Research progress and innovative pathways for the large-scaled green and low-carbon utilization of coal-based solid wastes
-
摘要:
煤炭的开采与加工为我国提供了可靠的能源保障和关键的化工原料,有力地推动了工业的快速发展和社会的进步。然而,这一过程也产生了巨量的煤基固废。煤基固废不仅占用了大量土地资源,还对环境造成了不同程度的污染,尤其是在长期堆存过程中,可能释放有害气体、重金属及其他有毒物质,威胁水源、空气和土壤安全。如何高效且规模化地利用煤基固废,成为当前实现资源循环利用、减少环境污染的关键技术挑战。通过分析煤基固废的产生、分类、特性及其环境影响,对现有煤基固废进行了重新归类,系统总结了其在矿山充填、建筑材料及生态修复等领域的成熟规模化利用模式,提出了煤基固废绿色低碳利用的创新路径。研究表明:① 煤基固废可归类为变性和原性煤基固废两大类,其中变性煤基固废具有开发胶凝材料和固碳功能材料的潜力,而原性煤基固废则具备天然砂石骨料和土壤材料的特性;② 当前,煤基固废的主要规模化利用模式包括矿山充填(如胶凝材料、膏体充填和注浆充填)、建筑材料(如水泥辅料、筑路材料和预制件)、生态修复(如坍陷区回填、荒地复垦和土壤改良)和资源提取利用(炭质组分、铝、硫和稀有元素);③ 提出了煤基固废分级分质全组分利用的新技术,通过提取高价值组分并将剩余组分用于采空区充填,实现其最大化资源利用;④ 探讨了煤基固废改性协同处置高盐废水、改性充填协同储库构筑及功能性储库协同封存危险固废的创新技术。上述研究旨在提高大宗煤基固废的资源利用效率,推动煤炭产业绿色转型,为煤炭资源的可持续发展提供新路径。
Abstract:Coal mining and processing have provided China with reliable energy security and essential chemical raw materials, significantly driving industrial development and social progress. However, this process has also resulted in the production of large amounts of coal-based solid waste. These wastes not only occupy vast land resources but also cause varying degrees of environmental pollution, especially during long-term storage, when they may release harmful gases, heavy metals, and other toxic substances, posing a threat to water, air, and soil safety. Therefore, efficiently and large-scale utilization of coal-based solid waste has become a key technical challenge in achieving resource recycling and reducing environmental pollution. Based on an analysis of the generation, classification, characteristics, and environmental impacts of coal-based solid waste, this paper reclassifies existing coal-based solid waste and systematically summarizes its mature large-scale utilization models in areas such as mine backfilling, construction materials, and ecological restoration. It also proposes innovative pathways for the green and low-carbon utilization of coal-based solid waste. The study shows that: ① Coal-based solid waste can be classified into two categories: denatured and original coal-based solid waste, with denatured coal-based solid waste having the potential to develop cementing materials and carbon sequestration functions, while original coal-based solid waste possesses the characteristics of natural aggregates and soil materials; ② Currently, the main large-scale utilization models of coal-based solid waste include mine backfilling (such as cementing materials, paste backfilling, and grout backfilling), construction materials (such as cement supplementary materials, road materials, and precast components), ecological restoration (such as filling of subsidence areas, reclamation of wastelands, and soil improvement), and resource extraction and utilization (carbonaceous components, aluminium, sulfur and rare elements); ③ A new technology for graded, quality-specific, and full-component utilization of coal-based solid waste is proposed, which extracts high-value components and uses the remaining components for backfilling of mined-out areas, maximizing resource utilization; ④ Innovative technologies for modifying and co-disposing of high-salinity wastewater, modifying backfill for co-constructing storage facilities, and co-sequestering hazardous solid waste in functional storage are discussed. This research aims to improve the resource utilization efficiency of bulk coal-based solid waste, promote the green transformation of the coal industry, and provide new pathways for the sustainable development of coal resources.
-
-
图 3 煤基固废地表堆存的环境影响[48]
Figure 3. Impact of multi-source coal-based solid waste stockpiling on surface environment
图 10 煤基固废改性充填协同储库构筑[104]
