高级检索

煤气化渣免烧陶粒滤料强度和孔结构的调控

孙浩, 蒋林亮, 常新卓, 田全志

孙 浩,蒋林亮,常新卓,等. 煤气化渣免烧陶粒滤料强度和孔结构的调控[J]. 煤炭科学技术,2025,53(6):191−201. DOI: 10.12438/cst.2025-0312
引用本文: 孙 浩,蒋林亮,常新卓,等. 煤气化渣免烧陶粒滤料强度和孔结构的调控[J]. 煤炭科学技术,2025,53(6):191−201. DOI: 10.12438/cst.2025-0312
SUN Hao,JIANG Linliang,CHANG Xinzhuo,et al. Regulation on strength and pore structure of non-sintered ceramsite filter material derived from coal gasification slag[J]. Coal Science and Technology,2025,53(6):191−201. DOI: 10.12438/cst.2025-0312
Citation: SUN Hao,JIANG Linliang,CHANG Xinzhuo,et al. Regulation on strength and pore structure of non-sintered ceramsite filter material derived from coal gasification slag[J]. Coal Science and Technology,2025,53(6):191−201. DOI: 10.12438/cst.2025-0312

煤气化渣免烧陶粒滤料强度和孔结构的调控

基金项目: 

内蒙古自治区重点研发与科技成果转化计划资助项目(2022YFHH0105);准格尔旗科技重大专项资助项目(2024ZD-02)

详细信息
    作者简介:

    孙浩: (1991—),男,陕西宜川人,副教授,博士。E-mail:09kwjgsh@cumt.edu.cn

  • 中图分类号: TU52

Regulation on strength and pore structure of non-sintered ceramsite filter material derived from coal gasification slag

  • 摘要:

    煤气化渣是制备免烧陶粒滤料的优质原材料,而强度和孔结构是决定免烧陶粒过滤性能的关键因素,因此必须明确免烧陶粒强度和孔结构之间的关系。通过优化煤气化渣、偏高岭土和固体碱激发剂等原料配比,制备了筒压强度为25.72 MPa、堆积密度为1 160 kg/m3的煤气化渣免烧陶粒滤料,综合运用X射线衍射、扫描电子显微镜和固体核磁共振硅谱等表征方法,研究了免烧陶粒滤料的强度形成机理,发现免烧陶粒的主要强度来源为水化硅铝酸钠/钙(N/C-A-S-H)凝胶,偏高岭土的加入使N/C-A-S-H凝胶中的Q4(2Al)聚体含量40.34%提升至56.05%,这使得硅铝酸盐网络交联程度更高,因此N/C-A-S-H凝胶结构更加致密,促进了免烧陶粒力学性能的提升。采用过氧化氢和十六烷基三甲基溴化铵作为造孔剂,结合压汞法测试分析,研究了造孔剂配比对免烧陶粒滤料孔隙率、强度和密度的影响。结果表明:免烧陶粒孔隙率21.33%可最高增长至50.60%,相应筒压强度和堆积密度降低至8.86 MPa和816 kg/m3。进一步采用Menger海绵和热力学分形理论分析了免烧陶粒滤料的孔结构特征,发现基于热力学关系的分形模型计算所得的分形维数与免烧陶粒滤料强度的线性相关性更高,所得分形维数范围为2.770~2.891,说明煤气化渣免烧陶粒的孔隙结构不仅受几何分形的影响还受到热力学机制的影响,且煤气化渣免烧陶粒的筒压强度均随着分形维数的增加而下降。

    Abstract:

