高级检索

采−选−冶−化固废基充填材料制备及综合性能研究综述

张钦礼, 陶云波, 冯岩, 陈秋松, 高凌志, 张芋杰, 王道林

张钦礼,陶云波,冯 岩,等. 采−选−冶−化固废基充填材料制备及综合性能研究综述[J]. 煤炭科学技术,2025,53(6):65−81. DOI: 10.12438/cst.2025-0509
引用本文: 张钦礼,陶云波,冯 岩,等. 采−选−冶−化固废基充填材料制备及综合性能研究综述[J]. 煤炭科学技术,2025,53(6):65−81. DOI: 10.12438/cst.2025-0509
ZHANG Qinli,TAO Yunbo,FENG Yan,et al. Review on preparation and comprehensive performance research of cemented paste backfill for solid waste from mining, beneficiation, metallurgy and chemical industries[J]. Coal Science and Technology,2025,53(6):65−81. DOI: 10.12438/cst.2025-0509
Citation: ZHANG Qinli,TAO Yunbo,FENG Yan,et al. Review on preparation and comprehensive performance research of cemented paste backfill for solid waste from mining, beneficiation, metallurgy and chemical industries[J]. Coal Science and Technology,2025,53(6):65−81. DOI: 10.12438/cst.2025-0509

采−选−冶−化固废基充填材料制备及综合性能研究综述

基金项目: 

地球深部探测与矿产资源勘查国家科技重大专项资助项目(2024ZD1003702);贵州省重大专项资助项目(黔科合重大专项字[2024]017);博士后创新人才支持计划资助项目(BX20250036)

详细信息
    作者简介:

    张钦礼: (1965—),男,山东临朐人,教授,博士生导师,博士。E-mail:zhanqinligcn@126.com

    通讯作者:

    王道林: (1994—),男,河南信阳人,博士。E-mail:daolinw@csu.edu.cn

  • 中图分类号: X705; TD82

Review on preparation and comprehensive performance research of cemented paste backfill for solid waste from mining, beneficiation, metallurgy and chemical industries

  • 摘要:

    固废基胶结充填技术作为实现绿色矿山建设与工业固废协同处置的核心载体,其材料设计与性能调控已成为矿业工程领域的研究热点。针对采−选−冶−化多源工业固废(采掘废石、选矿尾砂、冶金炉渣、化工废料等)物化特性差异显著导致的充填体性能离散化问题,系统综述了多源固废在充填材料中的角色差异,以及不同固废基充填材料在流变、强度、环境方面的综合性能。主要包括:系统综述了不同工业固废基充填材料的来源、性能及用途,发现典型工业固废(尾砂、钢渣、粉煤灰等)的化学组分呈现显著互补性,SiO2、CaO和Al2O3的梯度分布为协同胶凝提供了物质基础;总结了不同工业固废基充填材料的流变性能、管输阻力计算方式、强度分布及优化手段,分析了固废基充填材料的屈服应力、黏度及抗压强度的分布范围及规律,发现粒径级配优化与聚羧酸减水剂的复合调控可有效降低管道输送阻力,选用恰当的激发剂和辅助胶凝材配比可有效提高充填体强度;评价了固废基充填材料在不同时间尺度下的环境污染风险,系统梳理了固废基充填材料中有害元素的浸出机制和固化机制,总结了矿山充填污染治理现状,发现提高固废基充填材料的水化反应进程和添加多孔物质可有效控制污染元素的扩散。研究成果对于推动采−选−冶−化行业的可持续发展、缓解固废处置压力、提升资源综合利用率以及促进绿色矿山建设具有重要意义。

    Abstract:

    As the core carrier for realizing the construction of green mines and co-disposal of industrial solid wastes, solid waste-based cemented paste backfill (SCPB) technology has become a hot research topic in the field of mining engineering in terms of material design and performance regulation. Aiming at the problem of discrete performance of SCPB caused by the significant difference in physical and chemical properties of industrial solid wastes from multiple sources (waste rock from mining, tailings from mineral processing, metallurgical slag, chemical wastes, etc.), the differences in the roles of solid wastes from multiple sources in the backfill materials and the comprehensive performance of different SCPB in terms of rheology, strength, and environmental aspects are systematically reviewed. It mainly includes: A systematic review was conducted on the sources, properties and uses of different SCPB. It was found that the chemical components of typical industrial solid wastes (tailings, steel slag, fly ash, etc.) exhibit significant complementarity, and the gradient distribution of SiO2, CaO, and Al2O3 provides a material basis for synergistic coagulation; The rheological properties, calculation of pipeline resistance, strength distribution and optimization means of different SCPB were systematically summarized, and the distribution ranges and laws of the yield stress, viscosity and compressive strength of SCPB were analyzed. It was found that the composite control of particle size grading optimization and polycarboxylate water reducing agent can effectively reduce pipeline transportation resistance. Selecting appropriate activator and auxiliary cementitious material ratios can effectively improve the strength of the SCPB; This study evaluated the environmental pollution risk of SCPB in different time scales, systematically sorted out the leaching mechanism and solidification mechanisms of harmful elements in SCPB, and summarized the current situation of mine backfill pollution control. It was found that improving the hydration reaction process of SCPB and adding porous materials can effectively control the diffusion of pollutants. The research results are of great significance in promoting the sustainable development of the mining, processing, metallurgy and chemical industries, alleviating the pressure of solid waste disposal, improving the comprehensive utilization rate of resources and promoting the construction of green mines.