Figure 10. Modified coal-based solid wastes backfilling collaborative storage construction
表 1 煤矸石分类方法
Table 1 Classification methods of coal gangue
按全硫含量分 按灰分分类 按灰成分分类 按铝硅比分级 类别名称 全硫含量(Cts)/% 类别名称 灰分A/% 类别名称 钙镁质量分数 类别名称 铝硅比 低硫煤矸石 Cts≤1.0 低灰煤矸石 A≤70.0 钙镁型煤矸石 w(CaO)+w(MgO)>10 低级铝硅比煤矸石 w(Al2O3)/w(SiO2)≤0.30 中硫煤矸石 1.0<Cts≤3.0 中灰煤矸石 70.0<A≤85.0 铝硅型煤矸石 w(CaO)+w(MgO)≤10 中级铝硅比煤矸石 0.30<w(Al2O3)/w(SiO2)≤0.50 中高硫煤矸石 3.0<Cts≤6.0 高灰煤矸石 A>85.0 高级铝硅比煤矸石 w(Al2O3)/w(SiO2)>0.50 高硫煤矸石 Cts>6.0 表 2 煤泥分类方法
Table 2 Classification of coal slime
按照来源分类 按粒径大小分类 按灰分分类 类别名称 粒径d /mm 类别名称 灰分A/% 浮选尾煤 粗煤泥 d>0.5 低灰煤泥 20<A≤32 煤水混合物煤泥 细煤泥 0.074<d<0.5 中灰煤泥 32<A≤55 矿井排水夹带的煤泥 微细粒煤泥 d<0.074 高灰煤泥 A>55 表 3 粉煤灰分类方法
Table 3 Classification of fly ash
按炉型分类 按燃煤品种分类 按钙含量分类 按粒径分类 按pH值分类 类别名称 类别名称 类别名称 CaO质量分数/% 类别名称 最大粒径/mm 类别名称 pH值范围 煤粉炉粉煤灰(PC灰) 无烟煤粉煤灰 高钙粉煤灰(C类) > 10 Ⅰ级粉煤灰 0.08 酸性灰 1.2 ~ 7 循环流化床粉煤灰(CFB灰) 烟煤粉煤灰 低钙粉煤灰(F类) <10 Ⅱ级粉煤灰 0.15 弱碱性灰 8 ~ 9 次烟煤粉煤灰 Ⅲ级粉煤灰 0.30 强碱性灰 11 ~ 13 褐煤粉煤灰 Ⅳ级粉煤灰 0.60 表 4 煤气化渣分类方法
Table 4 Classification of coal gasification slag
按粒径/排出位置分类 按化学成分分类 按孔隙结构分类 按比表面积分类 按密度分类 类别名称 排出方式 类别名称 特点 类别名称 特点 类别名称 特点 类别名称 特点 煤气化
细渣由气化炉
底部排渣
锁斗排出硅质渣 SiO2含量高 多孔
结构渣孔隙丰富,
比表面
积高高比表
面积渣粒径小、
孔隙丰富,
吸附强高密度渣 结构致密,
力学强
度高煤气化
粗渣气化炉顶
部由粗煤
气携出铝质渣 Al2O3含量高 少孔
结构渣孔隙较少,
结构相
对致密低比表
面积渣比表面
积较小低密度渣 孔隙率高,
轻质成
分多钙质渣 CaO含量高,以化合物为主 铁质渣 Fe2O3含量高,游离态、结合态 碳质渣 粗渣残炭量5%~30%
细渣残炭量30%~50%表 5 原性与变性煤基固废对比
Table 5 Comparison of original and denatured coal-based solid wastes
类别 固废名称 来源 细分亚类 产生情况 主要特征 主要元素 主要组分 原性煤基固废 煤矸石 煤炭开采/分选 掘进矸石 常温分选 炭质、泥质和砂质页岩的
混合物,低发热值,含炭20%~30%Al、Si、Fe、
Ca、Li、Ga炭质、Al2O3、SiO2 开采矸石 分选矸石 煤泥 煤炭分选 炼焦煤浮选尾煤 水中分选 粒度细,黏性大,含水量高 动力煤浮选尾煤 变性煤基固废 粉煤灰 电厂/锅炉 未细分 >1 200 ℃,急冷 微球状,比表面积大,
高水化活性Al、Si、Fe、
Ca、Li、Ga玻璃相、莫来石/
刚玉、铁质微珠煤气化渣 气化炉 细渣 >1 200 ℃,急冷 气化炉顶部由粗煤气携出 C、Al、Si、Fe、Ca、Li、Ga 炭质一般>30%,玻
璃相组分10%~30%粗渣 气化炉底部排出的含水渣 炉底渣 电厂/锅炉 煤渣 1 300 ~1 500 ℃ 排出温度高,需粉碎并
冷却后再排放到灰库Al、Si、Fe、Ca Al2O3、SiO2、
FeO、CaO表 6 煤基固废规模化利用主要途径、评价指标和相关标准
Table 6 Main approaches, evaluation indicators and relevant standards for the large-scale utilization of coal-based solid wastes
途径 细类 适用固废 主要评价指标 部分标准依据 矿井充填领域 胶结充填 CG, CS, FA 有机质含量、水溶性盐总量、pH值、重金属、污染性有机物、
炭含量、泥质含量、含水率、粒径等GB 18599
NB/T 11432充填固废胶凝材料 CGS, FA, FS 注浆充填 CG, CS, FA, FS 建材制备领域 水泥辅材 FA, FS 细度、需水量比、烧失量、含水率、w(SO3)、w(f-CaO)、w(SiO2+Al2O3+ Fe2O3)、密度、安定性、强度活性指数、铵离子含量、压碎值、强度、粒径、泥质含量、放射性等 GB/T 1596
GBT 27974
DB 13/T 5527
JC/T 525
GB/T 29162
GB/T 29163制备混凝土 CG, FA 混凝土预制建材 CG, FA, CGS, FS 矸石路基材料 CG 压实标准、强度、粒径、压碎值 陶瓷砖、陶粒等 CG, FA, FS 铅和镉的溶出量、放射性核素含量等 GB/T 42350 生态修复领域 矿区回填 CS, FA, CGS 有机质含量、水溶性盐总量、pH值、重金属等 GB 18599 盐碱地改良 CG, CS, CGS, FS 风沙地改良 CG, CS, FA, CGS 肥料 CG, CS 灰分、有机质含量、污染物含量 GB/T 29163 资源提取领域 碳质资源 CG, CS, CGS 炭含量、基低位发热量、灰分、硫分、水分 GB/T 29162
GB/T 29163
GB/T 39201提取铝、镓等 CG, FA, FS Al2O3含量、铝硅比、附水 提取硫精矿 CG, CS 黄铁矿含量 提取高岭土 CG, CS 高岭土质量分数 提取锂盐 FA, FS Li含量 — 注:CG, CS, FA, CGS, FS分别指代煤矸石、煤泥、粉煤灰、煤气化渣、燃煤炉渣。 表 7 IHSW的水质特征
Table 7 Water quality characteristics of IHSW
项目 数值 溶解性总固体(TDS)/(mg·L−1) 8750.69 ρ(钠离子)/(mg·L−1) 3612.85 ρ(钙离子)/(mg·L−1) 462.95 ρ(硫酸根离子)/(mg·L−1) 4514.43 ρ(总氯)/(mg·L−1) 4456.12 pH值 8.86 -
[1] 王双明,刘浪,朱梦博,等. “双碳” 目标下煤炭绿色低碳发展新思路[J]. 煤炭学报,2024,49(1):152−171. WANG Shuangming,LIU Lang,ZHU Mengbo,et al. New way for green and low-carbon development of coal industry under the target of “daul-carbon”[J]. Journal of China Coal Society,2024,49(1):152−171.
[2] 葛世荣,刘淑琴,樊静丽,等. 低碳化现代煤基能源开发关键技术体系[J]. 煤炭学报,2024,49(7):2949−2972. GE Shirong,LIU Shuqin,FAN Jingli,et al. Key technologies for low-carbon modern coal-based energy[J]. Journal of China Coal Society,2024,49(7):2949−2972.
[3] 杨科,赵新元,何祥,等. 多源煤基固废绿色充填基础理论与技术体系[J]. 煤炭学报,2022,47(12):4201−4216. YANG Ke,ZHAO Xinyuan,HE Xiang,et al. Basic theory and key technology of multi-source coal-based solid waste for green backfilling[J]. Journal of China Coal Society,2022,47(12):4201−4216.