    Gasified coal slag serves as a high-quality raw material for preparing non-sintered ceramsite filter media, where mechanical strength and pore structure are critical determinants of filtration performance. Therefore, it is imperative to elucidate the relationship between strength and pore structure in non-sintered ceramsite. By optimizing the formulation of gasified coal slag, metakaolin, and solid alkali activators to develop a non-sintered ceramsite filter material exhibiting a cylinder compressive strength of 25.72 MPa and a bulk density of 1160 kg/m3. Through comprehensive characterization techniques including X-ray diffraction (XRD), scanning electron microscopy (SEM), and solid-state nuclear magnetic resonance silicon spectroscopy (29Si NMR), the strength formation mechanism was investigated. Results revealed that sodium/calcium aluminosilicate hydrate (N/C-A-S-H) gel constitutes the primary strength-contributing phase. The incorporation of metakaolin elevated the Q4(2Al) polymer content in N/C-A-S-H gel from 40.34% to 56.05%, thereby enhancing the crosslinking degree of the aluminosilicate network and densifying the gel structure, which ultimately improved the mechanical properties. Pore-forming agents (hydrogen peroxide and cetyltrimethylammonium bromide) were employed to modulate porosity, combined with mercury intrusion porosimetry, the effect of pore forming agent ratio on the porosity, strength, and density of ceramsite was investigated. It was demonstrated that the porosity could increase from 21.33% to a maximum of 50.60%, accompanied by reductions in cylinder compressive strength (8.86 MPa) and bulk density (816 kg/m3). Further analysis of the pore structure characteristics of non-sintered ceramsite was conducted using Menger sponge and thermodynamic fractal models. It was found that the fractal dimension calculated based on the thermodynamic fractal model had a higher linear correlation with the strength of ceramsite, with fractal dimension values ranging from 2.770 to 2.891. This indicates that pore structure evolution in gasified coal slag-based ceramsite is governed by both geometric configuration and thermodynamic mechanisms, with compressive strength inversely proportional to fractal dimension.

  • 图  1   煤气化渣免烧陶粒的制备流程

    Figure  1.   Preparation protocol of CGS based non-sintered ceramsite

    图  2   碱激发剂添加量和偏高岭土添加量对煤气化渣免烧陶粒强度和堆积密度的影响

    Figure  2.   Effect of alkali activator content and metakaolin content on cyclic compressive strength and bulk density of CGS based non-sintered ceramsite

    图  3   煤气化渣陶粒的XRD谱图

    Figure  3.   XRD patterns of CGS based non-sintered ceramsite

    图  4   煤气化渣陶粒的SEM图

    Figure  4.   SEM images of non-sintered ceramsite based on CGS

    图  5   煤气化渣、偏高岭土、未添加偏高岭土和添加20%偏高岭土煤气化渣陶粒的29Si NMR谱图

    Figure  5.   29Si NMR spectrums of CGS, MK and CGS based ceramsites containing 0 and 20% metakaolin

    图  6   煤气化渣免烧陶粒中不同结构硅配体的相对含量

    Figure  6.   Normalized summary of Q4(mAl) Si coordination environments in CGS based non-sintered ceramsite

    图  7   煤气化渣免烧陶粒的孔径分布曲线和累计孔容

    Figure  7.   Pore size distribution and cumulative pore volume of CGS based non-sintered ceramsite

    图  8   基于Menger海绵模型的分形维数拟合曲线

    Figure  8.   Fitting curves of fractal dimension based on Menger model

    图  9   基于热力学模型的分形维数拟合曲线

    Figure  9.   Fitting curves of fractal dimension based on thermodynamics model

    图  10   基于Menger海绵模型和热力学模型的分形维数与筒压强度拟合曲线

    Figure  10.   Fitting curves of the fractal dimension and cyclic compressive strength of Menger sponge model and thermodynamics model

    表  1   煤气化渣免烧陶粒的孔隙体积和筒压强度参数

    Table  1   Pore volume and cyclic compressive strength values of different CGS based non-sintered ceramsite variants