  • 图  1   固废充填骨料分类

    Figure  1.   Classification of solid waste-based cemented paste backfill aggregates

    图  2   辅助添加材料在固废基充填中的应用[26-27, 29]

    Figure  2.   Application of auxiliary additive materials in solid waste-based cemented paste backfill[26-27, 29]

    图  3   固废基充填料浆管道输送的屈服应力分布

    Figure  3.   Yield stress distribution of solid waste-based cemented paste backfill slurry pipeline transportation

    图  4   固废基充填材料管道输送的黏度分布

    Figure  4.   Viscosity distribution of solid waste-based cemented paste backfill slurry pipeline transportation

    图  5   管道输送沿程阻力计算方法[34]

    注:i为水力坡度,Pa/m;D为管道直径,m;τy为料浆屈服应力,Pa;ηB为料浆塑性黏度,Pa·s;ν为料浆流速,m/s;ic为水平直管单位长度料浆水力坡度,kPa/m;i0为水平直管单位长度清水水力坡度,kPa/m;k为常数,k=80~150;ρs为固体物料密度,t/m3ρ0为清水密度,t/m3g为重力加速度,9.8 m/s2Cv为料浆体积分数,%;Cx为固体颗粒沉降阻力系数,%;ρ为充填料浆密度,t/m3

    Figure  5.   Calculation method for resistance along pipeline transportation[34]

    图  6   管道输送优化方法

    Figure  6.   Optimization methods for pipeline transportation

    图  7   固废基充填材料的单轴抗压强度(28 d)

    Figure  7.   Uniaxial compressive strength (UCS) of solid waste-based backfill material (28 days)

    图  8   多元微观表征技术

    Figure  8.   Multivariate microscopic characterization technology

    图  9   固废基充填体强度优化方法

    Figure  9.   Optimization method for solid waste-based cemented paste backfill body strength

    图  10   固废基充填材料对环境的影响

    Figure  10.   Impact of solid waste-based cemented paste backfill materials on environment

    图  11   固废基充填体中污染元素浸出与固化机制

    Figure  11.   Leaching and solidification mechanism of pollutant elements in solid waste-based cemented paste backfill material

    表  1   固废基充填胶凝材料主要化学成分[11, 15, 17, 22-25]

    Table  1   Main chemical components of solid waste-based cemented paste backfill materials[11, 15, 17, 22-25]

    矿物 各组分质量分数/% 误差/%
    CaO SiO2 Al2O3 MgO SO3 Fe2O3 Na2O MnO FeO K2O TiO2
    钢渣 36.77 18.57 4.22 9.24 0.43 19.85 4.19 0.27 0.06
    高炉矿渣 35.41 33.58 15.22 8.57 1.51 0.62
    镍渣 22.69 36.62 6.97 28.81 1.08 0.27 0.16 3.01 0.13
    锂渣 22.69 36.62 28.81 1.08 0.27 0.16 3.01 6.97 0.26
    粉煤灰−PC灰 1.1~6.6 37~58 24~37 0.4~1.5 0.4~3.0 1~7 4.8~8.0
    粉煤灰−CFB灰 4~18 27~50 14~30 0.2~2.0 1~13 3~13 2.3~15.0
    煤气化渣 8.65 55.30 19.14 1.14 0.66 9.79 1.45 2.44 1.16
    铜渣 10.72 24.01 6.77 2.61 41.24 3.08
    下载: 导出CSV

    表  2   充填料浆管道输送阻力计算公式

    Table  2   Calculation formula for pipeline transportation resistance of cemented paste backfill slurry

    公式 计算式 参数说明 应用范围
    白金汉流动方程 $ i = \dfrac{{16}}{{3D}}{\tau _{\text{y}}} + \dfrac{{32\nu }}{{{D^{_2}}}} {\eta _{\text{B}}} $ i为水力坡度,Pa/m;D为管道直径,m;τy为料浆屈服应力,Pa;ηB为料浆塑性黏度,Pa·s;ν为料浆流速,m/s 结构流充填料浆
    杜兰德公式 $ {i_{\text{c}}} = {i_{0}} \left[ {1 + k {C_v}{{\left( {\dfrac{{gD}}{{{v^2}}} \dfrac{{{\rho _{\text{s}}} - {\rho _{0}}}}{{{\rho _{0}}}} \dfrac{1}{{\sqrt {{C_{\text{x}}}} }}} \right)}^{1.5}}} \right] $
    $ {C_{\text{x}}} = \dfrac{4}{3} \dfrac{{{d_{{\text{cp}}}}\left( {{\rho _{\text{s}}} - {\rho _{0}}} \right)}}{{{\rho _{0}}{v^2}}} $
    ic为水平直管单位长度料浆水力坡度,kPa/m;i0为水平直管单位长度清水水力坡度,kPa/m;k为常数,k=80~150;ρs为固体物料密度,t/m3ρ0为清水密度,t/m3g为重力加速度,9.8 m/s2D为管径,m;ν为浆体流速,m/s;Cv为料浆体积分数,%;Cx为固体颗粒沉降阻力系数,%;dcp为颗粒平均粒径,cm 管径19.1~584.4 mm、粒径0.1~25.4 mm、流速0.61~6 m/s
    北京有色冶金设计研究总院公式 $ {i_{\text{c}}} = {i_{0}}\left( {1 + \dfrac{{{C_{\text{w}}}}}{{1 - {C_{\text{w}}}}} \dfrac{1}{{{v^2}}}} \right)\dfrac{{{\rho _{\text{g}}}}}{{{\rho _{0}}}} $ ic为水平直管单位长度料浆水力坡度,kPa/m;i0为水平直管单位长度清水水力坡度,kPa/m;ρg为固体物料密度,t/m3ρ0为清水密度,t/m3ν为料浆流速,m/s;Cw为料浆质量分数,%
    金川似均质流公式 $ {i_{\text{c}}} = {i_{0}}\left\{ {1 + 106.9{C_v}^{4.42}{{\left[ {\dfrac{{gD\left( {{\rho _{\text{s}}} - 1} \right)}}{{{v^2}\sqrt {{C_{\text{x}}}} }}} \right]}^{1.78}}} \right\} $ ic为水平直管单位长度料浆水力坡度,kPa/m;i0为水平直管单位长度清水水力坡度,kPa/m;Cv为料浆体积分数,% 似均质料浆
    $ {i_{\text{c}}} = {i_{0}}\left\{ {1 + 108{C_v}^{3.96}{{\left[ {\dfrac{{gD\left( {{\rho _{\text{s}}} - 1} \right)}}{{{v^2}\sqrt {{C_{\text{x}}}} }}} \right]}^{1.12}}} \right\} $ Cx为固体颗粒沉降阻力系数,%;ν为料浆流速,m/s;D为管道的直径,m;ρs为固体物料密度,t/m3 非均质料浆
    长沙矿冶研究院管输阻力计算公式 $ {i_{\text{c}}} = \left\{ {1 + 3.68\dfrac{{\sqrt {gD} }}{v}\left( {\dfrac{{\rho - {\rho _{0}}}}{{{\rho _{0}}}}} \right)} \right\}\dfrac{\rho }{{{\rho _{0}}}}{i_{0}} $ ic为水平直管单位长度料浆水力坡度,kPa/m;i0为水平直管单位长度清水水力坡度,kPa/m;D为管道直径,m;ρ为充填料浆密度,t/m3ρ0为清水密度,t/m3ν为料浆流速,m/s
    下载: 导出CSV
  • [1]

