbing,LI Longxiang,YANG Weiqiang,et al. Determination of grouting layer and stability analysis of slurry-resisting overburden in separation grouting[J]. Journal of China Coal Society,2025,50(1):264−280.
[24] 屠世浩,郝定溢,苗凯军,等. 深部采选充一体化矿井复杂系统协同开采[J]. 中国矿业大学学报,2021,50(3):431−441. TU Shihao,HAO Dingyi,MIAO Kaijun,et al. Research of synergetic mining for mining,dressing and backfilling integrated deep mines with complicated systems[J]. Journal of China University of Mining & Technology,2021,50(3):431−441.
[25] 张昊,张强,左小,等. 生态环境保护性的采选充系统设计及应用[J]. 中国矿业大学学报,2021,50(3):548−557. ZHANG Hao,ZHANG Qiang,ZUO Xiao,et al. Design and application of mining-separating-backfilling system for mining ecological and environmental protection[J]. Journal of China University of Mining & Technology,2021,50(3):548−557.
[26] 董霁红,王立兵,冯晓彤,等. 黄河流域煤炭-煤电-煤化工场地特征精准智能识别方法及应用[J]. 煤炭学报,2024,49(2):1011−1024. DONG Jihong,WANG Libing,FENG Xiaotong,et al. Precise intelligent recognition method and application of coal-power-chemical industry sites characteristics in Yellow River Basin[J]. Journal of China Coal Society,2024,49(2):1011−1024.
[27] 奚弦,桑树勋,刘世奇. 煤矿区固废矿化固定封存CO2与减污降碳协同处置利用的研究进展[J]. 煤炭学报,2024,49(8):3619−3634. XI Xian,SANG Shuxun,LIU Shiqi. Progress in research of CO2 fixation and sequestration by coal mine solid waste mineralization and co-disposal of pollution and carbon reduction[J]. Journal of China Coal Society,2024,49(8):3619−3634.
[28] 杨科,张继强,何祥,等. 多源煤基固废胶结充填体力学及变形破坏特征试验研究[J]. 煤田地质与勘探,2024,52(6):102−114. doi: 10.12363/issn.1001-1986.24.03.0188 YANG Ke,ZHANG Jiqiang,HE Xiang,et al. Experimental study on the mechanics and deformation failure characteristics of multi-source coal-based solid waste cemented backfill[J]. Coal Geology & Exploration,2024,52(6):102−114. doi: 10.12363/issn.1001-1986.24.03.0188
[29] 徐玮. 煤矸石基分子筛的制备、改性及晶型调控研究[D]. 淮南:安徽理工大学,2024. XU Wei. Research on the preparation,modification and crystal form regulation of coal gangue-based molecular sieves[D]. Huainan:Anhui University of Science & Technology,2024.
[30] 王宇星. 粉煤灰提铝活化焙烧-浸出反应特性与机理研究[D]. 西安:西安建筑科技大学,2024. WANG Yuxing. Study on characteristics and mechanism of activated roasting-leaching reaction for extracting aluminum from fly ash[D]. Xi’an:Xi’an University of Architecture and Technology,2024.
[31] 王玉涛. 煤矸石固废无害化处置与资源化综合利用现状与展望[J]. 煤田地质与勘探,2022,50(10):54−66. doi: 10.12363/issn.1001-1986.21.11.0614 WANG Yutao. Status and prospect of harmless disposal and resource comprehensive utilization of solid waste of coal gangue[J]. Coal Geology & Exploration,2022,50(10):54−66. doi: 10.12363/issn.1001-1986.21.11.0614
[32] 苗贺朝,王海,王晓东,等. 粉煤灰基防渗注浆材料配比优选及其性能试验研究[J]. 煤炭科学技术,2022,50(9):230−239. MIAO Hechao,WANG Hai,WANG Xiaodong,et al. Study on ratio optimization and performance test of fly ash-based impermeable grouting materials[J]. Coal Science and Technology,2022,50(9):230−239.
