Research progress and innovative pathways for the large-scaled green and low-carbon utilization of coal-based solid wastes
-
摘要:
煤炭的开采与加工为我国提供了可靠的能源保障和关键的化工原料,有力地推动了工业的快速发展和社会的进步。然而,这一过程也产生了巨量的煤基固废。煤基固废不仅占用了大量土地资源,还对环境造成了不同程度的污染,尤其是在长期堆存过程中,可能释放有害气体、重金属及其他有毒物质,威胁水源、空气和土壤安全。如何高效且规模化地利用煤基固废,成为当前实现资源循环利用、减少环境污染的关键技术挑战。通过分析煤基固废的产生、分类、特性及其环境影响,对现有煤基固废进行了重新归类,系统总结了其在矿山充填、建筑材料及生态修复等领域的成熟规模化利用模式,提出了煤基固废绿色低碳利用的创新路径。研究表明:① 煤基固废可归类为变性和原性煤基固废两大类,其中变性煤基固废具有开发胶凝材料和固碳功能材料的潜力,而原性煤基固废则具备天然砂石骨料和土壤材料的特性;② 当前,煤基固废的主要规模化利用模式包括矿山充填(如胶凝材料、膏体充填和注浆充填)、建筑材料(如水泥辅料、筑路材料和预制件)、生态修复(如坍陷区回填、荒地复垦和土壤改良)和资源提取利用(炭质组分、铝、硫和稀有元素);③ 提出了煤基固废分级分质全组分利用的新技术,通过提取高价值组分并将剩余组分用于采空区充填,实现其最大化资源利用;④ 探讨了煤基固废改性协同处置高盐废水、改性充填协同储库构筑及功能性储库协同封存危险固废的创新技术。上述研究旨在提高大宗煤基固废的资源利用效率,推动煤炭产业绿色转型,为煤炭资源的可持续发展提供新路径。
Abstract:Coal mining and processing have provided China with reliable energy security and essential chemical raw materials, significantly driving industrial development and social progress. However, this process has also resulted in the production of large amounts of coal-based solid waste. These wastes not only occupy vast land resources but also cause varying degrees of environmental pollution, especially during long-term storage, when they may release harmful gases, heavy metals, and other toxic substances, posing a threat to water, air, and soil safety. Therefore, efficiently and large-scale utilization of coal-based solid waste has become a key technical challenge in achieving resource recycling and reducing environmental pollution. Based on an analysis of the generation, classification, characteristics, and environmental impacts of coal-based solid waste, this paper reclassifies existing coal-based solid waste and systematically summarizes its mature large-scale utilization models in areas such as mine backfilling, construction materials, and ecological restoration. It also proposes innovative pathways for the green and low-carbon utilization of coal-based solid waste. The study shows that: ① Coal-based solid waste can be classified into two categories: denatured and original coal-based solid waste, with denatured coal-based solid waste having the potential to develop cementing materials and carbon sequestration functions, while original coal-based solid waste possesses the characteristics of natural aggregates and soil materials; ② Currently, the main large-scale utilization models of coal-based solid waste include mine backfilling (such as cementing materials, paste backfilling, and grout backfilling), construction materials (such as cement supplementary materials, road materials, and precast components), ecological restoration (such as filling of subsidence areas, reclamation of wastelands, and soil improvement), and resource extraction and utilization (carbonaceous components, aluminium, sulfur and rare elements); ③ A new technology for graded, quality-specific, and full-component utilization of coal-based solid waste is proposed, which extracts high-value components and uses the remaining components for backfilling of mined-out areas, maximizing resource utilization; ④ Innovative technologies for modifying and co-disposing of high-salinity wastewater, modifying backfill for co-constructing storage facilities, and co-sequestering hazardous solid waste in functional storage are discussed. This research aims to improve the resource utilization efficiency of bulk coal-based solid waste, promote the green transformation of the coal industry, and provide new pathways for the sustainable development of coal resources.
-
0. 引 言
2021年中国CO2排放量达到119亿t,其中燃煤CO2排放量超57亿t,约占总排放量的48.4%[1]。燃煤电厂排放的烟气中含有10%~20%的CO2,是主要的碳排放源[2]。碳捕集利用与封存技术(CCUS)可有效减排烟气中的CO2,可为我国实现双碳目标作出重要贡献。目前碳捕集方法多样,如化学吸收、固体吸脱附、膜吸收分离等[3-4]。微藻生长周期短、适应能力强、分布广,固碳效率远超其他陆地植物。微藻固碳能够同时对CO2进行捕集与利用,实现碳减排并生产高附加值产品[5],极具发展潜力。