    WANG Y M,CHEN Q S,DAI B B,et al. Guidance and review:Advancing mining technology for enhanced production and supply of strategic minerals in China[J]. Green and Smart Mining Engineering,2024,1(1):2−11. doi: 10.1016/j.gsme.2024.03.005

    [2]

    MARíN Oscar A,KRASLAWSKI Andrzej,CISTERNAS Luis A. Estimating processing cost for the recovery of valuable elements from mine tailings using dimensional analysis[J]. Minerals Engineering,2022,184:107629. doi: 10.1016/j.mineng.2022.107629

    [3]

    CHEN Q S,ZHANG Q,WANG Y M,et al. Highly-efficient fluoride retention in on-site solidification/stabilization of phosphogypsum:Cemented paste backfill synergizes with poly-aluminum chloride activation[J]. Chemosphere,2022,309:136652. doi: 10.1016/j.chemosphere.2022.136652

    [4] 陈秋松,吴爱祥. 磷石膏充填技术研究进展[J]. 工程科学学报,2025,47(2):195−214.

    CHEN Qiusong,WU Aixiang. Research progress of phosphogypsum-based backfill technology[J]. Chinese Journal of Engineering,2025,47(2):195−214.

    [5]

    JIN J X,LI M X,LIU T,et al. Insights into factors influencing coal gangue-filled backfill cemented by self-consolidating alkali-activated slag grouts[J]. Construction and Building Materials,2024,411:134422. doi: 10.1016/j.conbuildmat.2023.134422

    [6]

    JIANG H Q,QI Z J,YILMAZ E,et al. Effectiveness of alkali-activated slag as alternative binder on workability and early age compressive strength of cemented paste backfills[J]. Construction and Building Materials,2019,218:689−700. doi: 10.1016/j.conbuildmat.2019.05.162

    [7]

    JIN J X,CHEN Y Y,LI M X,et al. Preparation of self-consolidating cemented backfill with tailings and alkali activated slurry:Performance evaluation and environmental impact[J]. Construction and Building Materials,2024,438:137088. doi: 10.1016/j.conbuildmat.2024.137088

    [8]

    LI X B,DU J,GAO L,et al. Immobilization of phosphogypsum for cemented paste backfill and its environmental effect[J]. Journal of Cleaner Production,2017,156:137−146. doi: 10.1016/j.jclepro.2017.04.046

    [9]

    SARI M,YILMAZ E,KASAP T. Long-term ageing characteristics of cemented paste backfill:Usability of sand as a partial substitute of hazardous tailings[J]. Journal of Cleaner Production,2023,401:136723. doi: 10.1016/j.jclepro.2023.136723

    [10] 刘昕,王仲亮,包燕平. 转炉钢渣资源化利用研究现状与应用展望[J]. 工程科学学报,2025,47(4):668−681.

    LIU Xin,WANG Zhongliang,BAO Yanping. Resourceful utilization of converter steel slag:Research status and application prospects[J]. Chinese Journal of Engineering,2025,47(4):668−681.

    [11] 张刘阳,陈潇,吕国明,等. 钢渣特性随粒级分布的规律研究[J]. 材料导报,2025,39(3):133−140.

    ZHANG Liuyang,CHEN Xiao,LYU Guoming,et al. Study on the law of steel slag characteristics with particle size distribution[J]. Materials Reports,2025,39(3):133−140.

