Current situation of comprehensive utilization of coal gangue and exploration of ways of high-value utilization:A case study of China National Coal Group Corporation
-
摘要:
在“双碳”目标背景下,煤炭作为国家能源安全的基石,其绿色开发对我国经济建设和社会发展具有战略意义。中国中煤能源集团有限公司凭借丰富的煤炭资源储量,在保障国家能源供应中发挥重要作用。然而,煤炭资源高产高效回采的同时产生大量煤矸石,造成土壤、大气、水体等污染,煤矸石的不合理处置与非资源化利用问题已成为制约矿区绿色发展的主要瓶颈。调研了中国中煤煤矸石的分布特征、理化性质及利用方式,系统梳理了煤矸石综合利用政策,详细阐述了煤矸石在发电利用、生产建材、化工产品制备、有益矿产回收、农业应用、井下充填及土地复垦等方面的原理和技术路线,调研了中国中煤所属矿井矸石应用进展。结果表明:矿井位于8省20个矿区,受煤矿地质条件、开采技术条件和分选条件影响,矸石分布呈现范围广、结构复杂、类型多样等特征;安徽、江苏、河南和黑龙江煤矸石综合利用呈现“周边辐射型”特点,山西、陕西、内蒙古、新疆地区煤矸石综合利用呈现“自给自足型”应用特点。煤矸石以砂岩、黏土岩、铝质岩为主,其理化性质具备多元利用潜力,但是综合利用方式缺乏系统型、复合型、引领型的科学利用途径,对此提出了煤矸石梯级回收结合资源化利用、源头减量化开采及矿化CO2负碳充填3项建议。研究成果对中国中煤优化煤炭产业布局、促进煤矸石高值化利用、保护矿区生态环境以及贯彻落实“双碳”目标具有重要的指导意义。
Abstract:In the context of the “double carbon” goal, coal is the cornerstone of national energy security, and its green development is of strategic significance to my country’s economic construction and social development. Relying on its rich coal resource reserves, China Coal plays an important role in ensuring the country’s energy supply. However, while high-yield and efficient mining of coal resources, a large amount of coal gangue is produced, causing pollution to soil, air, water and other countries. The issue of reasonable disposal and resource utilization of coal gangue has become the main bottleneck restricting the green development of mining area. The distribution characteristics, physical and chemical properties and utilization methods of coal gangue in China were investigated, the comprehensive utilization policies of coal gangue were systematically sorted out, and the use of coal gangue in power generation utilization, production of building materials, preparation of chemical products, recycling of beneficial minerals, and agriculture were elaborated. The principles and technical routes of utilization methods in aspects such as application, underground filling and land reclamation were investigated, and the application progress of coal gangue in mines belonging to China Coal was investigated. The results show that the mine is located in 20 mining areas in 8 provinces. Affected by coal mine geological conditions, mining technical conditions and washing conditions, the distribution of gangue presents the characteristics of wide range, complex structure, and diverse types; the comprehensive utilization of coal gangue in Anhui, Jiangsu, Henan and Heilongjiang regions presents the characteristics of “peripheral radiation”, and the comprehensive utilization of coal gangue in Shanxi, Shaanxi, Inner Mongolia and Xinjiang regions presents the characteristics of “self-sufficiency” application. Most of the coal gangue is composed of sandstone, clay rock, and aluminous rock, and its physical and chemical properties have multiple utilization potential. However, the comprehensive utilization method lacks systematic, compound, and leading scientific utilization methods. In this regard, a combination of cascade recovery of coal gangue is proposed. Three suggestions are proposed: resource utilization, source reduction mining, and mineralized CO2 negative carbon filling. The research results have important guiding significance for China Coal to optimize the layout of the coal industry, promote the high-value utilization of coal gangue, protect the ecological environment of the Kuangqu, and implement the “double carbon” goal.