[33] 竹涛,武新娟,邢成,等. 煤矸石资源化利用现状与进展[J]. 煤炭科学技术,2024,52(1):380−390. doi: 10.12438/cst.2023-1917 ZHU Tao,WU Xinjuan,XING Cheng,et al. Current situation and progress of coal gangue resource utilization[J]. Coal Science and Technology,2024,52(1):380−390. doi: 10.12438/cst.2023-1917
[34] 杨科,何淑欣,何祥,等. 煤电化基地大宗固废“三化” 协同利用基础与技术[J]. 煤炭科学技术,2024,52(4):69−82. doi: 10.12438/cst.2024-0129 YANG Ke,HE Shuxin,HE Xiang,et al. Foundation and technology of coordinated utilization of bulk solid waste ‘Three modernizations’ in coal power base[J]. Coal Science and Technology,2024,52(4):69−82. doi: 10.12438/cst.2024-0129
[35] 顾成进,杨宝贵,路绍杰,等. 双碳背景下龙王沟煤矿新型绿色矿山建设[J]. 煤炭科学技术,2023,51(S1):440−448. GU Chengjin,YANG Baogui,LU Shaojie,et al. Construction of new green mine in Longwanggou coal mine under the background of double carbon[J]. Coal Science and Technology,2023,51(S1):440−448.
[36] ZHANG H L,SHU Y X,YUE S L,et al. Preheating pyrolysis-char combustion characteristics and kinetic analysis of ultra-low calorific value coal gangue:Thermogravimetric study[J]. Applied Thermal Engineering,2023,229:120583. doi: 10.1016/j.applthermaleng.2023.120583
[37] 时雅倩,关渝珊,葛伟哲,等. 粉煤灰建材化增值利用:最新技术与未来展望[J]. 煤炭学报,2024,49(6):2860−2875. SHI Yaqian,GUAN Yushan,GE Weizhe,et al. Value-added utilization of pulverized fuel ash as construction materials:State-of-the-art technologies and future prospects[J]. Journal of China Coal Society,2024,49(6):2860−2875.
[38] BAI R,YAN C W,ZHANG J,et al. Microstructural characteristics of aluminosilicate minerals in cement clinker prepared from coal gangue,carbide slag,and desulfurization gypsum[J]. Construction and Building Materials,2024,451:138861. doi: 10.1016/j.conbuildmat.2024.138861
[39] 陈宇良,朱玲,张绍松,等. 粉煤灰陶粒混凝土三轴受压破坏机制及强度准则[J]. 硅酸盐学报,2022,50(8):2196−2204. CHEN Yuliang,ZHU Ling,ZHANG Shaosong,et al. Failure mechanism and strength criterion of fly ash ceramsite concrete under triaxial compression[J]. Journal of the Chinese Ceramic Society,2022,50(8):2196−2204.
[40] ZHONG M Y,MENG J,NING B K,et al. Preparation and alkali excitation mechanism of coal gangue-iron ore tailings non-sintering ceramsite[J]. Construction and Building Materials,2024,426:136209. doi: 10.1016/j.conbuildmat.2024.136209
[41] 张国卿,宋舒波,王兴瑞,等. 煤固废基分子筛的制备及其应用进展[J]. 化工进展,2024,43(5):2311−2323. ZHANG Guoqing,SONG Shubo,WANG Xingrui,et al. Recent advances in the synthesis and application of zeolites from coal-based solid wastes[J]. Chemical Industry and Engineering Progress,2024,43(5):2311−2323.
[42] YAN K Z,ZHANG J Y,LIU D D,et al. Feasible synthesis of magnetic zeolite from red mud and coal gangue:Preparation,transformation and application[J]. Powder Technology,2023,423:118495. doi: 10.1016/j.powtec.2023.118495
[43] 康超,乔金鹏,杨胜超,等. 煤矸石中有价关键金属活化提取研究进展[J]. 化工学报,2023,74(7):2783−2799. KANG Chao,QIAO Jinpeng,YANG Shengchao,et al. Research progress on activation extraction of valuable metals in coal gangue[J]. CIESC Journal,2023,74(7):2783−2799.
[44] QIN Q Z,GENG H H,DENG J S,et al. Al and other critical metals co-extraction from coal gangue through delamination pretreatment and recycling strategies[J]. Chemical Engineering Journal,2023,477:147036. doi: 10.1016/j.cej.2023.147036
[45] 邹淑平,赵锦生,罗浩,等. 煤基固废用于生态修复的技术进展与环境风险分析[J]. 洁净煤技术,2024,30(S2):769−776. ZOU Shuping,ZHAO Jinsheng,LUO Hao,et al. Utilization of coal-based solid waste in ecological restoration:Technological advances and risk analysis[J]. Clean Coal Technology,2024,30(S2):769−776.
[46] LU Z J,WANG H S,WANG Z X,et al. Critical steps in the restoration of coal mine soils:Microbial-accelerated soil reconstruction[J]. Journal of Environmental Management,2024,368:122200. doi: 10.1016/j.jenvman.2024.122200
[47] 邓友生,姚志刚,冯爱林,等. 不同垫层下煤矸石桩网复合路基承载特性[J]. 岩土力学,2024,45(7):1895−1905. DENG Yousheng,YAO Zhigang,FENG Ailin,et al. Bearing characteristics of coal gangue pile-net composite embankment with different cushion layers[J]. Rock and Soil Mechanics,2024,45(7):1895−1905.