    [12]

    WEI H J,WAN H F,YUAN S,et al. A new gelling material:Properties of recycled aggregate concrete under conditions of complete cement replacement using steel slag,ore slag,and fly ash[J]. Construction and Building Materials,2025,464:140180. doi: 10.1016/j.conbuildmat.2025.140180

    [13]

    YANG D T,WANG P,CHEN W L,et al. Effects of red mud,desert sand,and ground granulated blast furnace slag on the mechanical properties and microstructure of fly ash-based geopolymer[J]. Construction and Building Materials,2025,468:140471. doi: 10.1016/j.conbuildmat.2025.140471

    [14]

    HE Y,CHEN Q S,KANG Q,et al. Effect of enhanced pozzolanic activity in nickel slag modified with Al2O3 on mechanical properties of cemented fine tailings backfill[J]. Construction and Building Materials,2024,411:134610. doi: 10.1016/j.conbuildmat.2023.134610

    [15] 王雪,王恒,王强. 我国锂渣资源化利用研究进展[J]. 材料导报,2022,36(24):63−73.

    WANG Xue,WANG Heng,WANG Qiang. Research progress on resource utilization of lithium slag in China[J]. Materials Reports,2022,36(24):63−73.

    [16]

    YUAN L Q,LIU L P,SUN L J,et al. Feasibility study of lithium slag as cementitious material with high-content application in cement stabilized macadam bases[J]. Construction and Building Materials,2024,457:139224. doi: 10.1016/j.conbuildmat.2024.139224

    [17] 时雅倩,关渝珊,葛伟哲,等. 粉煤灰建材化增值利用:最新技术与未来展望[J]. 煤炭学报,2024,49(6):2860−2875.

    SHI Yaqian,GUAN Yushan,GE Weizhe,et al. Value-added utilization of pulverized fuel ash as construction materials:State-of-the-art technologies and future prospects[J]. Journal of China Coal Society,2024,49(6):2860−2875.

    [18]

    ZHANG W,JIANG S Q,LI X,et al. Multi-objective optimization of concrete pumping S-pipe based on DEM and NSGA-II algorithm[J]. Powder Technology,2024,434:119314. doi: 10.1016/j.powtec.2023.119314

    [19]

    XU X C,ZHAO Y Q,GU X W. Utilization of chromium-rich decarbonized coal gasification slag as mineral admixture in cemented mortar:Mechanical performance,hydration property and chromium immobilization[J]. Construction and Building Materials,2025,470:140614. doi: 10.1016/j.conbuildmat.2025.140614

    [20]

    FENG Y,YANG Q X,CHEN Q S,et al. Characterization and evaluation of the pozzolanic activity of granulated copper slag modified with CaO[J]. Journal of Cleaner Production,2019,232:1112−1120. doi: 10.1016/j.jclepro.2019.06.062

    [21]

    CHEN Q S,TAO Y B,FENG Y,et al. Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill[J]. Journal of Environmental Management,2021,290:112608. doi: 10.1016/j.jenvman.2021.112608

    [22] 许荣盛,汪浩然,杨仁和,等. 减缩剂对碱激发矿渣−铜渣砂浆的影响及作用机理[J]. 建筑材料学报,2024,27(11):1047−1053. doi: 10.3969/j.issn.1007-9629.2024.11.010

    XU Rongsheng,WANG Haoran,YANG Renhe,et al. Effect and mechanism of shrinkage reducing admixture on alkali-activated slag-copper slag mortar[J]. Journal of Building Materials,2024,27(11):1047−1053. doi: 10.3969/j.issn.1007-9629.2024.11.010

    [23] 胡其志,李俊杰,陶高梁,等. 高炉矿渣−电石渣复合改良膨胀土工程特性与机理研究[J]. 硅酸盐通报,2025,44(2):602−612.

    HU Qizhi,LI Junjie,TAO Gaoliang,et al. Engineering property and mechanism of ground granulated blast slag-carbide slag composite improved expansive soil[J]. Bulletin of the Chinese Ceramic Society,2025,44(2):602−612.

    [24] 温震江,高谦,杨志强,等. 金川镍渣充填胶凝材料力学性能与水化机理[J]. 中国有色金属学报,2021,31(4):1074−1083. doi: 10.11817/j.ysxb.1004.0609.2021-36585

    WEN Zhenjiang,GAO Qian,YANG Zhiqiang,et al. Mechanical properties and hydration mechanism of Jinchuan nickel slag filling cementitious material[J]. The Chinese Journal of Nonferrous Metals,2021,31(4):1074−1083. doi: 10.11817/j.ysxb.1004.0609.2021-36585

    [25] 高海洋,梁龙,靳开宇,等. 煤气化渣资源化利用综述[J]. 煤炭科学技术,2024,52(8):192−208. doi: 10.12438/cst.2023-1147

    GAO Haiyang,LIANG Long,JIN Kaiyu,et al. Review on resource utilization of coal gasification slag[J]. Coal Science and Technology,2024,52(8):192−208. doi: 10.12438/cst.2023-1147

    [26]

    LIU B,ZHANG Q L,FENG Y,et al. Mechanical and microstructural analysis of cemented tailings backfill by copper slag through alkaline activation emphasizing red mud[J]. Construction and Building Materials,2024,428:136341. doi: 10.1016/j.conbuildmat.2024.136341

    [27]

    HE Y P,LV W Y,FANG Z Y,et al. The basic characteristics of paste backfill materials based on highly active mineral admixtures:Part I. Preliminary study on flow,mechanics,hydration and microscopic properties[J]. Process Safety and Environmental Protection,2024,187:1366−1377. doi: 10.1016/j.psep.2024.05.056

    [28] 候春华,杨志强,高谦,等. 金川全尾砂棒磨砂新型充填胶凝材料试验研究[J]. 山东科技大学学报(自然科学版),2015,34(3):78−84. doi: 10.3969/j.issn.1672-3767.2015.03.011

    HOU Chunhua,YANG Zhiqiang,GAO Qian,et al. Experimental research on a new filling material compound of whole tailings and rod milling sand in Jinchuan Mine[J]. Journal of Shandong University of Science and Technology (Natural Science),2015,34(3):78−84. doi: 10.3969/j.issn.1672-3767.2015.03.011