微藻细胞通过色素捕获光能进行光合作用,固定CO2生成有机物以供细胞自身生长利用[6]。目前,微藻的规模化培养常使用开放式跑道池反应器,其往往需要巨大的占地面积以使微藻获得充分光照[7]。而封闭式光生物反应器占地面积小,可为微藻提供稳定的生长环境,其微藻固碳效率显著高于开放式反应器[8]。KRUJATZ等[9]和COLLESELLI等[10]利用光学仿真软件量化反应器内光分布,发现外置光源仅有部分光能进入反应器内,且光照强度在藻液内快速衰减,使得远离光源区域形成暗区,即该区域内的微藻受光严重不足。因此,光传输是光生物反应器内微藻生长固碳的重要限制因素。通过增强光能输入可提高反应器内远离光源区域的光强,但过高的光能输入会使反应器内近光源区域光强过高,抑制微藻生长[11]。此外,改变反应器形状,扩大受光表面积、缩短光在藻液中的传输距离,可使反应器内更多区域的微藻接收到充足的光进行生长代谢[12-14]。但改变反应器形状会加大微藻培养工艺难度,且整体固碳效率提升有限。因此,在反应器内设置导光结构调节光分布,使更多区域的微藻接收到适宜生长固碳的光照非常重要。
导光管可灵活调节反应器内光分布,而光纤可集中传输光线且光损耗低,因此研究者们开展了大量相关研究。SUN等[15]在反应器内加入空心导管,使远光区的藻细胞受到更多光照,发现微藻生物质产量可提高23%。RAHA等[16]和AHANGAR等[17]在反应器内部同时增添LED灯条与镜面,进行光的发射与反射,微藻生物量分别提高30%、91%;但在培养过程中LED灯条发热严重,藻液温度升高,导致微藻固碳效率降低。ALLIL等[18]利用热绝缘体的光纤将太阳光集中导入藻液深处,减少反应器内部热量同时使微藻生物量提升了20%。为进一步增加光纤发光面积,WONDRACZEK等[19]将光纤用砂纸轻度打磨后实现侧发光,反应器内光照区域可占总体积的50%,微藻生物量提高了93%;但处理后的光纤表面粗糙度增加,易被微藻附着,难以清洁,无法重复使用。因此,设计一种光利用率高、能耗小的封闭式光生物反应器对微藻高效固碳有重要意义。
本文选择由光纤将光集中传输至内置导光管向藻液发射,并通过设计阶梯型光纤结构、添加内置反光件优化反应器内的光分布。为探究内置光纤/导光管的发光效果,采用LightTools软件对光纤/导光管发光情况进行仿真分析和优化,通过微藻培养实验验证了所设计的内置光纤/导光管反应器内的微藻固碳性能提升,为微藻固碳技术的发展提供理论依据与指导建议。
1. 仿真与实验
1.1 微藻光生物反应器结构与实验设计
本研究采用购买自中国科学院武汉水生生物研究所的淡水普通小球藻Chlorella vulgaris FACHB-31,使用Modified BG 11培养基[20]培养。
内置光纤/导光管的封闭式微藻光生物反应器整体结构如图1所示,主要由塑料光纤、有机玻璃导光管与有机玻璃柱形培养腔室组成。柱形微藻培养腔室工作容积2.5 L,底部有气孔大小一致、分布均匀的气管。导光管直径20 mm,完全浸入藻液的发光段长度为140 mm,在保证良好透光性的同时防止藻液与光纤直接接触。管底放置表面贴有高光反射率镀铝反光膜的反光件(如图1所示,完全反射的镜面底、半球型反射件、底∶高为1∶1的锥形反光件、底∶高为1∶2的锥形反光件、底∶高为1∶4的锥形反光件)。光纤组由7根直径为20 mm的光纤组成,整体长度为800 mm。收集光的输入端面平整,输出光的末端为:平面结构光纤(光纤末端处于同平面,如图1a所示)和阶梯型光纤(光纤中心的细光纤末端延长60 mm形成直径12 mm圆的第二层发射面,如图1f所示)。
为对比评估导光方式对光生物反应器内光分布及微藻培养性能的影响,设计了插入不含光纤的导光管且仅在顶部给光的对照组(Light guide photobioreactor,LG-PBR)、插入平底光纤/导光管的光生物反应器(Flat-bottom fiber photobioreactor,FF-PBR)和插入末端为两级阶梯结构光纤/导光管的光生物反应器(Stepped fiber photobioreactor,SF-PBR),如图2所示。在3种反应器内分别培养小球藻FACHB-31,培养条件为:微藻初始接种浓度0.1 g/L,温度(25±1)℃,通气量375 mL/L(通气比0.15 vvm,5% CO2),光能输入为1.6、3.3或5.0 W/L(通过调节LED灯功率控制单位体积藻液内光输入)。
1.2 光纤/导光管仿真
采用LightTools软件对单根内部含不同结构光纤与反光件的导光管进行光线追踪。根据实际光生物反应器结构,设定光纤为289根直径为1 mm的细光纤组合而成。外部有抛物线型反光杯,高60 mm,输入口直径20 mm,输出口直径为68 mm。材质设定:细光纤为塑料光纤,数值孔径NA为0.5,芯层折射率1.49、包层折射率1.40;导光管为有机玻璃,折射率1.49;反光杯为铝,内表面全反射。根据实际情况,设朗伯型的圆柱形表面光源,波长为复合型白光,追踪的总光线数为五千万,接收面在导光管外侧,长160 mm、宽120 mm,
8991 个网格,峰值误差3.8%。1.3 光纤/导光管侧发光效果实测
为确定不同结构的光纤与反光件组合后导光管的发光效果,同时验证仿真结果的可靠性,利用辐照计(SY-HYX,世亚科技,中国)测量导光管发光段侧面光强。以光纤末端为起始点1,之后每隔10 mm设立一点,一共14个测量点,测量过程中每个点重复测3次,取3次平均值作为该点光强。
1.4 微藻生长固碳性能评价
微藻生物量采用称量法[21],从微藻光生物反应器内收集藻液,离心后放置在预先称量好重量的称量瓶中80 ℃下干燥24 h后测定总重量,通过以下式计算获得微藻生物量:
$$ C = \frac{{{{{W}}_{\text{2}}} - {W_1}}}{V} $$ (1) 式中:C为微藻生物量,g/L;V为抽取藻液体积,L;W1、W2为称量瓶净质量和称量瓶和干燥后的微藻总质量,g。
微藻平均固碳率为单位时间内单位体积微藻悬浮液固定的CO2量,计算公式[22]如下:
$$ {{{R}}_{{{{\mathrm{C}}}}{{{{\mathrm{O}}}}_{{2}}}}}{{ = }}\frac{{{{\mathrm{C}}_{{\mathrm{TOC,2}}}}{{ - C_{{\mathrm{TOC,1}}}}}}}{{{{{t}}_2}{{ - }}{{{t}}_1}}}\left( {\frac{{{M_{{\mathrm{C}}{{\mathrm{O}}_2}}}}}{{{M_{\mathrm{C}}}}}} \right) $$ (2) 式中:$ {{{R}}_{{\text{C}}{{\text{O}}_{\text{2}}}}} $为平均固碳率,mg/(L·d);${{{{C}}}}_{{{{\mathrm{TOC}}}},{{2}}} $、${{{{C}}}}_{{{{\mathrm{TOC}}}},{{1}}} $为在t2、t1时总有机碳(TOC)质量浓度,mg/L,由总有机碳/总氮分析仪(Multi N/C 2100 分析仪,德国)测量得出;$ {M_{{\mathrm{C}}{{\mathrm{O}}_2}}} $为CO2相对分子质量;$ {M_{\mathrm{C}}} $为碳相对分子质量。
通过LICHTENTHALER[23]提出的色素测定方法测定微藻色素含量。将离心后的藻泥加入95%酒精,避光浸泡24 h萃取微藻内色素,通过紫外可见分光光度计(Persee TU-1901,中国)在470、648.6、664.1 nm三种波长下检测溶液中叶绿素a、叶绿素b、总类胡萝卜素的吸光度,代入公式可计算出藻细胞中3种色素的含量。计算方程如下所示:
$$ {{{X}}_{{{\mathrm{a}}}}}{{ = }}13.36{{{A}}_{664.1}}{{ - }}5.19{{{A}}_{648.6}} $$ (3) $$ {{{X}}_{{{\mathrm{b}}}}}{{ = }}27.43{{{A}}_{648.6}}{{ - }}8.12{{{A}}_{66{{4}}{{.1}}}} $$ (4) $$ {{X}}_{({\mathrm{{x}+c}})}=\left(1\;000{A}_{470}-2.13{X}_{{\mathrm{a}}}-97.64{X}_{{\mathrm{b}}}\right)/209 $$ (5) 式中:Xa、Xb、X(x+c)为叶绿素a、叶绿素b与总类胡萝卜素含量,μg/mL。
微藻悬浮液中色素质量分数α可用以下公式计算:
$$ \alpha {{ = }}\frac{{0.001\left( {{{{X}}_{{{\mathrm{a}}}}} + {{{X}}_{\mathrm{b}}} + {{{X}}_{({\mathrm{x + c}})}}} \right)}}{{{C}}} \times 100\% $$ (6) 以COLLOS等[24]提出的紫外光分光光度法测量培养基中剩余的${\mathrm{NO}}_3^- $质量浓度,将${\mathrm{NO}}_3^- $质量浓度与在220、275 nm波长下的光密度拟合,得到标准曲线如下。