-
-
表 1 化学组分测试
Table 1 Chemical composition testing
% 煤矸石来源 w(SiO2) w(Al2O3) w(TiO2) w(Fe2O3) w(MnO) w(MgO) w(CaO) w(Na2O) w(K2O) w(P2O5) 烧失量LOI 葫芦素煤矿 44.76 12.88 0.62 20.83 0.03 1.27 0.52 0.64 2.07 0.09 16.64 南梁煤矿 59.97 18.22 0.77 4.16 0.05 1.70 0.56 1.44 3.23 0.10 10.08 大海则煤矿 68.99 18.38 0.75 1.26 0.01 0.56 0.53 1.06 2.94 0.05 5.84 小回沟煤矿 66.81 24.17 0.75 4.14 0.11 1.02 0.90 0.25 2.01 0.12 11.19 禾草沟煤矿 59.78 30.76 0.66 3.47 0.06 1.26 0.60 0.33 2.22 0.05 18.92 华昱洗煤厂 59.82 38.21 0.35 0.23 <0.01 0.04 0.06 0.02 0.31 0.02 13.26 新集一矿 67.93 28.35 0.72 2.45 0.04 0.54 0.51 1.12 2.38 0.17 12.09 白羊岭煤矿 62.18 31.09 0.91 4.89 0.11 1.23 0.34 0.96 2.66 0.21 10.06 高家庄煤矿 59.44 37.98 0.45 3.19 0.05 1.66 2.33 1.19 3.05 0.44 11.56 王家岭煤矿 48.55 31.13 0.80 2.37 <0.01 0.26 0.39 0.36 0.61 0.06 15.42 孔庄煤矿 48.73 31.78 0.50 3.41 0.01 0.12 0.36 0.12 0.03 0.02 15.59 徐庄煤矿 55.95 26.52 0.42 1.86 0.01 0.12 0.35 0.13 0.04 0.02 15.04 姚桥煤矿 57.79 25.34 1.02 3.48 0.01 0.28 0.37 0.02 1.53 0.05 9.86 芒来露天矿 55.12 26.94 0.73 2.11 0.01 0.13 0.36 0.11 0.10 0.02 14.80 大南湖七号煤矿 53.06 20.60 0.97 3.27 0.03 1.96 0.79 0.56 2.85 0.14 7.45 注:煤矸石样品受取样时间、取样地点等因素影响,部分数据与现场实际略有差异。 表 2 矸石资源属性分类
Table 2 Classification of Gangue Resources Attributes
省份 矿区 矿井 含碳量(热值) 灰分产率 灰分成分 岩石类型 陕西 子长矿区 禾草沟煤矿 二类煤矸石 中灰煤矸石 高铝硅比 黏土岩矸石 榆横矿区 大海则煤矿 一类煤矸石 高灰煤矸石 低铝硅比 砂岩质矸石 神府矿区 南梁煤矿 一类煤矸石 高灰煤矸石 中铝硅比 砂岩质矸石 内蒙古 呼吉尔特矿区 葫芦素煤矿 二类煤矸石 高灰煤矸石 低铝硅比 黏土岩矸石 露天矿 芒来露天矿 一类煤矸石 高灰煤矸石 中铝硅比 砂岩质矸石 新疆 哈密矿区 大南湖七号煤矿 二类煤矸石 高灰煤矸石 中铝硅比 黏土岩矸石 山西 平朔矿区 华昱洗煤厂 一类煤矸石 高灰煤矸石 高铝硅比 铝质岩矸石 西山矿区 小回沟煤矿 一类煤矸石 高灰煤矸石 中铝硅比 砂岩质矸石 离柳矿区 高家庄煤矿 一类煤矸石 高灰煤矸石 高铝硅比 铝质岩矸石 阳泉矿区 白羊岭煤矿 一类煤矸石 高灰煤矸石 中铝硅比 黏土岩矸石 乡宁矿区 王家岭煤矿 四类煤矸石 高灰煤矸石 高铝硅比 黏土岩矸石 江苏 大屯矿区 孔庄煤矿 二类煤矸石 高灰煤矸石 高铝硅比 黏土岩矸石 徐庄煤矿 二类煤矸石 高灰煤矸石 中铝硅比 黏土岩矸石 姚桥煤矿 一类煤矸石 高灰煤矸石 中铝硅比 黏土岩矸石 安徽 新集矿区 新集一矿 一类煤矸石 高灰煤矸石 中铝硅比 砂岩质矸石 表 3 部分矸石利用供热机组统计