[4] 张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181. ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
[5] YU X,YANG K,HE X,et al. Research progress on multi-source coal-based solid waste (MCSW) resource utilization and backfill mining basic theory:A systematic literature review[J]. Process Safety and Environmental Protection,2025,195:106670. doi: 10.1016/j.psep.2024.12.051
[6] ZHANG J Q,YANG K,HE X,et al. Research status of comprehensive utilization of coal-based solid waste (CSW) and key technologies of filling mining in China:A review[J]. Science of The Total Environment,2024,926:171855. doi: 10.1016/j.scitotenv.2024.171855
[7] 刘艳丽,李强,陈占飞,等. 煤气化渣特性分析及综合利用研究进展[J]. 煤炭科学技术,2022,50(11):251−257. LIU Yanli,LI Qiang,CHEN Zhanfei,et al. Research progress characteristics analysis and comprehensive utilization of coal gasification slag[J]. Coal Science and Technology,2022,50(11):251−257.
[8] 杨科,魏祯,赵新元,等. 黄河流域煤电基地固废井下绿色充填开采理论与技术[J]. 煤炭学报,2021,46(S2):925−935. YANG Ke,WEI Zhen,ZHAO Xinyuan,et al. Theory and technology of green filling of solid waste in underground mine at coal power base of Yellow River Basin[J]. Journal of China Coal Society,2021,46(S2):925−935.
[9] 吴锦文,邓小伟,焦飞硕,等. 煤基灰/渣的大宗固废资源化利用现状及发展趋势[J]. 煤炭科学技术,2024,52(6):238−252. WU Jinwen,DENG Xiaowei,JIAO Feishuo,et al. Resource utilization status and development trend of bulk solid waste of coal-based ash/slag[J]. Coal Science and Technology,2024,52(6):238−252.
[10] 梁铁山,张志杰. 自燃矸石山爆炸规律与诱发因素[J]. 煤炭学报,2009,34(1):74−78. LIANG Tieshan,ZHANG Zhijie. Blasting law and inducing factors of self-combustion waste heap[J]. Journal of China Coal Society,2009,34(1):74−78.
[11] 胡振琪,赵艳玲,毛缜. 煤矸石规模化生态利用原理与关键技术[J]. 煤炭学报,2024,49(2):978−987 HU Zhenqi,ZHAO Yanling,MAO Zhen. Principles and key technologies for the large-scale ecological utilization of coal gangue[J]. Journal of China Coal Society,2024,49(2):978−987.
[12] 杜岩,白云飞,张晓勇,等. 基于多种风险因素的矸石山边坡风险评价[J]. 工程力学,2022,39(10):249−256. DU Yan,BAI Yunfei,ZHANG Xiaoyong,et al. Risk assessment of coal gangue slope considering multiple risk factors[J]. Engineering Mechanics,2022,39(10):249−256.
[13] 邢永强,冯进城,荣晓伟. 河南平煤四矿煤矸石山自燃爆炸成因及防治分析[J]. 中国地质灾害与防治学报,2007,18(2):145−150. doi: 10.3969/j.issn.1003-8035.2007.02.028 XING Yongqiang,FENG Jincheng,RONG Xiaowei. Discussion on causes of combustion and explosion and of coal gangue at the No. 4 mine of Pingdingshan Coal Mine and countermeasures[J]. The Chinese Journal of Geological Hazard and Control,2007,18(2):145−150. doi: 10.3969/j.issn.1003-8035.2007.02.028
[14] 董发勤,徐龙华,彭同江,等. 工业固体废物资源循环利用矿物学[J]. 地学前缘,2014,21(5):302−312. DONG Faqin,XU Longhua,PENG Tongjiang,et al. The mineralogy in the process of industrial solid wastes treatment and resource recycle[J]. Earth Science Frontiers,2014,21(5):302−312.
[15] 董猛,李江山,陈新,等. 煤系固废基绿色充填材料制备及其性能研究[J]. 煤田地质与勘探,2022,50(12):75−84. DONG Meng,LI Jiangshan,CHEN Xin,et al. Preparation of coal-series solid-waste-based green filling materials and their performance[J]. Coal Geology & Exploration,2022,50(12):75−84.
[16] 程芳琴,郭彦霞,任强强,等. “煤-电-化领域废弃物资源化利用技术” 专题客座主编致读者[J]. 洁净煤技术,2024,30(7):3−4. CHENG Fangqin,GUO Yanxia,REN Qiangqiang,et al. Guest editor of the topic “Technology of waste Resource Utilization in coal-electric-chemical Field” addressed to readers[J]. Clean Coal Technology,2024,30(7):3−4.
[17] 崔昕茹,霍雪萍,周炳杰,等. 我国煤矸石空间分布特征与分级分质利用路径[J]. 环境科学,2025,46(4):2281−2291. CUI Xinru,HUO Xueping,ZHOU Bingjie,et al. Spatial Distribution Characteristics and Graded Utilization Path of Coal Gangue in China[J]. Environmental Science,2025,46(4):2281−2291.
[18] 张博超,童辉,龙雪颖,等. 煤矸石固废高值化利用研究现状与进展[J/OL]. 洁净煤技术,1−15 [2023−5−25]. http://kns.cnki.net/kcms/detail/11.3676.td.20230524.1257.002.html. ZHANG Bochao,TONG Hui,LONG Xueying,et al. Research status and progress of high-value utilization of coal gangue solid waste[J/OL]. Clean Coal Technology,1−15 [2023−5−25]. http://kns.cnki.net/kcms/detail/11.3676.td.20230524.1257.002.html.
[19] 竹涛,武新娟,邢成,等. 煤矸石资源化利用现状与进展[J]. 煤炭科学技术,2024,52(1):380−390. ZHU Tao,WU Xinjuan,XING Cheng,et al. Current situation and progress of coal gangue resource utilization[J]. Coal Science and Technology,2024,52(1):380−390.
[20] 陈东,曹坤. 准格尔矿区煤矸石综合利用新途径[J]. 中国煤炭,2017,43(10):132−136. CHEN Dong,CAO Kun. New method for coal gangue comprehensive utilization in Jungar mining area[J]. China Coal,2017,43(10):132−136.
[21] 严家平,陈孝杨,蔡毅,等. 不同风化年限的淮南矿区煤矸石理化性质变化规律[J]. 农业工程学报,2017,33(3):168−174. YAN Jiaping,CHEN Xiaoyang,CAI Yi,et al. Physicochemical property change regularities of coal gangue with different weathering ages in Huainan minging area[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(3):168−174.