    样品编号 H2O2添加量/% CTAB添加量/% 强度/MPa 密度/
    (kg·m−3
    孔隙率/% 孔容/(mL·g−1
    <10 nm 10~100 nm 100~1 000 nm >1 000 nm
    C0 0 0 25.72 1 121 21.33 0.005 0.032 0.013 0.073
    C1 1 0.1 23.28 1 014 42.03 0.024 0.066 0.004 0.232
    C2 1 0.3 14.23 984 39.91 0.004 0.119 0.010 0.144
    C3 1 0.5 8.86 816 50.60 0.003 0.167 0.038 0.251
    C4 3 0.1 11.31 915 36.09 0.004 0.138 0.012 0.090
    C5 3 0.3 7.57 808 41.78 0.122 0.118 0.058 0.137
    C6 3 0.5 7.83 834 45.95 0.010 0.122 0.049 0.183
    下载: 导出CSV

    表  2   基于Menger模型和热力学模型计算的煤气化渣免烧陶粒孔结构分形维数

    Table  2   Fractal dimension values of CGS based non-sintered ceramsite variants based on Menger and thermodynamics models

    样品编号Menger模型热力学模型
    拟合公式分形维数Ds拟合公式分形维数Ds
    C1y=−1.062x−2.0432.938y=2.770x+7.3192.770
    C2y=−0.995x−1.9213.005y=2.876x+8.9502.876
    C3y=−1.053x−1.6792.947y=2.885x+8.9892.885
    C4y=−1.005x−1.9382.995y=2.891x+9.3142.891
    C5y=−0.971x−1.7683.029y=2.887x+9.4942.887
    C6y=−0.979x−1.7043.021y=2.885x+9.2722.885
    下载: 导出CSV
  • [1] 冯向港,王海燕,葛奋飞,等. 煤气化渣高值化利用的研究进展及应用展望[J]. 洁净煤技术,2023,29(11):122−132.

    FENG Xianggang,WANG Haiyan,GE Fenfei,et al. Research progress and application prospect of high-value utilization of coal gasification slag[J]. Clean Coal Technology,2023,29(11):122−132.

    [2] 许云龙,周长俊,刘晓敏,等. 路用煤气化渣混凝土的制备与微观结构[J]. 煤炭学报,2024,49(S1):424−433.

    XU Yunlong,ZHOU Changjun,LIU Xiaomin,et al. Preparation and microstructure of road coal gasification slag concrete[J]. Journal of China Coal Society,2024,49(S1):424−433.

    [3] 傅文煜,孙文强,王连勇. 煤气化渣资源化利用技术研究进展[J]. 环境工程,2023,41(12):319−328.

    FU Wenyu,SUN Wenqiang,WANG Lianyong. Advances in resource utilization technologies for coal gasification slag[J]. Environmental Engineering,2023,41(12):319−328.

    [4] 高海洋,梁龙,靳开宇,等. 煤气化渣资源化利用综述[J]. 煤炭科学技术,2024,52(8):192−208. doi: 10.12438/cst.2023-1147

    GAO Haiyang,LIANG Long,JIN Kaiyu,et al. Review on resource utilization of coal gasification slag[J]. Coal Science and Technology,2024,52(8):192−208. doi: 10.12438/cst.2023-1147

    [5] 乔会,左岳,屈洁,等. 煤气化渣残碳的分离及应用研究进展[J]. 洁净煤技术,2024,30(S2):103−111.

    QIAO Hui,ZUO Yue,QU Jie,et al. Research progress on separation and application of residual carbon from coal gasification slag[J]. Clean Coal Technology,2024,30(S2):103−111.

    [6] 王对雨,陈要平,杨科,等. 基于煤气化渣特性的环境功能材料制备与应用研究进展[J]. 化学通报,2024,87(1):67−77.

    WANG Duiyu,CHEN Yaoping,YANG Ke,et al. Research progress in the preparation and application of environmental functional materials based on the properties of coal gasification slag[J]. Chemistry,2024,87(1):67−77.