    [29]

    WANG J,FU J X,SONG W D,et al. Effect of rice husk ash (RHA) dosage on pore structural and mechanical properties of cemented paste backfill[J]. Journal of Materials Research and Technology,2022,17:840−851. doi: 10.1016/j.jmrt.2022.01.044

    [30]

    XU J F,ZHOU N,ZHANG J X,et al. Study on rheological properties of large particle gangue slurry and its drag reduction effect caused by wall slippage in pipeline transportation[J]. Powder Technology,2025,452:120573. doi: 10.1016/j.powtec.2024.120573

    [31]

    FANG Z Y,GAO Y H,HE W,et al. Carbonation curing of magnesium-coal slag solid waste backfill material:Study on properties of flow,mechanics and carbon sequestration[J]. Case Studies in Construction Materials,2024,20:e03204. doi: 10.1016/j.cscm.2024.e03204

    [32]

    GU C J,YANG B G,YANG F G,et al. Fluidity and rheological properties with time-dependence of cemented fine-grained coal gangue backfill containing HPMC using response surface method[J]. Construction and Building Materials,2024,451:138691. doi: 10.1016/j.conbuildmat.2024.138691

    [33]

    HE W,LIU L,FANG Z Y,et al. Effect of polypropylene fiber on properties of modified magnesium-coal-based solid waste backfill materials[J]. Construction and Building Materials,2023,362:129695. doi: 10.1016/j.conbuildmat.2022.129695

    [34]

    LIU L,FANG Z Y,WANG M,et al. Experimental and numerical study on rheological properties of ice-containing cement paste backfill slurry[J]. Powder Technology,2020,370:206−214. doi: 10.1016/j.powtec.2020.05.024

    [35]

    LI Q L,WANG B W,WEI Z,et al. Experiment and numerical simulation study of polycarboxylate superplasticizer modified cemented ultrafine tailings filling slurry:Rheology,fluidity,and flow properties in pipeline[J]. Construction and Building Materials,2024,438:137041. doi: 10.1016/j.conbuildmat.2024.137041

    [36]

    ZHAO B C,WEN J,ZHAI D,et al. Effect of calcium chloride on the properties of gangue cemented paste backfill:Experimental results of setting time,rheological properties,mechanical strength and microscopic properties[J]. Case Studies in Construction Materials,2025,22:e04331. doi: 10.1016/j.cscm.2025.e04331

    [37]

    TANG R L,ZHAO B C,XIN J,et al. Multisolid waste collaborative production of aeolian sand-red mud-fly ash cemented paste backfill[J]. Case Studies in Construction Materials,2024,20:e02843. doi: 10.1016/j.cscm.2023.e02843

    [38]

    ZHOU J,LIU L,ZHAO Y,et al. Mechanism of air-entraining agent to improve the properties of coal-based solid waste backfill[J]. Journal of Materials Research and Technology,2024,32:2140−2148. doi: 10.1016/j.jmrt.2024.08.051

    [39]

    TANG R L,ZHAO B C,LI C,et al. Experimental study on the effect of fly ash with ammonium salt content on the properties of cemented paste backfill[J]. Construction and Building Materials,2023,369:130513. doi: 10.1016/j.conbuildmat.2023.130513

    [40]

    ZHANG K,ZHOU M,LIAO Y,et al. Exploring the effect of self-combustion gangue powder particle distribution on rheological behavior and hydration mechanism in cement-based systems[J]. Construction and Building Materials,2024,447:138124. doi: 10.1016/j.conbuildmat.2024.138124

    [41]

    LI Q L,WANG B W,LIU C Y,et al. Rheological and thixotropic properties of cemented ultrafine tailings backfill with cold-bonded lightweight aggregates[J]. Powder Technology,2025,455:120750. doi: 10.1016/j.powtec.2025.120750

    [42] 潘键. 两相流管道阻力公式的验证:兼评张国权公式[J]. 煤炭学报,1981,6(2):48−54.

    PAN Jian. Verification of formulae for pressure drop for solid-liquid mixtures a brief comment on Zhang guoquan’s formula[J]. Journl of China Coal Society,1981,6(2):48−54.

    [43] 刘同有,王佩勋. 金川集团公司充填采矿技术与应用[J]. 矿业研究与开发,2004,24(S1):8−14. doi: 10.3969/j.issn.1005-2763.2004.z1.002

    LIU Tongyou,WANG Peixun. Jinchuan Group’s Backfilling Mining Technology and Application[J]. Mining Research and Development,2004,24(S1):8−14. doi: 10.3969/j.issn.1005-2763.2004.z1.002

    [44] 方宗翰,尹慰农,唐锦涛,等. 固液两相流水力坡度的计算[J]. 有色金属(矿山部分),1982,34(5):5−8,22.

    FANG Zonghan,YIN Weinong,TANG Jintao,et al. Calculation of hydraulic gradient of solid-liquid two-phase flow[J]. Nonferrous Metals (Mining),1982,34(5):5−8,22.