Table 3 Statistics of some gangue utilization heating units
序号 电厂 机组规模/MW 供热量/1013 J 1 安徽宣城电厂 630+660 82.76 2 甘肃靖远二电 4×330 173.16 3 新疆伊犁电厂 2×330 575.34 4 河南姚孟电厂 3×300+2×630 496.68 5 江苏大屯热电 2×350 306.95 6 山西晋城热电 2×300 641.07 7 山西王家岭电厂 2×50 45.23 8 山西安平电厂 2×150 176.97 9 山西塔山电厂 2×135 356.77 表 4 部分矿井制砖情况统计
Table 4 Statistics on brick making in some mines
序号 矿井 矸石利用量/(万t·a−1) 成本/(元·t−1) 1 母杜柴登煤矿 18.00 −53.50 2 王家岭煤矿 3.80 — 3 裕丰煤矿 12.00 +3.00 4 平山煤矿 7.36 — 5 大屯洗煤中心 147.00 — 6 刘庄煤矿 170.00 +32.70 7 新集二矿 67.50 +32.70 8 口孜东煤矿 55.00 — 9 王行庄煤矿 17.10 — 10 新登煤矿 13.10 +5.00 11 依兰三矿 3.50 — -
[1] 竹涛,武新娟,邢成,等. 煤矸石资源化利用现状与进展[J]. 煤炭科学技术,2024,52(1):380−390. doi: 10.12438/cst.2023-1917 ZHU Tao,WU Xinjuan,XING Cheng,et al. Current situation and progress of coal gangue resource utilization[J]. Coal Science and Technology,2024,52(1):380−390. doi: 10.12438/cst.2023-1917
[2] 吕俊复,蒋苓,柯希玮,等. 碳中和背景下循环流化床燃烧技术在中国的发展前景[J]. 煤炭科学技术,2023,51(1):514−522. LYU Junfu,JIANG Ling,KE Xiwei,et al. Future of circulating fluidized bed combustion technology in China for carbon neutralization[J]. Coal Science and Technology,2023,51(1):514−522.
[3] 弋治军,张旭海,龙敏,等. 纯煤矸石燃烧循环流化床锅炉的开发及运行[J]. 煤炭加工与综合利用,2020(4):60−64,69,4. YI Zhijun,ZHANG Xuhai LONG Min,et al. Development and operation of circulating fluidized bed boiler burning pure coal gangue[J]. Coal Processing & Comprehensive Utilization,2020(4):60−64,69,4.
[4] 张新苗,蒋博. 大宗固废综合利用的途径[J]. 陕西煤炭,2024,43(6):101−105,132. ZHANG Xinmiao,JIANG Bo. Way of comprehensive utilization of bulk solid waste[J]. Shaanxi Coal,2024,43(6):101−105,132.