    [7] 王今华,张茂亮,白坡,等. 尾矿陶粒制备技术要点分析及应用研究进展[J]. 新型建筑材料,2024,51(8):7−12. doi: 10.3969/j.issn.1001-702X.2024.08.002

    WANG Jinhua,ZHANG Maoliang,BAI Po,et al. A review of ceramisite from tailings:Preparation technology and applications[J]. New Building Materials,2024,51(8):7−12. doi: 10.3969/j.issn.1001-702X.2024.08.002

    [8] 赵增丰,蒲紫盈,林璨,等. 免烧陶粒及陶粒混凝土性能研究进展[J]. 材料导报,2024,38(20):88−100.

    ZHAO Zengfeng,PU Ziying,LIN Can,et al. Research progress of cold-bonded aggregate and application in concrete production[J]. Materials Reports,2024,38(20):88−100.

    [9] 赵飞燕,张小东,杜艳霞,等. 粉煤灰陶粒的制备技术及研究进展[J]. 无机盐工业,2024,56(4):16−23.

    ZHAO Feiyan,ZHANG Xiaodong,DU Yanxia,et al. Preparation technology and research progress of fly ash ceramsite[J]. Inorganic Chemicals Industry,2024,56(4):16−23.

    [10] 张凯,刘舒豪,张日新,等. 免烧法煤气化粗渣制备陶粒工艺及其性能研究[J]. 煤炭科学技术,2018,46(10):222−227.

    ZHANG Kai,LIU Shuhao,ZHANG Rixin,et al. Research on preparation of non-sintered ceramsite from gasification cinder and its performance[J]. Coal Science and Technology,2018,46(10):222−227.

    [11] 孟凡宁,武陈,王岽,等. 粉煤灰免烧陶粒制备技术研究进展[J]. 化工环保,2024,44(3):301−306. doi: 10.3969/j.issn.1006-1878.2024.03.001

    MENG Fanning,WU Chen,WANG Dong,et al. Research progress on unburned ceramisite preparation technologies of fly ash[J]. Environmental Protection of Chemical Industry,2024,44(3):301−306. doi: 10.3969/j.issn.1006-1878.2024.03.001

    [12] 许事成,苏壮飞,刘泽,等. 硅灰掺量对免烧粉煤灰陶粒性能的影响[J]. 硅酸盐通报,2022,41(2):506−512. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202016

    XU Shicheng,SU Zhuangfei,LIU Ze,et al. Influence of silica fume content on performance of non-sintered fly ash ceramsite[J]. Bulletin of the Chinese Ceramic Society,2022,41(2):506−512. doi: 10.3969/j.issn.1001-1625.2022.2.gsytb202202016

    [13] 郝建英,穆保林,田玉明. 钢渣基免烧陶粒的制备及性能研究[J]. 太原科技大学学报,2021,42(5):399−402. doi: 10.3969/j.issn.1673-2057.2021.05.010

    HAO Jianying,MU Baolin,TIAN Yuming. Preparation and properties of burn-free ceramsite based on steel slag[J]. Journal of Taiyuan University of Science and Technology,2021,42(5):399−402. doi: 10.3969/j.issn.1673-2057.2021.05.010

    [14] 陈沁媛,闫一凡,赵振华,等. 固废基陶粒重金属固化效果及产品性能的影响因素研究进展[J]. 硅酸盐通报,2025,44(2):515−530.

    CHEN Qinyuan,YAN Yifan,ZHAO Zhenhua,et al. Research progress on factors influencing heavy metal solidification effect and product performance of solid waste-based ceramsite[J]. Bulletin of the Chinese Ceramic Society,2025,44(2):515−530.

    [15] 李沧,程霄智,矫辰,等. 赤泥-钢渣基免烧陶粒的制备及除磷特性研究[J]. 水处理技术,2024,50(10):38−43.

    LI Cang,CHENG Xiaozhi,JIAO Chen,et al. Study on preparation and phosphorus removal characteristics of red mud and steel slag based non-sintered ceramsite[J]. Technology of Water Treatment,2024,50(10):38−43.