[48] LUO Y F,ZHAO X C,ZHANG K. Coal gangue in asphalt pavement:A review of applications and performance influence[J]. Case Studies in Construction Materials,2024,20:e03282. doi: 10.1016/j.cscm.2024.e03282
[49] 古文哲,朱磊,刘治成,等. 煤矿固体废弃物流态化浆体充填技术[J]. 煤炭科学技术,2021,49(3):83−91. GU Wenzhe,ZHU Lei,LIU Zhicheng,et al. Fluidization slurry backfilling technology of coal mine solid waste[J]. Coal Science and Technology,2021,49(3):83−91.
[50] 于祥,杨科,何祥,等. 饱和浸水过程矸石胶结充填体强度及损伤特征[J]. 煤田地质与勘探,2025,53(2):147−159. doi: 10.12363/issn.1001-1986.24.05.0313 YU Xiang,YANG Ke,HE Xiang,et al. Strength and damage characteristics of cemented gangue backfill during saturated immersion[J]. Coal Geology & Exploration,2025,53(2):147−159. doi: 10.12363/issn.1001-1986.24.05.0313
[51] 黄艳利,王文峰,卞正富. 新疆煤基固体废弃物处置与资源化利用研究[J]. 煤炭科学技术,2021,49(1):319−330. HUANG Yanli,WANG Wenfeng,BIAN Zhengfu. Prospects of resource utilization and disposal of coal-based solid wastes in Xinjiang[J]. Coal Science and Technology,2021,49(1):319−330.
[52] 谢和平,高明忠,刘见中,等. 煤矿地下空间容量估算及开发利用研究[J]. 煤炭学报,2018,43(6):1487−1503. XIE Heping,GAO Mingzhong,LIU Jianzhong,et al. Research on exploitation and volume estimation of underground space in coal mines[J]. Journal of China Coal Society,2018,43(6):1487−1503.
[53] 杨柳华,高炀,尹升华,等. 基于PVM技术的充填膏体搅拌过程细观结构演化[J]. 煤炭学报,2023,48(S1):325−333. YANG Liuhua,GAO Yang,YIN Shenghua,et al. Microstructure evolution of filling paste during mixing based on PVM technology[J]. Journal of China Coal Society,2023,48(S1):325−333.
[54] 王浩. 矸石粉煤灰充填料浆管道输送不稳定流及其影响研究[D]. 北京:中国矿业大学(北京),2019. WANG Hao. Study on unsteady flow and influence of gangue-fly ash filling slurry transporting in pipeline[D]. Beijing:China University of Mining & Technology,Beijing,2019.
[55] WANG L M,CHENG L,YIN S H,et al. Multiphase slurry flow regimes and its pipeline transportation of underground backfill in metal mine:Mini review[J]. Construction and Building Materials,2023,402:133014. doi: 10.1016/j.conbuildmat.2023.133014
[56] 吴爱祥,李红,程海勇. 屈服型非牛顿流体流型演化的几何判别[J]. 中国矿业大学学报,2023,52(1):1−9. WU Aixiang,LI Hong,CHENG Haiyong. Ageometric method for flow pattern identification of yield stress fluids[J]. Journal of China University of Mining & Technology,2023,52(1):1−9.
[57] 杨柳华,李金仓,焦华喆,等. 引发全尾砂料浆触变特征的临界粒径研究[J]. 中国有色金属学报,2024,34(3):970−983. doi: 10.11817/j.ysxb.1004.0609.2023-44325 YANG Liuhua,LI Jincang,JIAO Huazhe,et al. Study on critical particle size of thixotropic characteristics of full tailings slurry[J]. The Chinese Journal of Nonferrous Metals,2024,34(3):970−983. doi: 10.11817/j.ysxb.1004.0609.2023-44325
[58] 李全生. 井工煤矿减损开采理论与技术体系[J]. 煤炭学报,2024,49(2):988−1002. LI Quansheng. Reduction theory and technical system of underground coal mining[J]. Journal of China Coal Society,2024,49(2):988−1002.
[59] LI Q S. Reduction theory and technical system of underground coal mining[J]. Journal of the China Coal Society,2024,49(2):988−1002.
[60] 张鑫,乔伟,雷利剑,等. 综放开采覆岩离层形成机理[J]. 煤炭学报,2016,41(S2):342−349. ZHANG Xin,QIAO Wei,LEI Lijian,et al. Formation mechanism of overburden bed separation in fully mechanized top-coal caving[J]. Journal of China Coal Society,2016,41(S2):342−349.