    [45]

    ASHRAF M,NAZAR S,IQBAL M,et al. Exploring the rheological and mechanical properties of alkali activated mortar incorporating waste foundry sand:A comprehensive experimental and machine learning investigation[J]. Results in Engineering,2024,24:102973. doi: 10.1016/j.rineng.2024.102973

    [46]

    LI H W,LIU J Z,YU C,et al. Quantify the effects of applied shear rate on measured rheological parameters of concrete based on machine learning[J]. Journal of Building Engineering,2025,99:111532. doi: 10.1016/j.jobe.2024.111532

    [47]

    QI C C,CHEN Q S,FOURIE A,et al. Pressure drop in pipe flow of cemented paste backfill:Experimental and modeling study[J]. Powder Technology,2018,333:9−18. doi: 10.1016/j.powtec.2018.03.070

    [48]

    DONG C W,XU J F,ZHOU N,et al. Adaptive drive-based integration technique for predicting rheological and mechanical properties of fresh gangue backfill slurry[J]. Case Studies in Construction Materials,2025,22:e04346. doi: 10.1016/j.cscm.2025.e04346

    [49]

    MORADKHANI M A,HOSSEINI S H,AHMADI M M. Predictive analytics for fresh concrete rheological characteristics using artificial intelligence approaches[J]. Materials Today Communications,2024,41:110434. doi: 10.1016/j.mtcomm.2024.110434

    [50]

    XU J F,YAO Y N,YAN H,et al. Experimental study of pipeline pressure loss laws with large-size gangue slurry during the process of industrial-grade annular pipe transportation[J]. Construction and Building Materials,2024,436:136993. doi: 10.1016/j.conbuildmat.2024.136993

    [51]

    LI M Z,HE Y P,JIANG R H,et al. Analysis of minimum specific energy consumption and optimal transport concentration of slurry pipeline transport systems[J]. Particuology,2022,66:38−47. doi: 10.1016/j.partic.2021.08.004

    [52]

    LI T S,HE L Y,SHEN J H,et al. CFD-DEM modelling of the conveying characteristics of a vertical pipeline for deep-sea mineral particles with wide particle size gradations[J]. Powder Technology,2025,453:120654. doi: 10.1016/j.powtec.2025.120654

    [53]

    LI H,WANG H J,BAI L J. Effect of coal gangue grading characteristics on cemented paste backfill rheology[J]. Case Studies in Construction Materials,2024,21:e03694. doi: 10.1016/j.cscm.2024.e03694

    [54]

    WANG H J,ZHANG X,WU A X. Effect of particle size distribution of tailings on pressure gradient and drag reduction characteristics of non-cemented paste considering wall slip[J]. Case Studies in Construction Materials,2024,20:e02792. doi: 10.1016/j.cscm.2023.e02792

    [55]

    MANGANE M B C,ARGANE R,TRAUCHESSEC R,et al. Influence of superplasticizers on mechanical properties and workability of cemented paste backfill[J]. Minerals Engineering,2018,116:3−14. doi: 10.1016/j.mineng.2017.11.006

    [56]

    ZHANG Q S,QIU J P,JIANG H Q,et al. Effect of hydroxypropyl methyl cellulose on coarse tailings cemented backfill:Rheology,stability,strength and microstructure[J]. Construction and Building Materials,2024,425:136042. doi: 10.1016/j.conbuildmat.2024.136042

    [57]

    DENG L W,LU H N,YANG J M,et al. Particle migration and slurry hydraulic resistance in multi-stage reducer pipes[J]. Ocean Engineering,2024,309:118352. doi: 10.1016/j.oceaneng.2024.118352

    [58]

    FENG G R,WANG Z H,QI T Y,et al. Effect of velocity on flow properties and electrical resistivity of cemented coal gangue-fly ash backfill (CGFB) slurry in the pipeline[J]. Powder Technology,2022,396:191−209. doi: 10.1016/j.powtec.2021.10.050

    [59] 王新民,肖卫国,张钦礼. 深井矿山充填理论与技术[M]. 长沙:中南大学出版社,2005.
    [60] 史建新,孙星海,周林邦,等. 赤泥基全固废矿井充填材料的制备与性能研究[J]. 建筑材料学报,2024,27(10):946−954. doi: 10.3969/j.issn.1007-9629.2024.10.010

    SHI Jianxin,SUN Xinghai,ZHOU Linbang,et al. Fabrication and performance of mine filling materials derived from red mud based full solid wastes[J]. Journal of Building Materials,2024,27(10):946−954. doi: 10.3969/j.issn.1007-9629.2024.10.010

    [61] 杨玉翰,邬忠虎,冯政,等. 磷石膏协同多元固废制备矿山充填材料[J]. 金属矿山,2024(6):235−241.

    YANG Yuhan,WU Zhonghu,FENG Zheng,et al. Preparation of mine backfill material from phosphogypsum synergistic multifunctional solid waste[J]. Metal Mine,2024(6):235−241.

    [62] 王永定,温震江,杨晓炳,等. 粉煤灰−矿渣基固结粉胶凝材料开发与配比优化研究[J]. 矿业研究与开发,2019,39(5):88−94.

    WANG Yongding,WEN Zhenjiang,YANG Xiaobing,et al. Study on development and ratio optimization of cementing material of fly ash-slag based consolidated powder[J]. Mining Research and Development,2019,39(5):88−94.

    [63] 梁效,王勇海,牛芳银,等. 用高硅型钒尾矿制备充填胶凝材料及增强其化学活性的机理分析[J/OL]. 矿产综合利用,2024:1−10[2024−12−25]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=KCZL20241224002&dbname=CJFD&dbcode=CJFQ.

    LIANG Xiao,WANG Yonghai,NIU Fangyin,et al. Preparation of filling cementing materials from high silicon vanadium tailings and mechanism analysis of its enhanced chemical activity[J/OL]. Multipurpose Utilization of Mineral Resources,2024:1−10. [2024−12−25]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=KCZL20241224002&dbname=CJFD&dbcode=CJFQ.