$$ {{N = 25}}\left[ {{{28}}{{.279}}\left( {{{{A}}_{{{220}}}}{{ - 2}}{{{A}}_{{{275}}}}} \right){{ - 2}}{{.523\;3}}} \right] $$ (7) 式中,N为培养基上清液中剩余的${\mathrm{NO}}_3^- $质量浓度。
所有参数均重复测量了至少2次,结果以均值±标准偏差的形式呈现。
2. 实验结果与分析
2.1 光纤/导光管的光线仿真结果
由图3可知,光纤将光线从光源处传递至末端,在导光管发光段20 mm处达到峰值,之后侧面光强迅速减弱,其原因是光纤末端发射的光线具有一定的发散角,光在传播过程中不断向外扩散[25]。在0~20 mm内,光纤内远离管壁的细光纤发射的光线抵达导光管壁面时,比靠近管壁的光纤的射出光线传播路径更长,距光线发射端更远,导光管侧面的光线密度随距离增加而上升,侧面光强在20 mm附近达到最大值;在20~140 mm区间随着光线继续传播,导光管侧面的光线密度逐渐下降,光强开始减小。仅插入平面结构光纤的导光管侧面发光范围有限,在导光管底部添加反光件可使发射角小的光线抵达导光管管底后,经反光件表面反射再射出导光管,从而加大了导光管底部的发光区域并提升了侧发光平均光强。对比图4a—图4e可以发现,在导光管底部的锥形反光件比半球型反光件表面反射效果好,且随着圆锥高度增加,导光管底部光强增强区域变宽。当圆锥底∶高为1∶4时,圆锥顶角尖锐,光强增强范围最大,但圆锥侧表面经反射射出的光线与管壁夹角小,使得导光管侧面光强增幅不明显。综合考虑光纤/导光管的侧发光区域与光强,最终选择底∶高为1∶2的圆锥形反光件作为导光管底部的反光件。
添加反光件后导光管底部光强在一定程度上得到提升,但因光线在近光源区域迅速向外射出,在60~140 mm区间内导光管侧发光光强低于40 μmol/(m2·s),需进一步调节光纤结构以拓宽导光管侧面高光强区域(图3)。改变光纤末端结构,延长光纤中心的细光纤,呈现阶梯形状,可使传输的光被分为两部分从两级阶梯面向外发出(图4f)。由于第一级发光表面面积缩小,仿真结果显示在0~70 mm范围内阶梯型光纤光强相比平面型强度减弱;但在70~140 mm光强骤减范围内第二级阶梯表面发射光使导光管下端发光效果提升,进而使导光管侧发光光强分布更加均匀。
由图5可以发现,使用不同形状光纤与锥形反光件的光纤/导光管侧面实际发光光强与仿真结果具有良好匹配性。导光管侧面发光光强与仿真结果变化趋势一致,但具体数值存在一定差异,该差异主要源于实际光纤光源与模型设计存在不同[9],实际光纤比模型内均匀排布的光纤更加紧密,细光纤之间内空隙更少,传输的光线损耗更少,导光管侧面的实际光强更高。对比分析不同结构的光纤/导光管可以发现,阶梯型光纤在0~70 mm比平面型光纤的导光管侧发光光强低,在第一级阶梯面光强出现峰值后开始下降,经第二级阶梯面补光后光照强度回升,使得导光管整体发光效果更均匀。
2.2 不同反应器的微藻生长固碳性能
在输入光能相同情况条件下,FF-PBR和SF-PBR中实际平均光强分别为57 μmol/(m2·s)和64 μmol/(m2·s),较对照组平均光强(18 μmol/(m2·s))分别提高了2.2倍和2.6倍,证实了所设计的阶梯型结构的光纤具有良好导光效果。光纤末端从平面改为阶梯型,使得导光管整体侧面光强标准差从45.7 μmol/(m2·s)降低为27.3 μmol/(m2·s),导光管侧面发光更加均匀。
在微藻培养过程中,藻液受气升力作用流动,而导光管改变反应器内流场,促进藻液循环速率[26]。由图6a所示,在培养初期微藻浓度不高,光在反应器内传输良好,藻细胞可以获得充足光能,因此微藻迅速适应三种反应器内的培养条件,进入指数生长期,呈现相似的生长速率。但随着培养时间延长,三种反应器内微藻生物量差距持续增加,具有阶梯结构光纤的SF-PBR在第7天达到最高生物量(1.9 g/L),比FF-PBR(1.3 g/L)增长46.2%,比仅顶部给光的对照组LG-PBR(0.9 g/L)显著增加111.1%。三种反应器最终产出不同生物量的微藻的主要原因可能是内部光分布不同。对照组为顶部受光,一部分光直接射入藻液面,一部分光会通过导光管传输至到导光管底部,而导光管侧面发出的光光强较低。随着反应器内微藻生物量提升,此时光在藻液中衰减严重,光穿透深度减少,反应器内有效光区域缩减,微藻的生长受限[15]。而FF-PBR与SF-PBR通过光纤将光线集中射入反应器,反应器内部藻液受光表面积增加,有效光区域占比提升。FF-PBR中光纤以平面结构插入导光管,靠近导光管底部、远离发光端面的区域侧发光强度低,随着微藻生物量的提升,光强衰减变快,对反应器深处藻细胞补光促进生长的效果变小。SF-PBR的导光管侧表面光强相对均匀,侧发光效果远远超过其它两种结构,反应器内有效光区域更大。伴随底部曝气,微藻在藻液内循环流动,光量子与叶绿体碰撞时间增加,光利用率增加,CO2固定效率提升[27]。如图6a和6b,微藻生物量与生长速率都有明显的提升,反应器的固碳效率与微藻生长速率正相关,所以SF-PBR平均固碳效率显著高于其它两种反应器,达到500.3 mg/(L·d)。如图6c所示,SF-PBR中藻细胞色素的质量百分比略低于其他两种反应器,可能是由于在培养初期,LG-PBR、FF-PBR中光传输受限,藻细胞产生更多的叶绿素以捕获更多光。随着生物量增加,LG-PBR、FF-PBR光衰现象更加严重,反应器内有效光区域总体积接近,总色素占比逐渐接近[28]。微藻迅速生长会消耗更多的营养物质,因此在SF-PBR的培养基中${\mathrm{NO}}_3^- $消耗更快(图6d)。
2.3 不同光能输入对微藻培养固碳性能的影响
为促进微藻在SF-PBR中高密度生长,提升该反应器的固碳能力,探索了不同输入光能条件下反应器内微藻的生长情况,以获得适宜微藻生长的光照强度。当输入光由1.7 W/L提升至5.0 W/L时,导光管第一阶梯面从52 μmol/(m2·s)增加到165 μmol/(m2·s),平均光强从32 μmol/(m2·s)增加到100 μmol/(m2·s),高于100 μmol/(m2·s)的区域占57.1%(图5b)。输入光能增加可提高光纤/导光管侧发光光强且不改变光强变化趋势,但管侧不同位置发光光强增加幅度不同,峰值光强增加幅度更大,光强方差从16.4 μmol/(m2·s)增至41.4 μmol/(m2·s),导光管整体发光均匀性略有下降。
如图7a和7b所示,微藻生物量与平均固碳速率和光强正向相关。伴随着光强增长,微藻生长速率提升,进而缩短生长周期[22]。输入光能为5.0 W/L时,光穿透深度增加,生物质光化学量子产率与碳循环加快,使得固碳效率显著上升[29];随着培养时间延长,生长速率变缓,培养周期结束时微藻生物量达到最大(2.8 g/L),平均固碳速率达608.3 mg/(L·d),比3.3 W/L条件下的500.3 mg/(L·d)和1.7 W/L条件下的273.4 mg/(L·d)平均固碳速率分别提升了21.6%和122.5%。SF-PBR反应器中微藻生物质量比其他研究中的接受外部光的S型光生物反应器提升196%[13],比内置LED的光生物反应器提升9.1%[17]。由图7c可以发现,藻细胞内总色素质量分数随着输入光能增大略微下降,这是因为反应器内光强高于100 μmol/(m2·s)的区域扩大,微藻可以获得较为充足的光照进行光合作用,所以细胞减少产生额外的叶绿素而增加合成碳固定酶[28]。同时,在较高输入光能条件下,微藻生长速率加快,培养基中的营养物质消耗速率更快。如图7d所示,培养基中NO3−含量快速下降。输入光能为3.3 W/L和5.0 W/L条件下培养6 d后,培养基内的$ {\mathrm{NO}}_3^- $剩余量极少,造成培养基内氮缺乏,进而微藻会改变碳转化方向,同时分解自身叶绿素以维持生长[20]。因此,输入光能为3.3 W/L和5.0 W/L条件下培养后期,微藻中色素质量分数显著下降(图7c)。
3. 结 论
1)利用LightTools模拟光纤/导光管的侧面发光性能,获得的光学仿真结果与实际测量数据具有良好匹配性。导光管内阶梯型光纤与锥形反光件相互作用,使输入光分别从光纤的不同阶梯面发出,再由锥形反光件反射,光纤/导光管的整体发光范围扩宽、侧面平均光强提升,进而使微藻光生物反应器内光分布更加均匀。
2)在3种光纤/导光管反应器中培养8 d后,SF-PBR中的微藻生物量可达到1.9 g/L,比LG-PBR高111.1%,FF-PBR高46.2%,验证了阶梯型光纤/导光管可优化反应器内的光传输,为微藻提供更适宜的光照环境,促进微藻固碳过程,平均固碳效率可达500.3 mg/(L· d)。