[22] LIU L,GE Z L,ZHOU Z,et al. Mineral composition,pore structure and mechanical properties of coal measure strata rocks:A case study of Pingdingshan Coalfield[J]. Science of The Total Environment,2024,952:175944. doi: 10.1016/j.scitotenv.2024.175944
[23] 王学霞,于梅,王烨敏,等. 微细粒煤泥浮选分离强化方法及技术研究进展[J]. 洁净煤技术,2024,30(8):185−202. WANG Xuexia,YU Mei,WANG Yemin,et al. Research progress on methods and technologies for enhancing flotation separation of fine coal slime[J]. Clean Coal Technology,2024,30(8):185−202.
[24] 魏雅娟,王群英,李小江,等. 粉煤灰和固硫灰填充天然橡胶的性能比较[J]. 科学技术与工程,2018,18(8):266−270. WEI Yajuan,WANG Qunying,LI Xiaojiang,et al. Comparison on performance of natural rubber reinforced by normal fly ash/circulating fluid bed ash[J]. Science Technology and Engineering,2018,18(8):266−270.
[25] 何宏舟,过伟丽. 循环流化床锅炉炉内脱硫灰渣的水化特性研究[J]. 煤炭转化,2010,33(3):72−75. HE Hongzhou,GUO Weili. Study on the hydrating capacity of the desulfurization slag of cfb boiler[J]. Coal Conversion,2010,33(3):72−75.
[26] 李端乐,王栋民,任才富. 磨细循环流化床粉煤灰–石灰的水化特性[J]. 科学技术与工程,2020,20(28):11735−11739. LI Duanle,WANG Dongmin,REN Caifu. Hydration characteristics of grinding circulating fluidized bed fly ash-lime[J]. Science Technology and Engineering,2020,20(28):11735−11739.
[27] ZHAO S L,DUAN Y F,LIU M,et al. Effects on enrichment characteristics of trace elements in fly ash by adding halide salts into the coal during CFB combustion[J]. Journal of the Energy Institute,2018,91(2):214−221. doi: 10.1016/j.joei.2016.12.003
[28] BHATT A,PRIYADARSHINI S,ACHARATH MOHANAKRISHNAN A,et al. Physical,chemical,and geotechnical properties of coal fly ash:A global review[J]. Case Studies in Construction Materials,2019,11:e00263. doi: 10.1016/j.cscm.2019.e00263
[29] 王丽萍,李超. 粉煤灰资源化技术开发与利用研究进展[J]. 矿产保护与利用,2019,39(4):38−45. WANG Liping,LI Chao. Research progress on development and utilization of fly ash resource technology[J]. Conservation and Utilization of Mineral Resources,2019,39(4):38−45.
[30] 刘杨. 两部委关于印发《现代煤化工产业创新发展布局方案》的通知,中国政府网[EB/OL]. [2025−01−05]. https://www.gov.cn/xinwen/2017-03/27/content_5181130.htm. [31] 屈慧升,索永录,刘浪,等. 改性煤气化渣基矿用充填材料制备与性能[J]. 煤炭学报,2022,47(5):1958−1973. QU Huisheng,SUO Yonglu,LIU Lang,et al. Preparation and properties of modified coal gasification slag-based filling materials for mines[J]. Journal of China Coal Society,2022,47(5):1958−1973.
[32] 曲江山,张建波,孙志刚,等. 煤气化渣综合利用研究进展[J]. 洁净煤技术,2020,26(1):184−193. QU Jiangshan,ZHANG Jianbo,SUN Zhigang,et al. Research progress on comprehensive utilization of coal gasification slag[J]. Clean Coal Technology,2020,26(1):184−193.
[33] 范宁,张逸群,樊盼盼,等. 煤气化渣特性分析及资源化利用研究进展[J]. 洁净煤技术,2022,28(8):145−154. FAN Ning,ZHANG Yiqun,FAN Panpan,et al. Research progress on characteristic analysis and resource utilization of coal gasification slag[J]. Clean Coal Technology,2022,28(8):145−154.
[34] 乔会,左岳,屈洁,等. 煤气化渣残碳的分离及应用研究进展[J]. 洁净煤技术,2024,30(S2):103−111. QIAO Hui,ZUO Yue,QU Jie,et al. Reviews on separation and application of residual carbon from coal gasification slag[J]. Clean Coal Technology,2024,30(S2):103−111.
[35] ZHAO G Z,CHANG F Y,CHEN J X,et al. Research and prospect of underground intelligent coal gangue sorting technology:A review[J]. Minerals Engineering,2024,215:108818. doi: 10.1016/j.mineng.2024.108818
[36] 梁卫国,郭凤岐,于永军,等. 煤矸石井下原位智能分选充填技术研究进展[J]. 煤炭科学技术,2024,52(4):12−27. LIANG Weiguo,GUO Fengqi,YU Yongjun,et al. Research progress on in situ intelligent sorting and filling technology of coal gangue underground[J]. Coal Science and Technology,2024,52(4):12−27.
[37] 郭秀军. 煤矸石分选技术研究与应用[J]. 煤炭工程,2017,49(1):74−76. GUO Xiujun. Research and application of coal gangue separation technology[J]. Coal Engineering,2017,49(1):74−76.
[38] 赵卫. 井下煤矸石分选系统可行性研究分析[J]. 煤,2021,30(2):100−101. ZHAO Wei. Feasibility analysis of coal gangue separation system in coal mine[J]. Coal,2021,30(2):100−101.
[39] 曹庆一,任文颖,梁朝铭,等. 中国煤中有害微量元素含量的空间分布[J]. 煤田地质与勘探,2022,50(5):13−22. CAO Qingyi,REN Wenying,LIANG Chaoming,et al. Spatial distribution of harmful trace elements in Chinese coals[J]. Coal Geology & Exploration,2022,50(5):13−22.
[40] 秦身钧,徐飞,崔莉,等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术,2022,50(3):1−38. QIN Shenjun,XU Fei,CUI Li,et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology,2022,50(3):1−38.