    [16] 张祎旸,武陈,曹宗仑,等. 煤气化炉渣免烧陶粒的制备及其在反硝化滤池中的应用[J]. 现代化工,2024,44(S1):213−217.

    ZHANG Yiyang,WU Chen,CAO Zonglun,et al. Preparation of non-sintering coal gasification slag ceramsite and its application in denitrification filter[J]. Modern Chemical Industry,2024,44(S1):213−217.

    [17] 屈湃,王倩,黎佳全,等. 粉煤灰基免烧陶粒的表面沸石化及其对Cu2+吸附性能研究[J]. 现代技术陶瓷,2022,43(2):118−128.

    QU Pai,WANG Qian,LI Jiaquan,et al. Study on surface zeolization and Cu2+ adsorption of fly ash based non-roasting ceramsite[J]. Advanced Ceramics,2022,43(2):118−128.

    [18] 张瑞,鲁建国,姚华彦,等. 铁尾矿粉煤灰免烧陶粒的制备与物理力学特性[J]. 矿产综合利用,2024(6):21−26. doi: 10.3969/j.issn.1000-6532.2024.06.004

    ZHANG Rui,LU Jianguo,YAO Huayan,et al. Preparation and physico-mechanics properties of non-sintered ceramsite from iron tailing fly ash[J]. Multipurpose Utilization of Mineral Resources,2024(6):21−26. doi: 10.3969/j.issn.1000-6532.2024.06.004

    [19] 魏鑫,盘荣俊,周治洲,等. 粉煤灰免烧多孔保温陶粒的制备及孔结构调控研究[J]. 粉煤灰综合利用,2022,36(5):36−44.

    WEI Xin,PAN Rongjun,ZHOU Zhizhou,et al. Preparation and control of pore structure of porous insulating ceramsite with fly ash[J]. Fly Ash Comprehensive Utilization,2022,36(5):36−44.

    [20] 曾兴华,秦原,杨良,等. 锂云母渣免烧陶粒滤料制备及耐酸改性研究[J]. 非金属矿,2024,47(5):45−46,50. doi: 10.3969/j.issn.1000-8098.2024.05.011

    ZENG Xinghua,QIN Yuan,YANG Liang,et al. Study on preparation and acid resistance modification of lithium mica slag non-sintered ceramic filter material[J]. Non-Metallic Mines,2024,47(5):45−46,50. doi: 10.3969/j.issn.1000-8098.2024.05.011

    [21] 蒋明烨,胡贺松,刘春林,等. 地聚物泡沫材料的制备、性能与应用研究进展[J]. 广州建筑,2024,52(2):128−132. doi: 10.3969/j.issn.1671-2439.2024.02.031

    JIANG Mingye,HU Hesong,LIU Chunlin,et al. Research progress in preparation,properties and application of geopolymer foam materials:A review[J]. Guangzhou Architecture,2024,52(2):128−132. doi: 10.3969/j.issn.1671-2439.2024.02.031

    [22]

    JIN S S,ZHANG J X,HAN S. Fractal analysis of relation between strength and pore structure of hardened mortar[J]. Construction and Building Materials,2017,135:1−7. doi: 10.1016/j.conbuildmat.2016.12.152

    [23]

    ZHU Z D,HUO W W,SUN H,et al. Correlations between unconfined compressive strength,sorptivity and pore structures for geopolymer based on SEM and MIP measurements[J]. Journal of Building Engineering,2023,67:106011. doi: 10.1016/j.jobe.2023.106011

    [24]

    CAI J C,ZHANG L H,JU Y,et al. An introduction to fractal-based approaches in unconventional reservoirs:Part i[J]. Fractals,2018,26(2):1802001. doi: 10.1142/S0218348X18020012

    [25] 刘瑞平,王慧,郭飞,等. 粉煤灰-偏高岭土基地质聚合物发泡材料的制备与表征[J]. 矿业科学学报,2019,4(1):66−71.