3)当输入光能从1.7 W/L提升至5.0 W/L时,SF-PBR内导光管侧面平均光强由32 μmol/(m2·s)增加到100 μmol/(m2·s),培养的微藻生物量达2.8 g/L,培养期间固碳速率高达608.3 mg/(L· d),比对照组LG-PBR固碳速率提高1.9倍。
-
图 3 煤基固废地表堆存的环境影响[48]
Figure 3. Impact of multi-source coal-based solid waste stockpiling on surface environment
图 10 煤基固废改性充填协同储库构筑[104]
Figure 10. Modified coal-based solid wastes backfilling collaborative storage construction
表 1 煤矸石分类方法
Table 1 Classification methods of coal gangue
按全硫含量分 按灰分分类 按灰成分分类 按铝硅比分级 类别名称 全硫含量(Cts)/% 类别名称 灰分A/% 类别名称 钙镁质量分数 类别名称 铝硅比 低硫煤矸石 Cts≤1.0 低灰煤矸石 A≤70.0 钙镁型煤矸石 w(CaO)+w(MgO)>10 低级铝硅比煤矸石 w(Al2O3)/w(SiO2)≤0.30 中硫煤矸石 1.0<Cts≤3.0 中灰煤矸石 70.0<A≤85.0 铝硅型煤矸石 w(CaO)+w(MgO)≤10 中级铝硅比煤矸石 0.30<w(Al2O3)/w(SiO2)≤0.50 中高硫煤矸石 3.0<Cts≤6.0 高灰煤矸石 A>85.0 高级铝硅比煤矸石 w(Al2O3)/w(SiO2)>0.50 高硫煤矸石 Cts>6.0 表 2 煤泥分类方法
Table 2 Classification of coal slime
按照来源分类 按粒径大小分类 按灰分分类 类别名称 粒径d /mm 类别名称 灰分A/% 浮选尾煤 粗煤泥 d>0.5 低灰煤泥 20<A≤32 煤水混合物煤泥 细煤泥 0.074<d<0.5 中灰煤泥 32<A≤55 矿井排水夹带的煤泥 微细粒煤泥 d<0.074 高灰煤泥 A>55 表 3 粉煤灰分类方法
Table 3 Classification of fly ash
按炉型分类 按燃煤品种分类 按钙含量分类 按粒径分类 按pH值分类 类别名称 类别名称 类别名称 CaO质量分数/% 类别名称 最大粒径/mm 类别名称 pH值范围 煤粉炉粉煤灰(PC灰) 无烟煤粉煤灰 高钙粉煤灰(C类) > 10 Ⅰ级粉煤灰 0.08 酸性灰 1.2 ~ 7 循环流化床粉煤灰(CFB灰) 烟煤粉煤灰 低钙粉煤灰(F类) <10 Ⅱ级粉煤灰 0.15 弱碱性灰 8 ~ 9 次烟煤粉煤灰 Ⅲ级粉煤灰 0.30 强碱性灰 11 ~ 13 褐煤粉煤灰 Ⅳ级粉煤灰 0.60 表 4 煤气化渣分类方法
Table 4 Classification of coal gasification slag
按粒径/排出位置分类 按化学成分分类 按孔隙结构分类 按比表面积分类 按密度分类 类别名称 排出方式 类别名称 特点 类别名称 特点 类别名称 特点 类别名称 特点 煤气化
细渣由气化炉
底部排渣
锁斗排出硅质渣 SiO2含量高 多孔
结构渣孔隙丰富,
比表面
积高高比表
面积渣粒径小、
孔隙丰富,
吸附强高密度渣 结构致密,
力学强
度高煤气化
粗渣气化炉顶
部由粗煤
气携出铝质渣 Al2O3含量高 少孔
结构渣孔隙较少,
结构相
对致密低比表
面积渣比表面
积较小低密度渣 孔隙率高,
轻质成
分多钙质渣 CaO含量高,以化合物为主 铁质渣 Fe2O3含量高,游离态、结合态 碳质渣 粗渣残炭量5%~30%
细渣残炭量30%~50%表 5 原性与变性煤基固废对比
Table 5 Comparison of original and denatured coal-based solid wastes
类别 固废名称 来源 细分亚类 产生情况 主要特征 主要元素 主要组分 原性煤基固废 煤矸石 煤炭开采/分选 掘进矸石 常温分选 炭质、泥质和砂质页岩的
混合物,低发热值,含炭20%~30%Al、Si、Fe、
Ca、Li、Ga炭质、Al2O3、SiO2 开采矸石 分选矸石 煤泥 煤炭分选 炼焦煤浮选尾煤 水中分选 粒度细,黏性大,含水量高 动力煤浮选尾煤 变性煤基固废 粉煤灰 电厂/锅炉 未细分 >1 200 ℃,急冷 微球状,比表面积大,
高水化活性Al、Si、Fe、
Ca、Li、Ga玻璃相、莫来石/
刚玉、铁质微珠煤气化渣 气化炉 细渣 >1 200 ℃,急冷 气化炉顶部由粗煤气携出 C、Al、Si、Fe、Ca、Li、Ga 炭质一般>30%,玻
璃相组分10%~30%粗渣 气化炉底部排出的含水渣 炉底渣 电厂/锅炉 煤渣 1 300 ~1 500 ℃ 排出温度高,需粉碎并
冷却后再排放到灰库Al、Si、Fe、Ca Al2O3、SiO2、
FeO、CaO表 6 煤基固废规模化利用主要途径、评价指标和相关标准
Table 6 Main approaches, evaluation indicators and relevant standards for the large-scale utilization of coal-based solid wastes
途径 细类 适用固废 主要评价指标 部分标准依据 矿井充填领域 胶结充填 CG, CS, FA 有机质含量、水溶性盐总量、pH值、重金属、污染性有机物、
炭含量、泥质含量、含水率、粒径等GB 18599
NB/T 11432充填固废胶凝材料 CGS, FA, FS 注浆充填 CG, CS, FA, FS 建材制备领域 水泥辅材 FA, FS 细度、需水量比、烧失量、含水率、w(SO3)、w(f-CaO)、w(SiO2+Al2O3+ Fe2O3)、密度、安定性、强度活性指数、铵离子含量、压碎值、强度、粒径、泥质含量、放射性等 GB/T 1596
GBT 27974
DB 13/T 5527
JC/T 525
GB/T 29162
GB/T 29163制备混凝土 CG, FA 混凝土预制建材 CG, FA, CGS, FS 矸石路基材料 CG 压实标准、强度、粒径、压碎值 陶瓷砖、陶粒等 CG, FA, FS 铅和镉的溶出量、放射性核素含量等 GB/T 42350 生态修复领域 矿区回填 CS, FA, CGS 有机质含量、水溶性盐总量、pH值、重金属等 GB 18599 盐碱地改良 CG, CS, CGS, FS 风沙地改良 CG, CS, FA, CGS 肥料 CG, CS 灰分、有机质含量、污染物含量 GB/T 29163 资源提取领域 碳质资源 CG, CS, CGS 炭含量、基低位发热量、灰分、硫分、水分 GB/T 29162
GB/T 29163
GB/T 39201提取铝、镓等 CG, FA, FS Al2O3含量、铝硅比、附水 提取硫精矿 CG, CS 黄铁矿含量 提取高岭土 CG, CS 高岭土质量分数 提取锂盐 FA, FS Li含量 — 注:CG, CS, FA, CGS, FS分别指代煤矸石、煤泥、粉煤灰、煤气化渣、燃煤炉渣。 表 7 IHSW的水质特征
Table 7 Water quality characteristics of IHSW
项目 数值 溶解性总固体(TDS)/(mg·L−1) 8750.69 ρ(钠离子)/(mg·L−1) 3612.85 ρ(钙离子)/(mg·L−1) 462.95 ρ(硫酸根离子)/(mg·L−1) 4514.43 ρ(总氯)/(mg·L−1) 4456.12 pH值 8.86 -
[1] 王双明,刘浪,朱梦博,等. “双碳” 目标下煤炭绿色低碳发展新思路[J]. 煤炭学报,2024,49(1):152−171. WANG Shuangming,LIU Lang,ZHU Mengbo,et al. New way for green and low-carbon development of coal industry under the target of “daul-carbon”[J]. Journal of China Coal Society,2024,49(1):152−171.
[2] 葛世荣,刘淑琴,樊静丽,等. 低碳化现代煤基能源开发关键技术体系[J]. 煤炭学报,2024,49(7):2949−2972. GE Shirong,LIU Shuqin,FAN Jingli,et al. Key technologies for low-carbon modern coal-based energy[J]. Journal of China Coal Society,2024,49(7):2949−2972.