[41] ZHU M B,XIE G,LIU L,et al. Strengthening mechanism of granulated blast-furnace slag on the uniaxial compressive strength of modified magnesium slag-based cemented backfilling material[J]. Process Safety and Environmental Protection,2023,174:722−733. doi: 10.1016/j.psep.2023.04.031
[42] NÁDUDVARI Á,KOZIELSKA B,ABRAMOWICZ A,et al. Heavy metal- and organic-matter pollution due to self-heating coal-waste dumps in the Upper Silesian Coal Basin (Poland)[J]. Journal of Hazardous Materials,2021,412:125244. doi: 10.1016/j.jhazmat.2021.125244
[43] YUAN Z J,SHI S H,WU X G,et al. Aliphatic and polycyclic aromatic compounds in coal and coal-based solid wastes:Relationship with coal-forming paleoenvironment and implications for environmental pollution[J]. Science of The Total Environment,2024,951:175394. doi: 10.1016/j.scitotenv.2024.175394
[44] LV Y,LIU L,YANG P,et al. Study on leaching and curing mechanism of heavy metals in magnesium coal based backfill materials[J]. Process Safety and Environmental Protection,2023,177:1393−1402. doi: 10.1016/j.psep.2023.07.084
[45] YAO C,SHEN Z J,WANG Y M,et al. Tracing and quantifying the source of heavy metals in agricultural soils in a coal gangue stacking area:Insights from isotope fingerprints and receptor models[J]. Science of The Total Environment,2023,863:160882. doi: 10.1016/j.scitotenv.2022.160882
[46] DU Z,HONG X P,YANG K,et al. Enrichment characteristics of polycyclic aromatic hydrocarbons in coal gangue of the Huaibei Coalfield,China[J]. Environmental Technology & Innovation,2024,36:103769.
[47] WANG Y F,TANG Y G,LIU S Q,et al. Behavior of trace elements and mineral transformations in the super-high organic sulfur Ganhe coal during gasification[J]. Fuel Processing Technology,2018,177:140−151. doi: 10.1016/j.fuproc.2018.04.019
[48] 邵龙义,张亚星,耿苏倩,等. 煤矿固体废弃物理化特征及生态环境影响研究[J]. 矿业科学学报,2024,9(5):653−667. SHAO Longyi,ZHANG Yaxing,GENG Suqian,et al. Physicochemical characteristics and environmental impact of coal mine solid waste[J]. Journal of Mining Science and Technology,2024,9(5):653−667.
[49] LU X W,WANG Z Z,CHEN Y R,et al. Source–specific probabilistic risk evaluation of potentially toxic metal(loid)s in fine dust of college campuses based on positive matrix factorization and Monte Carlo simulation[J]. Journal of Environmental Management,2023,347:119056. doi: 10.1016/j.jenvman.2023.119056
[50] FENG F S,SUN J,DING L,et al. Migration patterns of heavy metals from solid waste stockpile soils by native plants for ecological restoration in arid and semi-arid regions of Northwest China[J]. Environmental Research,2024,251:118607. doi: 10.1016/j.envres.2024.118607
[51] 陈秀端,卢新卫. 城市道路灰尘中重金属和多环芳烃污染特征研究[J]. 环境保护科学,2021,47(2):161−166. CHEN Xiuduan,LU Xinwei. Pollution characteristics of heavy metals and PAHs in urban road dust[J]. Environmental Protection Science,2021,47(2):161−166.
[52] 花洁,王健媛,陈运帷,等. 煤矿矿区土壤重金属及多环芳烃污染治理修复技术综述[J]. 环境工程技术学报,2024,14(1):139−147. HUA Jie,WANG Jianyuan,CHEN Yunwei,et al. A review of heavy metal and polycyclic aromatic hydrocarbon pollution treatment and remediation technologies in coal mine soils[J]. Journal of Environmental Engineering Technology,2024,14(1):139−147.
[53] ZHAO X Y,YANG K,DINO G A,et al. Feasibility and challenges of multi-source coal-based solid waste (CSW) for underground backfilling − A case study[J]. Process Safety and Environmental Protection,2024,181:8−25. doi: 10.1016/j.psep.2023.11.013
[54] CHEN Y,FAN Y J,HUANG Y,et al. A comprehensive review of toxicity of coal fly ash and its leachate in the ecosystem[J]. Ecotoxicology and Environmental Safety,2024,269:115905. doi: 10.1016/j.ecoenv.2023.115905
[55] GUO F H,GUO Y,CHEN L Q,et al. Multitudinous components recovery,heavy metals evolution and environmental impact of coal gasification slag:A review[J]. Chemosphere,2023,338:139473. doi: 10.1016/j.chemosphere.2023.139473
[56] GUO Y W,LI X D,LI Q Z,et al. Environmental impact assessment of acidic coal gangue leaching solution on groundwater:A coal gangue pile in Shanxi,China[J]. Environmental Geochemistry and Health,2024,46(4):120. doi: 10.1007/s10653-024-01861-3
[57] 徐晶晶,张继伟,崔树军,等. 煤矸石山酸性废水污染控制技术研究进展[J]. 中国矿业,2017,26(1):43−48 XU Jingjing,ZHANG Jiwei,CUI Shujun,et al. Research progress in pollution control technologies of acidic wastewater from coal gangue[J]. China Mining Magazine,2017,26(1):43−48.
[58] KUMARI M,BHATTACHARYA T. A review on bioaccessibility and the associated health risks due to heavy metal pollution in coal mines:Content and trend analysis[J]. Environmental Development,2023,46:100859. doi: 10.1016/j.envdev.2023.100859
[59] LI J M,LI X T,HUANG Y L,et al. Dynamic leaching behaviors of heavy metals from recycled coal gangue aggregate under loading conditions during solid backfill mining[J]. Environmental Pollution,2024,362:125028. doi: 10.1016/j.envpol.2024.125028
[60] LI J Y,WANG J M. Comprehensive utilization and environmental risks of coal gangue:A review[J]. Journal of Cleaner Production,2019,239:117946. doi: 10.1016/j.jclepro.2019.117946
[61] ZHAO Y C,ZHANG J Y,CHOU C L,et al. Trace element emissions from spontaneous combustion of gob piles in coal mines,Shanxi,China[J]. International Journal of Coal Geology,2008,73(1):52−62. doi: 10.1016/j.coal.2007.07.007
[62] GUO W K,CHEN B,LI G Y,et al. Ambient PM2.5 and related health impacts of spontaneous combustion of coal and coal gangue[J]. Environmental Science & Technology,2021,55(9):5763−5771.