    LIU Ruiping,WANG Hui,GUO Fei,et al. Preparation and characterization of fly ash-metakaolin based geopolymeric foaming materials[J]. Journal of Mining Science and Technology,2019,4(1):66−71.

    [26] 范张威. 煤体结构控制下的煤岩孔裂隙结构表征及其渗流特征研究[D]. 北京:中国地质大学(北京),2023.

    FAN Zhangwei. Characterization of pore and fracture structure and seepage characteristics of coal and rock under the control of coal structure[D]. Beijing:China University of Geosciences,2023.

    [27] 任超,邓乔,吕浩,等. 矿渣电石渣基地聚合物固化土力学特性及微观机理分析[J]. 河南科学,2024,42(10):1434−1442. doi: 10.3969/j.issn.1004-3918.2024.10.004

    REN Chao,DENG Qiao,LYU Hao,et al. Mechanical properties and micro-mechanism of polymer-consolidated soils on slag and electric slag bases[J]. Henan Science,2024,42(10):1434−1442. doi: 10.3969/j.issn.1004-3918.2024.10.004

    [28] 李文涛,王彩萍,曹红红,等. 粉煤灰-偏高岭土基地质聚合物混凝土的性能研究[J]. 中北大学学报(自然科学版),2025,46(1):124−132.

    LI Wentao,WANG Caiping,CAO Honghong,et al. Study on performance of fly ash-metakaolin base geopolymer concrete[J]. Journal of North University of China (Natural Science Edition),2025,46(1):124−132.

    [29]

    CHEN Z,LI J S,ZHAN B J,et al. Compressive strength and microstructural properties of dry-mixed geopolymer pastes synthesized from GGBS and sewage sludge ash[J]. Construction and Building Materials,2018,182:597−607. doi: 10.1016/j.conbuildmat.2018.06.159

    [30]

    LIN H,LIU H,LI Y,et al. Properties and reaction mechanism of phosphoric acid activated metakaolin geopolymer at varied curing temperatures[J]. Cement and Concrete Research,2021,144:106425. doi: 10.1016/j.cemconres.2021.106425

    [31] 汪其堃,马思齐,阳华龙,等. 铝硅酸盐聚合物聚合机理与动力学研究进展[J]. 硅酸盐学报,2022,50(9):2551−2566.

    WANG Qikun,MA Siqi,YANG Hualong,et al. Recent development on geopolymerization mechanism and geopolymerization kinetics of geopolymers[J]. Journal of the Chinese Ceramic Society,2022,50(9):2551−2566.

    [32] 李健. 循环流化床粉煤灰含钙物相对碱激发反应的影响机制[D]. 太原:山西大学,2023.

    LI Jian. Effect mechanism of Ca-containing phase of circulating fluidized bed-derived fly ash on alkali activation reaction[D]. Taiyuan:Shanxi University,2023.

    [33] 陈鑫,张泽,李东庆. 基于不同分形模型的冻融黄土孔隙特征研究[J]. 冰川冻土,2020,42(4):1238−1248.

    CHEN Xin,ZHANG Ze,LI Dongqing. Study on the pore features of freezing-thawing loess based on different fractal models[J]. Journal of Glaciology and Geocryology,2020,42(4):1238−1248.

    [34] 喻乐华,欧辉,段庆普. 掺珍珠岩水泥石孔分形维数及其与孔结构、强度的关系[J]. 材料科学与工程学报,2007,25(2):201−204,224. doi: 10.3969/j.issn.1673-2812.2007.02.010

    YU Lehua,OU Hui,DUAN Qingpu. Research on pore volume fractal dimension and its relation to pore structure and strength in cement paste with perlite admixture[J]. Journal of Materials Science and Engineering,2007,25(2):201−204,224. doi: 10.3969/j.issn.1673-2812.2007.02.010

图(10)  /  表(2)
计量
  • 文章访问数:  46
  • HTML全文浏览量:  7
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-10
  • 网络出版日期:  2025-06-11
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回