[3] 杨科,赵新元,何祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216. YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source coal-based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
[4] 张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181. ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
[5] YU X,YANG K,HE X,et al. Research progress on multi-source coal-based solid waste (MCSW) resource utilization and backfill mining basic theory:A systematic literature review[J]. Process Safety and Environmental Protection,2025,195:106670. doi: 10.1016/j.psep.2024.12.051
[6] ZHANG J Q,YANG K,HE X,et al. Research status of comprehensive utilization of coal-based solid waste (CSW) and key technologies of filling mining in China:A review[J]. Science of The Total Environment,2024,926:171855. doi: 10.1016/j.scitotenv.2024.171855
[7] 刘艳丽,李强,陈占飞,等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术,2022,50(11):251−257. LIU Yanli,LI Qiang,CHEN Zhanfei,et al. Research progress characteristics analysis and comprehensive utilization of coal gasification slag[J]. Coal Science and Technology,2022,50(11):251−257.
[8] 杨科,魏祯,赵新元,等. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报,2021,46(S2):925−935. YANG Ke,WEI Zhen,ZHAO Xinyuan,et al. Theory and technology of green filling of solid waste in underground mine at coal power base of Yellow River Basin[J]. Journal of China Coal Society,2021,46(S2):925−935.
[9] 吴锦文,邓小伟,焦飞硕,等. 煤基灰/渣的大宗固废资源化利用现状及发展趋势[J]. 煤炭科学技术,2024,52(6):238−252. WU Jinwen,DENG Xiaowei,JIAO Feishuo,et al. Resource utilization status and development trend of bulk solid waste of coal-based ash/slag[J]. Coal Science and Technology,2024,52(6):238−252.
[10] 梁铁山,张志杰. 自燃矸石山爆炸规律与诱发因素[J]. 煤炭学报,2009,34(1):74−78. LIANG Tieshan,ZHANG Zhijie. Blasting law and inducing factors of self-combustion waste heap[J]. Journal of China Coal Society,2009,34(1):74−78.
[11] 胡振琪,赵艳玲,毛缜. 煤矸石规模化生态利用原理与关键技术[J]. 煤炭学报,2024,49(2):978−987 HU Zhenqi,ZHAO Yanling,MAO Zhen. Principles and key technologies for the large-scale ecological utilization of coal gangue[J]. Journal of China Coal Society,2024,49(2):978−987.
[12] 杜岩,白云飞,张晓勇,等. 基于多种风险因素的矸石山边坡风险评价[J]. 工程力学,2022,39(10):249−256. DU Yan,BAI Yunfei,ZHANG Xiaoyong,et al. Risk assessment of coal gangue slope considering multiple risk factors[J]. Engineering Mechanics,2022,39(10):249−256.
[13] 邢永强,冯进城,荣晓伟. 河南平煤四矿煤矸石山自燃爆炸成因及防治分析[J]. 中国地质灾害与防治学报,2007,18(2):145−150. doi: 10.3969/j.issn.1003-8035.2007.02.028 XING Yongqiang,FENG Jincheng,RONG Xiaowei. Discussion on causes of combustion and explosion and of coal gangue at the No. 4 mine of Pingdingshan Coal Mine and countermeasures[J]. The Chinese Journal of Geological Hazard and Control,2007,18(2):145−150. doi: 10.3969/j.issn.1003-8035.2007.02.028
[14] 董发勤,徐龙华,彭同江,等. 工业固体废物资源循环利用矿物学[J]. 地学前缘,2014,21(5):302−312. DONG Faqin,XU Longhua,PENG Tongjiang,et al. The mineralogy in the process of industrial solid wastes treatment and resource recycle[J]. Earth Science Frontiers,2014,21(5):302−312.
[15] 董猛,李江山,陈新,等. 煤系固废基绿色充填材料制备及其性能研究[J]. 煤田地质与勘探,2022,50(12):75−84. DONG Meng,LI Jiangshan,CHEN Xin,et al. Preparation of coal-series solid-waste-based green filling materials and their performance[J]. Coal Geology & Exploration,2022,50(12):75−84.
[16] 程芳琴,郭彦霞,任强强,等. “煤-电-化领域废弃物资源化利用技术” 专题客座主编致读者[J]. 洁净煤技术,2024,30(7):3−4. CHENG Fangqin,GUO Yanxia,REN Qiangqiang,et al. Guest editor of the topic “Technology of waste Resource Utilization in coal-electric-chemical Field” addressed to readers[J]. Clean Coal Technology,2024,30(7):3−4.
[17] 崔昕茹,霍雪萍,周炳杰,等. 我国煤矸石空间分布特征与分级分质利用路径[J]. 环境科学,2025,46(4):2281−2291. CUI Xinru,HUO Xueping,ZHOU Bingjie,et al. Spatial Distribution Characteristics and Graded Utilization Path of Coal Gangue in China[J]. Environmental Science,2025,46(4):2281−2291.
[18] 张博超,童辉,龙雪颖,等. 煤矸石固废高值化利用研究现状与进展[J/OL]. 洁净煤技术,1−15 [2023−5−25]. http://kns.cnki.net/kcms/detail/11.3676.td.20230524.1257.002.html. ZHANG Bochao,TONG Hui,LONG Xueying,et al. Research status and progress of high-value utilization of coal gangue solid waste[J/OL]. Clean Coal Technology,1−15 [2023−5−25]. http://kns.cnki.net/kcms/detail/11.3676.td.20230524.1257.002.html.
[19] 竹涛,武新娟,邢成,等. 煤矸石资源化利用现状与进展[J]. 煤炭科学技术,2024,52(1):380−390. ZHU Tao,WU Xinjuan,XING Cheng,et al. Current situation and progress of coal gangue resource utilization[J]. Coal Science and Technology,2024,52(1):380−390.
[20] 陈东,曹坤. 准格尔矿区煤矸石综合利用新途径[J]. 中国煤炭,2017,43(10):132−136. CHEN Dong,CAO Kun. New method for coal gangue comprehensive utilization in Jungar mining area[J]. China Coal,2017,43(10):132−136.
[21] 严家平,陈孝杨,蔡毅,等. 不同风化年限的淮南矿区煤矸石理化性质变化规律[J]. 农业工程学报,2017,33(3):168−174. YAN Jiaping,CHEN Xiaoyang,CAI Yi,et al. Physicochemical property change regularities of coal gangue with different weathering ages in Huainan minging area[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(3):168−174.
[22] LIU L,GE Z L,ZHOU Z,et al. Mineral composition,pore structure and mechanical properties of coal measure strata rocks:A case study of Pingdingshan Coalfield[J]. Science of The Total Environment,2024,952:175944. doi: 10.1016/j.scitotenv.2024.175944
[23] 王学霞,于梅,王烨敏,等. 微细粒煤泥浮选分离强化方法及技术研究进展[J]. 洁净煤技术,2024,30(8):185−202. WANG Xuexia,YU Mei,WANG Yemin,et al. Research progress on methods and technologies for enhancing flotation separation of fine coal slime[J]. Clean Coal Technology,2024,30(8):185−202.
[24] 魏雅娟,王群英,李小江,等. 粉煤灰和固硫灰填充天然橡胶的性能比较[J]. 科学技术与工程,2018,18(8):266−270. WEI Yajuan,WANG Qunying,LI Xiaojiang,et al. Comparison on performance of natural rubber reinforced by normal fly ash/circulating fluid bed ash[J]. Science Technology and Engineering,2018,18(8):266−270.
[25] 何宏舟,过伟丽. 循环流化床锅炉炉内脱硫灰渣的水化特性研究[J]. 煤炭转化,2010,33(3):72−75. HE Hongzhou,GUO Weili. Study on the hydrating capacity of the desulfurization slag of cfb boiler[J]. Coal Conversion,2010,33(3):72−75.
[26] 李端乐,王栋民,任才富. 磨细循环流化床粉煤灰–石灰的水化特性[J]. 科学技术与工程,2020,20(28):11735−11739. LI Duanle,WANG Dongmin,REN Caifu. Hydration characteristics of grinding circulating fluidized bed fly ash-lime[J]. Science Technology and Engineering,2020,20(28):11735−11739.