[63] HOU H M,SU L J,GUO D F,et al. Resource utilization of solid waste for the collaborative reduction of pollution and carbon emissions:Case study of fly ash[J]. Journal of Cleaner Production,2023,383:135449. doi: 10.1016/j.jclepro.2022.135449
[64] ZHANG Y B,ZHANG Y T,SHI X Q,et al. Co-spontaneous combustion of coal and gangue:Thermal behavior,kinetic characteristics and interaction mechanism[J]. Fuel,2022,315:123275. doi: 10.1016/j.fuel.2022.123275
[65] 刘浪,罗屹骁,朱梦博,等. 建筑物下特厚煤层镁渣基全固废连采连充开采技术与实践[J]. 煤炭科学技术,2024,52(4):83−92. LIU Lang,LUO Yixiao,ZHU Mengbo,et al. Mining technology and practice of full-solid waste cemented backfilling in narrow strip of extra-thick coal seam under buildings[J]. Coal Science and Technology,2024,52(4):83−92.
[66] 轩大洋,许家林,王秉龙. 覆岩隔离注浆充填绿色开采技术[J]. 煤炭学报,2022,47(12):4265−4277. XUAN Dayang,XU Jialin,WANG Binglong. Green mining technology of overburden isolated grout injection[J]. Journal of China Coal Society,2022,47(12):4265−4277.
[67] 朱磊,古文哲,宋天奇,等. 采空区煤矸石浆体充填技术研究进展与展望[J]. 煤炭科学技术,2023,51(2):143−154. ZHU Lei,GU Wenzhe,SONG Tianqi,et al. Research progress and prospect of coal gangue slurry backfilling technology in goaf[J]. Coal Science and Technology,2023,51(2):143−154.
[68] 王比比,郭文兵,郭明杰,等. 村庄下孤岛工作面开采覆岩离层注浆减沉技术研究[J/OL]. 煤炭学报,1−12,[2024−11−25].https://doi.org/10.13225/j.cnki.jccs.2024.0884. WANG Bibi,GUO Wenbing,GUO Mingjie,et al. Research on grouting subsidence reduction technology of overburden separation layer in isolated working face mining under village[J/OL]. Journal of China Coal Society,1−12,[2024−11−25].https://doi.org/10.13225/j.cnki.jccs.2024.0884.
[69] 杨科,何淑欣,何祥,等. 煤电化基地大宗固废“三化” 协同利用基础与技术[J]. 煤炭科学技术,2024,52(4):69−82. YANG Ke,HE Shuxin,HE Xiang,et al. Foundation and technology of coordinated utilization of bulk solid waste “Three modernizations” in coal power base[J]. Coal Science and Technology,2024,52(4):69−82.
[70] YAN P F,MA Z G,LI H B,et al. Study on frost resistance and freeze-thaw damage deterioration mechanism of cement-stabilized pure coal-based solid waste as pavement base material[J]. Construction and Building Materials,2024,450:138598. doi: 10.1016/j.conbuildmat.2024.138598
[71] ZHAO X,LI W X,ZHANG X R,et al. Low-temperature preparation of lightweight ceramic proppants using high-proportioned coal-based solid wastes[J]. Ceramics International,2024,50(11):18117−18124. doi: 10.1016/j.ceramint.2024.02.295
[72] LIU T Y,LIU J,YANG Q Z,et al. Sustainable use of coal gangue and other wastes in lightweight material:Physical-mechanical,environmental security and synergistic mechanisms[J]. Ceramics International,2025,51(2):2244−2258. doi: 10.1016/j.ceramint.2024.11.202
[73] 裘国华,徐扬,施正伦,等. 煤矸石代替黏土生产水泥可行性分析[J]. 浙江大学学报(工学版),2010,44(5):1003−1008. QIU Guohua,XU Yang,SHI Zhenglun,et al. Feasibility analysis on utilization of coal gangue as clay for cement[J]. Journal of Zhejiang University (Engineering Science),2010,44(5):1003−1008.
[74] 裘国华,施正伦,余春江,等. 煤矸石代黏土煅烧水泥熟料配方优化试验研究[J]. 浙江大学学报(工学版),2010,44(1):130. QIU Guohua,SHI Zhenglun,YU Chunjiang,et al. Experimental research on utilization of coal gangue as clay for optimized formula on cement clinker calcination[J]. Journal of Zhejiang University (Engineering Science),2010,44(1):130.
[75] 王培铭,刘贤萍,胡曙光,等. 硅酸盐熟料-煤矸石/粉煤灰混合水泥水化模型研究[J]. 硅酸盐学报,2007(S1):180−186. WANG Peiming,LIU Xianping,HU Shuguang,et al. Hydration models of Portland coal gangue cement and Portland fly ash cement[J]. Journal of the Chinese Ceramic Society,2007(S1):180−186.
[76] WU C L,JIANG W,ZHANG C,et al. Preparation of solid-waste-based pervious concrete for pavement:A two-stage utilization approach of coal gangue[J]. Construction and Building Materials,2022,319:125962. doi: 10.1016/j.conbuildmat.2021.125962
[77] 刘晓霞 . 为大自然“疗伤”宝日希勒创伤“初愈”[N/OL]. 内蒙古日报,2014−09−18 [2022−08−10]. http://inews.nmgnews. com.cn/system/2014/09/18/011537722 01.shtml. [78] SUN W,WANG H J,HOU K P. Control of waste rock-tailings paste backfill for active mining subsidence areas[J]. Journal of Cleaner Production,2018,171:567−579. doi: 10.1016/j.jclepro.2017.09.253
[79] 王双明,杜华栋,王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报,2017,42(1):17−26. WANG Shuangming,DU Huadong,WANG Shengquan. Analysis of damage process and mechanism for plant community and soil properties at northern Shenmu subsidence mining area[J]. Journal of China Coal Society,2017,42(1):17−26.
[80] GUO G L,FENG W K,ZHA J F,et al. Subsidence control and farmland conservation by solid backfilling mining technology[J]. Transactions of Nonferrous Metals Society of China,2011,21:s665−s669. doi: 10.1016/S1003-6326(12)61659-8
[81] LIU Z,LIU S J,GAO L N,et al. Long-term recovery of compacted reclaimed farmland soil in coal mining subsidence area[J]. Ecological Indicators,2024,168:112758. doi: 10.1016/j.ecolind.2024.112758
[82] 张世文,蔡慧珍,张燕海,等. 煤矿区土壤细菌群落结构及其对不同复垦模式的响应[J]. 煤炭科学技术,2024,52(2):338−349. ZHANG Shiwen,CAI Huizhen,ZHANG Yanhai,et al. Soil bacterial community structure in coal mining area and its response to different reclamation patterns[J]. Coal Science and Technology,2024,52(2):338−349.