    [64] 冯圣杰,李胜辉,韩汉,等. 钢渣基固结粉充填胶凝材料开发与应用研究[J]. 矿业研究与开发,2021,41(5):44−48.

    FENG Shengjie,LI Shenghui,HAN Han,et al. Research on development and application of steel slag-based consolidation powder filling cementitious material[J]. Mining Research and Development,2021,41(5):44−48.

    [65] 李胜辉,郭斌,温震江,等. 矿渣基胶凝材料开发和充填体强度与流变特性研究[J]. 矿业研究与开发,2021,41(10):40−43.

    LI Shenghui,GUO Bin,WEN Zhenjiang,et al. Development of slag-based cementitious materials and study on strength and rheological properties of backfill[J]. Mining Research and Development,2021,41(10):40−43.

    [66]

    CEN X Q,ZHANG Y Q,ZHANG H E. Investigation on the mechanical and microstructure properties of masonry cement-red mud-carbide slag-based paste[J]. Case Studies in Construction Materials,2024,21:e03979. doi: 10.1016/j.cscm.2024.e03979

    [67]

    CHEN Q S,SUN S Y,WANG Y M,et al. In-situ remediation of phosphogypsum in a cement-free pathway:Utilization of ground granulated blast furnace slag and NaOH pretreatment[J]. Chemosphere,2023,313:137412. doi: 10.1016/j.chemosphere.2022.137412

    [68] 刘树龙,王发刚,李公成,等. 基于响应面法的复合充填料浆配比优化及微观结构影响机制[J]. 复合材料学报,2021,38(8):2724−2736.

    LIU Shulong,WANG Fagang,LI Gongcheng,et al. Optimization of mixture ratio and microstructure influence mechanism of composite filling slurry based on response surface method[J]. Acta Materiae Compositae Sinica,2021,38(8):2724−2736.

    [69] 张大伟. 新型充填胶结料的胶凝性能研究[J]. 中国水泥,2017(12):86−89. doi: 10.3969/j.issn.1671-8321.2017.12.023

    ZHANG Dawei. Study on cementing properties of new filling cementitious material[J]. China Cement,2017(12):86−89. doi: 10.3969/j.issn.1671-8321.2017.12.023

    [70] 巴蕾,周尧,卓庆奉,等. 混合骨料粒径级配对充填体早期强度的影响[J]. 现代矿业,2023,39(11):196−199,203. doi: 10.3969/j.issn.1674-6082.2023.11.048

    BA Lei,ZHOU Yao,ZHUO Qingfeng,et al. Influence of mixed aggregate particle size gradation on early strength of backfill[J]. Modern Mining,2023,39(11):196−199,203. doi: 10.3969/j.issn.1674-6082.2023.11.048

    [71] 庞超明,唐志远,杨志远,等. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报,2023,37(9):80−90.

    PANG Chaoming,TANG Zhiyuan,YANG Zhiyuan,et al. Early strengthening agent in cementitious composites and its function mechanism:A review[J]. Materials Reports,2023,37(9):80−90.

    [72] 施现院,于光耀,毕智强,等. 早强剂对充填膏体宏观力学性能和微观结构的影响[J]. 矿业研究与开发,2020,40(3):135−139.

    SHI Xianyuan,YU Guangyao,BI Zhiqiang,et al. The effect of early strength agent on the macro mechanical properties and microstructure of filling paste[J]. Mining Research and Development,2020,40(3):135−139.

    [73] 郑娟荣,赵雪飞,谷迪. 早强剂对尾砂胶结膏体充填材料早期强度的影响[J]. 有色金属(矿山部分),2016,68(1):77−80. doi: 10.3969/j.issn.1671-4172.2016.01.016

    ZHENG Juanrong,ZHAO Xuefei,GU Di. Influence of accelerators on early-stage strengths of the tailings cemented paste backfill[J]. Nonferrous Metals (Mining Section),2016,68(1):77−80. doi: 10.3969/j.issn.1671-4172.2016.01.016

    [74] 周艳华,张伟伟. 水泥协同多固废固化铬铁渣充填材料的制备及性能研究[J]. 矿业研究与开发,2023,43(10):27−33.

    ZHOU Yanhua,ZHANG Weiwei. Study on preparation and properties of cement synergistic multi-solid waste solidified ferrochrome slag filling material[J]. Mining Research and Development,2023,43(10):27−33.

    [75] 陈鑫政,郭利杰,史采星,等. 深锥浓密膏体充填工艺在国内某铜矿的应用与改进[J]. 中国矿业,2022,31(5):135−141. doi: 10.12075/j.issn.1004-4051.2022.05.023

    CHEN Xinzheng,GUO Lijie,SHI Caixing,et al. Application and improvement of paste filling process with deep cone thickener in a domestic copper mine[J]. China Mining Magazine,2022,31(5):135−141. doi: 10.12075/j.issn.1004-4051.2022.05.023

    [76] 谢经鹏,杨柳华,郑攻关,等. 充填料浆泌水特性及其细观结构演变[J]. 绿色矿冶,2024,40(4):1−7.

    XIE Jingpeng,YANG Liuhua,ZHENG Gongguan,et al. Bleeding characteristics and the evolution of microstructure of tailings backfill slurry[J]. Sustainable Mining and Metallurgy,2024,40(4):1−7.

    [77] 普曦峰. 生活垃圾焚烧炉渣资源化利用技术发展现状研究[J]. 低碳世界,2020,10(3):16−17. doi: 10.3969/j.issn.2095-2066.2020.03.010

    PU Xifeng. Research on the development status of domestic waste incineration slag resource utilization technology[J]. Low Carbon World,2020,10(3):16−17. doi: 10.3969/j.issn.2095-2066.2020.03.010

    [78] 邓寅生,欧睿,李向峰,等. 煤矸石井下填充后降解残渣对地下水的影响[J]. 矿业研究与开发,2009,29(6):85−87.