[27] ZHAO S L,DUAN Y F,LIU M,et al. Effects on enrichment characteristics of trace elements in fly ash by adding halide salts into the coal during CFB combustion[J]. Journal of the Energy Institute,2018,91(2):214−221. doi: 10.1016/j.joei.2016.12.003
[28] BHATT A,PRIYADARSHINI S,ACHARATH MOHANAKRISHNAN A,et al. Physical,chemical,and geotechnical properties of coal fly ash:A global review[J]. Case Studies in Construction Materials,2019,11:e00263. doi: 10.1016/j.cscm.2019.e00263
[29] 王丽萍,李超. 粉煤灰资源化技术开发与利用研究进展[J]. 矿产保护与利用,2019,39(4):38−45. WANG Liping,LI Chao. Research progress on development and utilization of fly ash resource technology[J]. Conservation and Utilization of Mineral Resources,2019,39(4):38−45.
[30] 刘杨. 两部委关于印发《现代煤化工产业创新发展布局方案》的通知,中国政府网[EB/OL]. [2025−01−05]. https://www.gov.cn/xinwen/2017-03/27/content_5181130.htm. [31] 屈慧升,索永录,刘浪,等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报,2022,47(5):1958−1973. QU Huisheng,SUO Yonglu,LIU Lang,et al. Preparation and properties of modified coal gasification slag-based filling materials for mines[J]. Journal of China Coal Society,2022,47(5):1958−1973.
[32] 曲江山,张建波,孙志刚,等. 煤气化渣综合利用研究进展[J]. 洁净煤技术,2020,26(1):184−193. QU Jiangshan,ZHANG Jianbo,SUN Zhigang,et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology,2020,26(1):184−193.
[33] 范宁,张逸群,樊盼盼,等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术,2022,28(8):145−154. FAN Ning,ZHANG Yiqun,FAN Panpan,et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technology,2022,28(8):145−154.
[34] 乔会,左岳,屈洁,等. 煤气化渣残碳的分离及应用研究进展[J]. 洁净煤技术,2024,30(S2):103−111. QIAO Hui,ZUO Yue,QU Jie,et al. Reviews on separation and application of residual carbon from coal gasification slag[J]. Clean Coal Technology,2024,30(S2):103−111.
[35] ZHAO G Z,CHANG F Y,CHEN J X,et al. Research and prospect of underground intelligent coal gangue sorting technology:A review[J]. Minerals Engineering,2024,215:108818. doi: 10.1016/j.mineng.2024.108818
[36] 梁卫国,郭凤岐,于永军,等. 煤矸石井下原位智能分选充填技术研究进展[J]. 煤炭科学技术,2024,52(4):12−27. LIANG Weiguo,GUO Fengqi,YU Yongjun,et al. Research progress on in situ intelligent sorting and filling technology of coal gangue underground[J]. Coal Science and Technology,2024,52(4):12−27.
[37] 郭秀军. 煤矸石分选技术研究与应用[J]. 煤炭工程,2017,49(1):74−76. GUO Xiujun. Research and application of coal gangue separation technology[J]. Coal Engineering,2017,49(1):74−76.
[38] 赵卫. 井下煤矸石分选系统可行性研究分析[J]. 煤,2021,30(2):100−101. ZHAO Wei. Feasibility analysis of coal gangue separation system in coal mine[J]. Coal,2021,30(2):100−101.
[39] 曹庆一,任文颖,梁朝铭,等. 中国煤中有害微量元素含量的空间分布[J]. 煤田地质与勘探,2022,50(5):13−22. CAO Qingyi,REN Wenying,LIANG Chaoming,et al. Spatial distribution of harmful trace elements in Chinese coals[J]. Coal Geology & Exploration,2022,50(5):13−22.
[40] 秦身钧,徐飞,崔莉,等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术,2022,50(3):1−38. QIN Shenjun,XU Fei,CUI Li,et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology,2022,50(3):1−38.
[41] ZHU M B,XIE G,LIU L,et al. Strengthening mechanism of granulated blast-furnace slag on the uniaxial compressive strength of modified magnesium slag-based cemented backfilling material[J]. Process Safety and Environmental Protection,2023,174:722−733. doi: 10.1016/j.psep.2023.04.031
[42] NÁDUDVARI Á,KOZIELSKA B,ABRAMOWICZ A,et al. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland)[J]. Journal of Hazardous Materials,2021,412:125244. doi: 10.1016/j.jhazmat.2021.125244
[43] YUAN Z J,SHI S H,WU X G,et al. Aliphatic and polycyclic aromatic compounds in coal and coal-based solid wastes:Relationship with coal-forming paleoenvironment and implications for environmental pollution[J]. Science of The Total Environment,2024,951:175394. doi: 10.1016/j.scitotenv.2024.175394
[44] LV Y,LIU L,YANG P,et al. Study on leaching and curing mechanism of heavy metals in magnesium coal based backfill materials[J]. Process Safety and Environmental Protection,2023,177:1393−1402. doi: 10.1016/j.psep.2023.07.084
[45] YAO C,SHEN Z J,WANG Y M,et al. Tracing and quantifying the source of heavy metals in agricultural soils in a coal gangue stacking area:Insights from isotope fingerprints and receptor models[J]. Science of The Total Environment,2023,863:160882. doi: 10.1016/j.scitotenv.2022.160882
[46] DU Z,HONG X P,YANG K,et al. Enrichment characteristics of polycyclic aromatic hydrocarbons in coal gangue of the Huaibei Coalfield,China[J]. Environmental Technology & Innovation,2024,36:103769.
[47] WANG Y F,TANG Y G,LIU S Q,et al. Behavior of trace elements and mineral transformations in the super-high organic sulfur Ganhe coal during gasification[J]. Fuel Processing Technology,2018,177:140−151. doi: 10.1016/j.fuproc.2018.04.019
[48] 邵龙义,张亚星,耿苏倩,等. 煤矿固体废弃物理化特征及生态环境影响研究[J]. 矿业科学学报,2024,9(5):653−667. SHAO Longyi,ZHANG Yaxing,GENG Suqian,et al. Physicochemical characteristics and environmental impact of coal mine solid waste[J]. Journal of Mining Science and Technology,2024,9(5):653−667.
[49] LU X W,WANG Z Z,CHEN Y R,et al. Source–specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation[J]. Journal of Environmental Management,2023,347:119056. doi: 10.1016/j.jenvman.2023.119056
[50] FENG F S,SUN J,DING L,et al. Migration patterns of heavy metals from solid waste stockpile soils by native plants for ecological restoration in arid and semi-arid regions of Northwest China[J]. Environmental Research,2024,251:118607. doi: 10.1016/j.envres.2024.118607
[51] 陈秀端,卢新卫. 城市道路灰尘中重金属和多环芳烃污染特征研究[J]. 环境保护科学,2021,47(2):161−166. CHEN Xiuduan,LU Xinwei. Pollution characteristics of heavy metals and PAHs in urban road dust[J]. Environmental Protection Science,2021,47(2):161−166.
[52] 花洁,王健媛,陈运帷,等. 煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述[J]. 环境工程技术学报,2024,14(1):139−147. HUA Jie,WANG Jianyuan,CHEN Yunwei,et al. A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils[J]. Journal of Environmental Engineering Technology,2024,14(1):139−147.