[61] 孟召平,师修昌,刘珊珊,等. 废弃煤矿采空区煤层气资源评价模型及应用[J]. 煤炭学报,2016,41(3):537−544. MENG Zhaoping,SHI Xiuchang,LIU Shanshan,et al. Evaluation model of CBM resources in abandoned coal mine and its application[J]. Journal of China Coal Society,2016,41(3):537−544.
[62] 李建,郑恺丹,轩大洋,等. 覆岩隔离注浆充填浆液无压阶段扩散规律实验研究[J]. 煤炭学报,2020,45(S1):78−86. LI Jian,ZHENG Kaidan,XUAN Dayang,et al. Experimental study on diffusion law of grouting slurry in overburden isolation grouting in pressureless stage[J]. Journal of China Coal Society,2020,45(S1):78−86.
[63] HE X,WEI Z,YANG K,et al. Experimental study on the diffusion law of coal-based solid waste slurry with grouting filling in the gangue voids of the caving zone[J]. ACS Omega,2024,9(1):264−275. doi: 10.1021/acsomega.3c04519
[64] 杨科,方珏静,张吉雄,等. 加浆改性固体充填材料承载压缩特性与固结机制[J]. 中国矿业大学学报,2024,53(3):456−468. YANG Ke,FANG Juejing,ZHANG Jixiong,et al. Compression load-bearing characteristics and consolidation mechanism of grout-modified solid backfill materials[J]. Journal of China University of Mining & Technology,2024,53(3):456−468.
[65] 崔博强,白锦文,冯国瑞,等. 柱旁单侧充填煤充结构体的破坏响应特征与失稳机制[J]. 中南大学学报(自然科学版),2023,54(6):2431−2446. doi: 10.11817/j.issn.1672-7207.2023.06.030 CUI Boqiang,BAI Jinwen,FENG Guorui,et al. Failure response characteristics and mechanism of coal-backfilling structures in single pillar-side backfilling[J]. Journal of Central South University (Science and Technology),2023,54(6):2431−2446. doi: 10.11817/j.issn.1672-7207.2023.06.030
[66] 黄鹏,张吉雄,郭宇鸣,等. 深部矸石充填体黏弹性效应及顶板时效变形特征[J]. 中国矿业大学学报,2021,50(3):489−497. HUANG Peng,ZHANG Jixiong,GUO Yuming,et al. Viscoelastic effect of deep gangue backfill body and time-dependent deformation characteristics of roof in deep mining[J]. Journal of China University of Mining & Technology,2021,50(3):489−497.
[67] 刘炜震,郭忠平,黄万朋,等. 不同温度养护后胶结充填体三轴卸围压力学特性试验研究[J]. 岩石力学与工程学报,2022,41(11):2268−2282. LIU Weizhen,GUO Zhongping,HUANG Wanpeng,et al. Experimental study on mechanical characteristics of cemented backfill under triaxial unloading confining pressure after cured at different temperatures[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(11):2268−2282.
[68] 杜兆文,温卓越,李帅乾,等. 氯盐作用下膏体充填体力学特性及劣化机制研究[J]. 岩石力学与工程学报,2024,43(12):2924−2939. DU Zhaowen,WEN Zhuoyue,LI Shuaiqian,et al. Study on the mechanical properties and degradation mechanism of backfill paste under the action of chloride salts[J]. Chinese Journal of Rock Mechanics and Engineering,2024,43(12):2924−2939.
[69] 殷文文,张理群,丁丹,等. 淮南潘一矿煤基固废精细化学结构及重金属生态风险评价[J]. 煤田地质与勘探,2023,51(12):176−184. doi: 10.12363/issn.1001-1986.23.05.0238 YIN Wenwen,ZHANG Liqun,DING Dan,et al. Coal-based solid waste from the Panyi Mine in the Huainan mining area:Fine-scale chemical structure and ecological risk assessment of heavy metals[J]. Coal Geology & Exploration,2023,51(12):176−184. doi: 10.12363/issn.1001-1986.23.05.0238
[70] 刘恒凤,张吉雄,周楠,等. 矸石基胶结充填材料重金属浸出及其固化机制[J]. 中国矿业大学学报,2021,50(3):523−531. LIU Hengfeng,ZHANG Jixiong,ZHOU Nan,et al. Study of the leaching and solidification mechanism of heavy metals from gangue-based cemented paste backfilling materials[J]. Journal of China University of Mining & Technology,2021,50(3):523−531.