[83] 孙纪杰,李新举,李海燕,等. 煤矿塌陷区不同复垦材料土壤压实机理的研究[J]. 煤炭学报,2013,38(12):2215−2220. SUN Jijie,LI Xinju,LI Haiyan,et al. Soil composition mechanism research of different reclamation material in coal mining subsidence area[J]. Journal of China Coal Society,2013,38(12):2215−2220.
[84] 胡振琪,理源源,李根生,等. 碳中和目标下矿区土地复垦与生态修复的机遇与挑战[J]. 煤炭科学技术,2023,51(1):474−483. HU Zhenqi,LI Yuanyuan,LI Gensheng,et al. Opportunities and challenges of land reclamation and ecological restoration in mining areas under carbon neutral target[J]. Coal Science and Technology,2023,51(1):474−483.
[85] 卞正富,雷少刚,金丹,等. 矿区土地修复的几个基本问题[J]. 煤炭学报,2018,43(1):190−197. BIAN Zhengfu,LEI Shaogang,JIN Dan,et al. Several basic scientific issues related to mined land remediation[J]. Journal of China Coal Society,2018,43(1):190−197.
[86] 胡振琪. 矿山复垦土壤重构的理论与方法[J]. 煤炭学报,2022,47(7):2499−2515. HU Zhenqi. Theory and method of soil reconstruction of reclaimed mined land[J]. Journal of China Coal Society,2022,47(7):2499−2515.
[87] 郭文兵,赵高博,白二虎,等. 中部矿粮复合区采煤沉陷及耕地损毁研究现状与展望[J]. 煤炭学报,2023,48(1):388−401. GUO Wenbing,ZHAO Gaobo,BAI Erhu,et al. Research status and prospect on cultivated land damage at surface subsidence basin due to longwall mining in the central coal grain compound area[J]. Journal of China Coal Society,2023,48(1):388−401.
[88] 徐良骥,李青青,朱小美,等. 煤矸石充填复垦重构土壤重金属含量高光谱反演[J]. 光谱学与光谱分析,2017,37(12):3839−3844. XU Liangji,LI Qingqing,ZHU Xiaomei,et al. Hyperspectral inversion of heavy metal content in coal gangue filling reclamation land[J]. Spectroscopy and Spectral Analysis,2017,37(12):3839−3844.
[89] LAL R,HALL G F,MILLER F P. Soil degradation:I. basic processes[J]. Land Degradation & Development,1989,1(1):51−69.
[90] 胡振琪,康惊涛,魏秀菊,等. 煤基混合物对复垦土壤的改良及苜蓿增产效果[J]. 农业工程学报,2007,23(11):120−124. doi: 10.3321/j.issn:1002-6819.2007.11.020 HU Zhenqi,KANG Jingtao,WEI Xiuju,et al. Experimental research on improvement of reclaimed soil properties and plant production based on different ratioes of coal-based mixed materials[J]. Transactions of the Chinese Society of Agricultural Engineering,2007,23(11):120−124. doi: 10.3321/j.issn:1002-6819.2007.11.020
[91] JALA S,GOYAL D. Fly ash as a soil ameliorant for improving crop production:A review[J]. Bioresource Technology,2006,97(9):1136−1147. doi: 10.1016/j.biortech.2004.09.004
[92] ZHOU C Z,WANG J H,WANG Q,et al. Simultaneous adsorption of Cd and as by a novel coal gasification slag based composite:Characterization and application in soil remediation[J]. Science of The Total Environment,2023,882:163374. doi: 10.1016/j.scitotenv.2023.163374
[93] 李明珠,张文超,王淑娟,等. 适宜脱硫石膏施用方式改良河套灌区盐碱土提高向日葵产量[J]. 农业工程学报,2022,38(6):89−95. LI Mingzhu,ZHANG Wenchao,WANG Shujuan,et al. Suitable application of flue gas desulphurized gypsum to improve the sunflower yield in saline-alkali soil in the Hetao irrigation areas of Inner Mongolia[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(6):89−95.
[94] SHEN W Y,FENG Z J,SONG H P,et al. Effects of solid waste-based soil conditioner and arbuscular mycorrhizal fungi on crop productivity and heavy metal distribution in foxtail millet (Setaria italica)[J]. Journal of Environmental Management,2022,313:114974. doi: 10.1016/j.jenvman.2022.114974
[95] 巩文辉,朱晓波,李望,等. 煤矸石原生菌溶磷效果分析及产酸性能优化[J]. 煤炭科学技术,2023,51(S1):449−460. GONG Wenhui,ZHU Xiaobo,LI Wang,et al. Analysis of phosphate dissolving effect and optimization of acid producing capacity of coal gangue protobacteria[J]. Coal Science and Technology,2023,51(S1):449−460.
[96] 秦琪焜,方健梅,王根柱,等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术,2022,50(7):304−314. QIN Qikun,FANG Jianmei,WANG Genzhu,et al. Experimental study of planting substrate mixed with coal gangue and municipal sludge[J]. Coal Science and Technology,2022,50(7):304−314.
[97] 朱菊芬,李健,闫龙,等. 煤气化渣资源化利用研究进展及应用展望[J]. 洁净煤技术,2021,27(6):11−21 ZHU Jufen,LI Jian,YAN Long,et al. Research progress and application prospect of coal gasification slag resource utilization[J]. Clean Coal Technology,2021,27(6):11−21.
[98] 刘成龙,谢宇充,夏举佩,等. 煤矸石中和渣酸化提取铝、钛实验研究[J]. 硅酸盐通报,2015,34(4):966−972. LIU Chenglong,XIE Yuchong,XIA Jupei,et al. Study on extracting aluminum and titanium from neutral residues of coal gangue by acid leaching[J]. Bulletin of the Chinese Ceramic Society,2015,34(4):966−972.
[99] 李振,雪佳,朱张磊,等. 煤矸石综合利用研究进展[J]. 矿产保护与利用,2021,41(6):165−178. LI Zhen,XUE Jia,ZHU Zhanglei,et al. Research progress on comprehensive utilization of coal gangue[J]. Conservation and Utilization of Mineral Resources,2021,41(6):165−178.
[100] 刘建功,李新旺,何团. 我国煤矿充填开采应用现状与发展[J]. 煤炭学报,2020,45(1):141−150. LIU Jiangong,LI Xinwang,HE Tuan. Application status and prospect of backfill mining in Chinese coal mines[J]. Journal of China Coal Society,2020,45(1):141−150.