[53] ZHAO X Y,YANG K,DINO G A,et al. Feasibility and challenges of multi-source coal-based solid waste (CSW) for underground backfilling − A case study[J]. Process Safety and Environmental Protection,2024,181:8−25. doi: 10.1016/j.psep.2023.11.013
[54] CHEN Y,FAN Y J,HUANG Y,et al. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem[J]. Ecotoxicology and Environmental Safety,2024,269:115905. doi: 10.1016/j.ecoenv.2023.115905
[55] GUO F H,GUO Y,CHEN L Q,et al. Multitudinous components recovery,heavy metals evolution and environmental impact of coal gasification slag:A review[J]. Chemosphere,2023,338:139473. doi: 10.1016/j.chemosphere.2023.139473
[56] GUO Y W,LI X D,LI Q Z,et al. Environmental impact assessment of acidic coal gangue leaching solution on groundwater:A coal gangue pile in Shanxi,China[J]. Environmental Geochemistry and Health,2024,46(4):120. doi: 10.1007/s10653-024-01861-3
[57] 徐晶晶,张继伟,崔树军,等. 煤矸石山酸性废水污染控制技术研究进展[J]. 中国矿业,2017,26(1):43−48 XU Jingjing,ZHANG Jiwei,CUI Shujun,et al. Research progress in pollution control technologies of acidic wastewater from coal gangue[J]. China Mining Magazine,2017,26(1):43−48.
[58] KUMARI M,BHATTACHARYA T. A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines:Content and trend analysis[J]. Environmental Development,2023,46:100859. doi: 10.1016/j.envdev.2023.100859
[59] LI J M,LI X T,HUANG Y L,et al. Dynamic leaching behaviors of heavy metals from recycled coal gangue aggregate under loading conditions during solid backfill mining[J]. Environmental Pollution,2024,362:125028. doi: 10.1016/j.envpol.2024.125028
[60] LI J Y,WANG J M. Comprehensive utilization and environmental risks of coal gangue:A review[J]. Journal of Cleaner Production,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946
[61] ZHAO Y C,ZHANG J Y,CHOU C L,et al. Trace element emissions from spontaneous combustion of gob piles in coal mines,Shanxi,China[J]. International Journal of Coal Geology,2008,73(1):52−62. doi: 10.1016/j.coal.2007.07.007
[62] GUO W K,CHEN B,LI G Y,et al. Ambient PM2.5 and related health impacts of spontaneous combustion of coal and coal gangue[J]. Environmental Science & Technology,2021,55(9):5763−5771.
[63] HOU H M,SU L J,GUO D F,et al. Resource utilization of solid waste for the collaborative reduction of pollution and carbon emissions:Case study of fly ash[J]. Journal of Cleaner Production,2023,383:135449. doi: 10.1016/j.jclepro.2022.135449
[64] ZHANG Y B,ZHANG Y T,SHI X Q,et al. Co-spontaneous combustion of coal and gangue:Thermal behavior,kinetic characteristics and interaction mechanism[J]. Fuel,2022,315:123275. doi: 10.1016/j.fuel.2022.123275
[65] 刘浪,罗屹骁,朱梦博,等. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践[J]. 煤炭科学技术,2024,52(4):83−92. LIU Lang,LUO Yixiao,ZHU Mengbo,et al. Mining technology and practice of full-solid waste cemented backfilling in narrow strip of extra-thick coal seam under buildings[J]. Coal Science and Technology,2024,52(4):83−92.
[66] 轩大洋,许家林,王秉龙. 覆岩隔离注浆充填绿色开采技术[J]. 煤炭学报,2022,47(12):4265−4277. XUAN Dayang,XU Jialin,WANG Binglong. Green mining technology of overburden isolated grout injection[J]. Journal of China Coal Society,2022,47(12):4265−4277.
[67] 朱磊,古文哲,宋天奇,等. 采空区煤矸石浆体充填技术研究进展与展望[J]. 煤炭科学技术,2023,51(2):143−154. ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue slurry backfilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154.
[68] 王比比,郭文兵,郭明杰,等. 村庄下孤岛工作面开采覆岩离层注浆减沉技术研究[J/OL]. 煤炭学报,1−12,[2024−11−25].https://doi.org/10.13225/j.cnki.jccs.2024.0884. WANG Bibi,GUO Wenbing,GUO Mingjie,et al. Research on grouting subsidence reduction technology of overburden separation layer in isolated working face mining under village[J/OL]. Journal of China Coal Society,1−12,[2024−11−25].https://doi.org/10.13225/j.cnki.jccs.2024.0884.
[69] 杨科,何淑欣,何祥,等. 煤电化基地大宗固废“三化” 协同利用基础与技术[J]. 煤炭科学技术,2024,52(4):69−82. YANG Ke,HE Shuxin,HE Xiang,et al. Foundation and technology of coordinated utilization of bulk solid waste “Three modernizations” in coal power base[J]. Coal Science and Technology,2024,52(4):69−82.
[70] YAN P F,MA Z G,LI H B,et al. Study on frost resistance and freeze-thaw damage deterioration mechanism of cement-stabilized pure coal-based solid waste as pavement base material[J]. Construction and Building Materials,2024,450:138598. doi: 10.1016/j.conbuildmat.2024.138598
[71] ZHAO X,LI W X,ZHANG X R,et al. Low-temperature preparation of lightweight ceramic proppants using high-proportioned coal-based solid wastes[J]. Ceramics International,2024,50(11):18117−18124. doi: 10.1016/j.ceramint.2024.02.295
[72] LIU T Y,LIU J,YANG Q Z,et al. Sustainable use of coal gangue and other wastes in lightweight material:Physical-mechanical,environmental security and synergistic mechanisms[J]. Ceramics International,2025,51(2):2244−2258. doi: 10.1016/j.ceramint.2024.11.202
[73] 裘国华,徐扬,施正伦,等. 煤矸石代替黏土生产水泥可行性分析[J]. 浙江大学学报(工学版),2010,44(5):1003−1008. QIU Guohua,XU Yang,SHI Zhenglun,et al. Feasibility analysis on utilization of coal gangue as clay for cement[J]. Journal of Zhejiang University (Engineering Science),2010,44(5):1003−1008.
[74] 裘国华,施正伦,余春江,等. 煤矸石代黏土煅烧水泥熟料配方优化试验研究[J]. 浙江大学学报(工学版),2010,44(1):130. QIU Guohua,SHI Zhenglun,YU Chunjiang,et al. Experimental research on utilization of coal gangue as clay for optimized formula on cement clinker calcination[J]. Journal of Zhejiang University (Engineering Science),2010,44(1):130.
[75] 王培铭,刘贤萍,胡曙光,等. 硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J]. 硅酸盐学报,2007(S1):180−186. WANG Peiming,LIU Xianping,HU Shuguang,et al. Hydration models of Portland coal gangue cement and Portland fly ash cement[J]. Journal of the Chinese Ceramic Society,2007(S1):180−186.
[76] WU C L,JIANG W,ZHANG C,et al. Preparation of solid-waste-based pervious concrete for pavement:A two-stage utilization approach of coal gangue[J]. Construction and Building Materials,2022,319:125962. doi: 10.1016/j.conbuildmat.2021.125962
[77] 刘晓霞 . 为大自然“疗伤”宝日希勒创伤“初愈”[N/OL]. 内蒙古日报,2014−09−18 [2022−08−10]. http://inews.nmgnews. com.cn/system/2014/09/18/011537722 01.shtml. [78] SUN W,WANG H J,HOU K P. Control of waste rock-tailings paste backfill for active mining subsidence areas[J]. Journal of Cleaner Production,2018,171:567−579. doi: 10.1016/j.jclepro.2017.09.253
[79] 王双明,杜华栋,王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报,2017,42(1):17−26. WANG Shuangming,DU Huadong,WANG Shengquan. Analysis of damage process and mechanism for plant community and soil properties at northern Shenmu subsidence mining area[J]. Journal of China Coal Society,2017,42(1):17−26.
[80] GUO G L,FENG W K,ZHA J F,et al. Subsidence control and farmland conservation by solid backfilling mining technology[J]. Transactions of Nonferrous Metals Society of China,2011,21:s665−s669. doi: 10.1016/S1003-6326(12)61659-8
[81] LIU Z,LIU S J,GAO L N,et al. Long-term recovery of compacted reclaimed farmland soil in coal mining subsidence area[J]. Ecological Indicators,2024,168:112758. doi: 10.1016/j.ecolind.2024.112758
[82] 张世文,蔡慧珍,张燕海,等. 煤矿区土壤细菌群落结构及其对不同复垦模式的响应[J]. 煤炭科学技术,2024,52(2):338−349. ZHANG Shiwen,CAI Huizhen,ZHANG Yanhai,et al. Soil bacterial community structure in coal mining area and its response to different reclamation patterns[J]. Coal Science and Technology,2024,52(2):338−349.