    DENG Yinsheng,OU Rui,LI Xiangfeng,et al. Study on effect of residue produced by microbial degradation of coal Gangu filled into underground mine on groundwater[J]. Mining Research and Development,2009,29(6):85−87.

    [79] 袁森森. 赤泥基胶凝材料设计制备及重金属离子固化研究[D]. 武汉:武汉理工大学,2019.

    YUAN Sensen. Design of red mud-based cementitious material and heavy metal ions sodification research[D]. Wuhan:Wuhan University of Technology,2019.

    [80]

    LIU Y K,MOLINARI S,DALCONI M C,et al. Mechanistic insights into Pb and sulfates retention in ordinary Portland cement and aluminous cement:Assessing the contributions from binders and solid waste[J]. Journal of Hazardous Materials,2023,458:131849. doi: 10.1016/j.jhazmat.2023.131849

    [81]

    WANG D L,NA Q,LIU Y K,et al. Hydration process and fluoride solidification mechanism of multi-source solid waste-based phosphogypsum cemented paste backfill under CaO modification[J]. Cement and Concrete Composites,2024,154:105804. doi: 10.1016/j.cemconcomp.2024.105804

    [82] 高巍. 冶金渣基胶结剂固化含砷尾矿制备矿山充填料及其浸出特性[D]. 北京:北京科技大学,2024.

    GAO Wei. immobilization of arsenic-containing tailings with metallurgical slag-based binders for the preparation of mine backfill material and its leaching characteristics[D]. Beijing:University of Science and Technology Beijing,2024.

    [83]

    CHEN Q S,TAO Y B,ZHANG Q L,et al. The rheological,mechanical and heavy metal leaching properties of cemented paste backfill under the influence of anionic polyacrylamide[J]. Chemosphere,2022,286:131630. doi: 10.1016/j.chemosphere.2021.131630

    [84]

    LIU Y K,DALCONI M C,BELLOTTO M P,et al. Pb-induced retardation of early hydration of Portland cement:Insights from in situ XRD and implications for substitution with industrial by-products[J]. Cement and Concrete Research,2025,193:107867. doi: 10.1016/j.cemconres.2025.107867

    [85]

    WANG L,YANG H Q,DONG Y,et al. Environmental evaluation,hydration,pore structure,volume deformation and abrasion resistance of low heat Portland (LHP) cement-based materials[J]. Journal of Cleaner Production,2018,203:540−558. doi: 10.1016/j.jclepro.2018.08.281

    [86]

    TREMIÑO R M,REAL-HERRAIZ T,LETELIER V,et al. Four-years influence of waste brick powder addition in the pore structure and several durability-related parameters of cement-based mortars[J]. Construction and Building Materials,2021,306:124839. doi: 10.1016/j.conbuildmat.2021.124839

    [87]

    WANG D L,ZHANG Q L,LIU B,et al. Enhanced immobilization of fluoride in phosphogypsum-based cement-free paste backfill modified by polyaluminum chloride and its mechanism[J]. Construction and Building Materials,2025,458:139622. doi: 10.1016/j.conbuildmat.2024.139622

    [88]

    LIU Y K,CHEN Q S,WANG Y M,et al. In situ remediation of phosphogypsum with water-washing pre-treatment using cemented paste backfill:Rheology behavior and damage evolution[J]. Materials,2021,14(22):6993. doi: 10.3390/ma14226993

    [89]

    ZHANG B,LI K Q,CHEN D P,et al. Exploration of the use of superfine tailings and ternary solid waste-based binder to prepare environmentally friendly backfilling materials:Hydration mechanisms and machine learning modeling[J]. Journal of Environmental Chemical Engineering,2025,13(2):115662. doi: 10.1016/j.jece.2025.115662

    [90] 蒋复量,王小丽,黎明,等. 不同掺合料及掺量下铀尾矿水泥固化体力学性能及氡析出率测量实验研究[J]. 金属矿山,2019(4):41−47.

    JIANG Fuliang,WANG Xiaoli,LI Ming,et al. Experimental study on mechanical properties and radon exhalation rate of uranium tailings cement solidified body with different additive and dosage[J]. Metal Mine,2019(4):41−47.

    [91] 贾思学,王雷. 光纤传感技术在矿山安全监测中的应用探究[J]. 中国设备工程,2024(11):173−175. doi: 10.3969/j.issn.1671-0711.2024.11.075

    JIA Sixue,WANG Lei. Application of optical fiber sensing technology in mine safety monitoring[J]. China Plant Engineering,2024(11):173−175. doi: 10.3969/j.issn.1671-0711.2024.11.075

    [92] 刘畅. 多场耦合下尾砂固结排放对重金属迁移的阻滞效应研究[D]. 北京:中国矿业大学(北京),2018.

    LIU Chang. Study on solidified effect of heavy metal in consolidated and cemented tailings emission disposal with multifield coupling[D]. Beijing:China University of Mining & Technology−Beijing,2018.

    [93]

    LIU Y K,WANG Y M,CHEN Q S. Using cemented paste backfill to tackle the phosphogypsum stockpile in China:A down-to-earth technology with new vitalities in pollutant retention and CO2 abatement[J]. International Journal of Minerals,Metallurgy and Materials,2024,31(7):1480−1499.

图(11)  /  表(2)
计量
  • 文章访问数:  134
  • HTML全文浏览量:  21
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-04-13
  • 网络出版日期:  2025-06-05
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回