[101] 刘浪,方治余,王双明,等. 煤矿充填固碳理论基础与技术构想[J]. 煤炭科学技术,2024,52(2):292−308. LIU Lang,FANG Zhiyu,WANG Shuangming,et al. Theoretical basis and technical conception of backfill carbon fixation in coal mine[J]. Coal Science and Technology,2024,52(2):292−308.
[102] 王双明,申艳军,孙强,等. “双碳” 目标下煤炭开采扰动空间CO2地下封存途径与技术难题探索[J]. 煤炭学报,2022,47(1):45−60. WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Underground CO2 storage and technical problems in coal mining area under the “dual carbon” target[J]. Journal of China Coal Society,2022,47(1):45−60.
[103] 刘浪,王双明,朱梦博,等. 基于功能性充填的CO2储库构筑与封存方法探索[J]. 煤炭学报,2022,47(3):1072−1086. LIU Lang,WANG Shuangming,ZHU Mengbo,et al. CO2 storage-cavern construction and storage method based on functional backfill[J]. Journal of China Coal Society,2022,47(3):1072−1086.
[104] 邱华富,刘浪,王美,等. 金属矿采矿—充填—建库协同系统及充填储库结构[J]. 石油学报,2018,39(11):1308−1316. QIU Huafu,LIU Lang,WANG Mei,et al. Mining-backfill-storage building synergetic system in metal mine and its backfill storage structure[J]. Acta Petrolei Sinica,2018,39(11):1308−1316.
[105] HUANG L,WANG D L,HE C,et al. Industrial wastewater desalination under uncertainty in coal-chemical eco-industrial parks[J]. Resources,Conservation and Recycling,2019,145:370−378.
[106] LU K,LÜ Y,BAI Y X,et al. Experimental investigation and theoretical modeling on scale behaviors of high salinity wastewater in zero liquid discharge process of coal chemical industry[J]. Chinese Journal of Chemical Engineering,2020,28(4):969−979. doi: 10.1016/j.cjche.2020.01.001
[107] SHI J X,HUANG W P,HAN H J,et al. Review on treatment technology of salt wastewater in coal chemical industry of China[J]. Desalination,2020,493:114640. doi: 10.1016/j.desal.2020.114640
[108] XIE G,LIU L,SUO Y L,et al. Study on the green disposal of industrial high salt water and its performance as activator to prepare magnesium-coal based solid waste backfill material for mine[J]. Journal of Cleaner Production,2024,452:141933. doi: 10.1016/j.jclepro.2024.141933
[109] ZHANG L F,WANG J Q,FU G K,et al. Simultaneous electricity generation and nitrogen and carbon removal in single-chamber microbial fuel cell for high-salinity wastewater treatment[J]. Journal of Cleaner Production,2020,276:123203. doi: 10.1016/j.jclepro.2020.123203
[110] ZHAO Y Y,ZHUANG X M,AHMAD S,et al. Biotreatment of high-salinity wastewater:Current methods and future directions[J]. World Journal of Microbiology and Biotechnology,2020,36(3):37. doi: 10.1007/s11274-020-02815-4
-
期刊类型引用(14)
1. 乔建伟. 多煤层开采残余煤柱—围岩联动破坏失稳灾害风险监测. 山东煤炭科技. 2025(01): 131-135 . 百度学术
2. 刘晓明. 浅埋近距离煤层采空区下综采面覆岩破断机理及压架预测. 煤炭技术. 2025(03): 25-30 . 百度学术
3. 陈学亚,张宁波,刘立明,陈宝宝,付世雄. 遗留煤柱扰动下薄间距动压巷道压裂卸压护巷技术研究. 煤炭工程. 2025(01): 42-51 . 百度学术
4. 杨健锋,刘泽宇,柴敬,高登彦,张丁丁,郝鸿儒,王佳琪,杨磊. 区段煤柱内部变形光纤监测应用研究. 采矿与岩层控制工程学报. 2025(02): 224-237 . 百度学术
5. 王想刚,贺虎,张世范,薛生华,贺永康,牛鑫,骆宇. 空间孤岛岩柱区特厚煤层整体卸压防冲-防突协同控制技术. 煤矿安全. 2025(05): 69-77 . 百度学术
6. 陈绍杰,刘江伟,李亚康,吕华. 底板动压巷道压裂弱结构体应力转移控制技术. 煤炭科学技术. 2024(01): 106-116 . 本站查看
7. 郭兴川,郑文贤. 近距离煤层综采工作面过上覆采空区煤柱技术研究. 山东煤炭科技. 2024(03): 16-19 . 百度学术
8. 赵凯,雍兴成,许宏阳,焦卫军,郑宗儒,杨海涛,张娣. 上覆遗留煤柱下工作面采动应力数值模拟及分析. 能源技术与管理. 2024(02): 73-77 . 百度学术
9. 崔峰,张随林,刘旭东,来兴平,姬松涛,冯攀飞,贾冲,陆长亮,王昊. 急倾斜巨厚煤层复杂空间结构区微震时空演化规律及诱冲机理. 煤炭学报. 2024(04): 1786-1803 . 百度学术
10. 王林涛,郑凯歌,张俭,杨森,程志明,张超. 神东矿区遗留煤柱间隔岩层顶板破坏特征分析. 陕西煤炭. 2024(08): 39-45 . 百度学术
11. 黄庆享,张谦,贺雁鹏,陈苏社,王庆雄. 浅埋近距离煤层过平行煤柱开采强矿压机理研究. 采矿与岩层控制工程学报. 2024(05): 4-15 . 百度学术
12. 高剑峰,顾倩悦,解嘉豪,曹安业,韩刚,彭雨杰,丁国利,李松徽. 近距离煤层群保护层开采卸压效果分析研究. 煤炭技术. 2024(12): 49-55 . 百度学术
13. 刘用,王红伟,吴学松,田程鹏,关荣福,聂云枭,范志伟,曹沛沛. 上分层遗留区段煤柱下斜交工作面综放开采覆岩结构演化特征. 工矿自动化. 2024(12): 46-58 . 百度学术
14. 李文强,杨建彬,马景年,刘瑞鹏,李佳慧. 浅埋近距离煤层工作面过遗留煤柱压架机理及防治措施研究. 中国煤炭. 2023(S2): 194-201 . 百度学术
其他类型引用(5)