[83] 孙纪杰,李新举,李海燕,等. 煤矿塌陷区不同复垦材料土壤压实机理的研究[J]. 煤炭学报,2013,38(12):2215−2220. SUN Jijie,LI Xinju,LI Haiyan,et al. Soil composition mechanism research of different reclamation material in coal mining subsidence area[J]. Journal of China Coal Society,2013,38(12):2215−2220.
[84] 胡振琪,理源源,李根生,等. 碳中和目标下矿区土地复垦与生态修复的机遇与挑战[J]. 煤炭科学技术,2023,51(1):474−483. HU Zhenqi,LI Yuanyuan,LI Gensheng,et al. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target[J]. Coal Science and Technology,2023,51(1):474−483.
[85] 卞正富,雷少刚,金丹,等. 矿区土地修复的几个基本问题[J]. 煤炭学报,2018,43(1):190−197. BIAN Zhengfu,LEI Shaogang,JIN Dan,et al. Several basic scientific issues related to mined land remediation[J]. Journal of China Coal Society,2018,43(1):190−197.
[86] 胡振琪. 矿山复垦土壤重构的理论与方法[J]. 煤炭学报,2022,47(7):2499−2515. HU Zhenqi. Theory and method of soil reconstruction of reclaimed mined land[J]. Journal of China Coal Society,2022,47(7):2499−2515.
[87] 郭文兵,赵高博,白二虎,等. 中部矿粮复合区采煤沉陷及耕地损毁研究现状与展望[J]. 煤炭学报,2023,48(1):388−401. GUO Wenbing,ZHAO Gaobo,BAI Erhu,et al. Research status and prospect on cultivated land damage at surface subsidence basin due to longwall mining in the central coal grain compound area[J]. Journal of China Coal Society,2023,48(1):388−401.
[88] 徐良骥,李青青,朱小美,等. 煤矸石充填复垦重构土壤重金属含量高光谱反演[J]. 光谱学与光谱分析,2017,37(12):3839−3844. XU Liangji,LI Qingqing,ZHU Xiaomei,et al. Hyperspectral inversion of heavy metal content in coal gangue filling reclamation land[J]. Spectroscopy and Spectral Analysis,2017,37(12):3839−3844.
[89] LAL R,HALL G F,MILLER F P. Soil degradation:I. basic processes[J]. Land Degradation & Development,1989,1(1):51−69.
[90] 胡振琪,康惊涛,魏秀菊,等. 煤基混合物对复垦土壤的改良及苜蓿增产效果[J]. 农业工程学报,2007,23(11):120−124. doi: 10.3321/j.issn:1002-6819.2007.11.020 HU Zhenqi,KANG Jingtao,WEI Xiuju,et al. Experimental research on improvement of reclaimed soil properties and plant production based on different ratioes of coal-based mixed materials[J]. Transactions of the Chinese Society of Agricultural Engineering,2007,23(11):120−124. doi: 10.3321/j.issn:1002-6819.2007.11.020
[91] JALA S,GOYAL D. Fly ash as a soil ameliorant for improving crop production:A review[J]. Bioresource Technology,2006,97(9):1136−1147. doi: 10.1016/j.biortech.2004.09.004
[92] ZHOU C Z,WANG J H,WANG Q,et al. Simultaneous adsorption of Cd and as by a novel coal gasification slag based composite:Characterization and application in soil remediation[J]. Science of The Total Environment,2023,882:163374. doi: 10.1016/j.scitotenv.2023.163374
[93] 李明珠,张文超,王淑娟,等. 适宜脱硫石膏施用方式改良河套灌区盐碱土提高向日葵产量[J]. 农业工程学报,2022,38(6):89−95. LI Mingzhu,ZHANG Wenchao,WANG Shujuan,et al. Suitable application of flue gas desulphurized gypsum to improve the sunflower yield in saline-alkali soil in the Hetao irrigation areas of Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(6):89−95.
[94] SHEN W Y,FENG Z J,SONG H P,et al. Effects of solid waste-based soil conditioner and arbuscular mycorrhizal fungi on crop productivity and heavy metal distribution in foxtail millet (Setaria italica)[J]. Journal of Environmental Management,2022,313:114974. doi: 10.1016/j.jenvman.2022.114974
[95] 巩文辉,朱晓波,李望,等. 煤矸石原生菌溶磷效果分析及产酸性能优化[J]. 煤炭科学技术,2023,51(S1):449−460. GONG Wenhui,ZHU Xiaobo,LI Wang,et al. Analysis of phosphate dissolving effect and optimization of acid producing capacity of coal gangue protobacteria[J]. Coal Science and Technology,2023,51(S1):449−460.
[96] 秦琪焜,方健梅,王根柱,等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术,2022,50(7):304−314. QIN Qikun,FANG Jianmei,WANG Genzhu,et al. Experimental study of planting substrate mixed with coal gangue and municipal sludge[J]. Coal Science and Technology,2022,50(7):304−314.
[97] 朱菊芬,李健,闫龙,等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术,2021,27(6):11−21 ZHU Jufen,LI Jian,YAN Long,et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology,2021,27(6):11−21.
[98] 刘成龙,谢宇充,夏举佩,等. 煤矸石中和渣酸化提取铝、钛实验研究[J]. 硅酸盐通报,2015,34(4):966−972. LIU Chenglong,XIE Yuchong,XIA Jupei,et al. Study on extracting aluminum and titanium from neutral residues of coal gangue by acid leaching[J]. Bulletin of the Chinese Ceramic Society,2015,34(4):966−972.
[99] 李振,雪佳,朱张磊,等. 煤矸石综合利用研究进展[J]. 矿产保护与利用,2021,41(6):165−178. LI Zhen,XUE Jia,ZHU Zhanglei,et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources,2021,41(6):165−178.
[100] 刘建功,李新旺,何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150. LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.
[101] 刘浪,方治余,王双明,等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术,2024,52(2):292−308. LIU Lang,FANG Zhiyu,WANG Shuangming,et al. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. Coal Science and Technology,2024,52(2):292−308.
[102] 王双明,申艳军,孙强,等. “双碳” 目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60. WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J]. Journal of China Coal Society,2022,47(1):45−60.
[103] 刘浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086. LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.
[104] 邱华富,刘浪,王美,等. 金属矿采矿—充填—建库协同系统及充填储库结构[J]. 石油学报,2018,39(11):1308−1316. QIU Huafu,LIU Lang,WANG Mei,et al. Mining-backfill-storage building synergetic system in metal mine and its backfill storage structure[J]. Acta Petrolei Sinica,2018,39(11):1308−1316.
[105] HUANG L,WANG D L,HE C,et al. Industrial wastewater desalination under uncertainty in coal-chemical eco-industrial parks[J]. Resources,Conservation and Recycling,2019,145:370−378.
[106] LU K,LÜ Y,BAI Y X,et al. Experimental investigation and theoretical modeling on scale behaviors of high salinity wastewater in zero liquid discharge process of coal chemical industry[J]. Chinese Journal of Chemical Engineering,2020,28(4):969−979. doi: 10.1016/j.cjche.2020.01.001
[107] SHI J X,HUANG W P,HAN H J,et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination,2020,493:114640. doi: 10.1016/j.desal.2020.114640
[108] XIE G,LIU L,SUO Y L,et al. Study on the green disposal of industrial high salt water and its performance as activator to prepare magnesium-coal based solid waste backfill material for mine[J]. Journal of Cleaner Production,2024,452:141933. doi: 10.1016/j.jclepro.2024.141933
[109] ZHANG L F,WANG J Q,FU G K,et al. Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment[J]. Journal of Cleaner Production,2020,276:123203. doi: 10.1016/j.jclepro.2020.123203
[110] ZHAO Y Y,ZHUANG X M,AHMAD S,et al. Biotreatment of high-salinity wastewater:Current methods and future directions[J]. World Journal of Microbiology and Biotechnology,2020,36(3):37. doi: 10.1007/s11274-020-02815-4