[5] 潘昱蒿,易浩,杨涛,等. 硫铝酸盐水泥−煤基固废胶凝材料研究[J]. 非金属矿,2023,46(2):98−101,106. doi: 10.3969/j.issn.1000-8098.2023.02.024 PAN Yuhao,YI Hao,YANG Tao,et al. Study on sulphoaluminate cement-coal-based solid waste cementitious material[J]. Non-Metallic Mines,2023,46(2):98−101,106. doi: 10.3969/j.issn.1000-8098.2023.02.024
[6] 高建荣,李文宇,芋艳梅,等. 利用多种工业废渣复配制备胶凝材料的实验研究[J]. 无机盐工业,2021,53(2):77−80. doi: 10.11962/1006-4990.2020-0165 GAO Jianrong,LI Wenyu,YU Yanmei,et al. Experimental study on activating various industrial residues to compound and prepare cementitious materials[J]. Inorganic Chemicals Industry,2021,53(2):77−80. doi: 10.11962/1006-4990.2020-0165
[7] 王莹莹,谢光天,李泽荃. 煤矸石质似膏体充填胶结料的研制及水化机理研究[J]. 煤炭工程,2017,49(12):141−144. WANG Yingying,XIE Guangtian,LI Zequan. Research on coal gangue paste-like filling materials and its hydration mechanism[J]. Coal Engineering,2017,49(12):141−144.
[8] 万惠文,高志飞,吴有武,等. 利用煤矸石与页岩制备无熟料胶凝材料的研究[J]. 武汉理工大学学报,2013,35(6):23−28. doi: 10.3963/j.issn.1671-4431.2013.06.005 WAN Huiwen,GAO Zhifei,WU Youwu,et al. Preparation of cementitious materials without clinker using coal gangue and clay shale[J]. Journal of Wuhan University of Technology,2013,35(6):23−28. doi: 10.3963/j.issn.1671-4431.2013.06.005
[9] 李飞跃,张立欣,于国娇. 工业固废基地质聚合物在环境领域的应用研究进展[J]. 化工新型材料,2024,52(2):254−258,265. LI Feiyue,ZHANG Lixin,YU Guojiao. Research progress on the application of industrial solid waste-based geopolymer in environmental protection[J]. New Chemical Materials,2024,52(2):254−258,265.
[10] 张卫清,梅璟昕,柴军,等. 全煤矸石基地质聚合物固结体制备及力学性能[J]. 采矿与安全工程学报,2025,42(3):673−683. ZHANG Weiqing,MEI Jingxin,CHAI Jun,et al. Preparation and mechanical properties of coal gangue-based geopolymer consolidation[J]. Journal of Mining & Safety Engineering,2025,42(3):673−683.
[11] 王菲,刘泽,韩乐,等. 活化煤矸石地质聚合物的制备与性能研究[J]. 硅酸盐通报,2021,40(3):914−920. WANG Fei,LIU Ze,HAN Le,et al. Preparation and properties of activated coal gangue geopolymer[J]. Bulletin of the Chinese Ceramic Society,2021,40(3):914−920.
[12] 沙东,王宝民,潘宝峰,等. 地质聚合物强化增韧方法研究综述[J]. 复合材料学报,2024,41(3):1215−1225. SHA Dong,WANG Baomin,PAN Baofeng,et al. A review on reinforcing and toughening methods of geopolymers[J]. Acta Materiae Compositae Sinica,2024,41(3):1215−1225.
[13] 邹小童,徐子芳,陈娟,等. 煤系废物地质聚合物的制备及性能研究[J]. 硅酸盐通报,2014,33(11):2935−2939. ZOU Xiaotong,XU Zifang,CHEN Juan,et al. Preparation and performance study of coal waste composite geopolymer[J]. Bulletin of the Chinese Ceramic Society,2014,33(11):2935−2939.
[14] 周梅,赵华民,路其林,等. 热活化煤矸石−矿渣−粉煤灰地聚合物的性能研究[J]. 非金属矿,2014,37(5):4−7. doi: 10.3969/j.issn.1000-8098.2014.05.002 ZHOU Mei,ZHAO Huamin,LU Qilin,et al. Study on performance of thermally activated coal gangue-slag-fly ash[J]. Non-Metallic Mines,2014,37(5):4−7. doi: 10.3969/j.issn.1000-8098.2014.05.002
[15] 张娟,张明旭,徐子芳,等. 污泥煤矸石复合制备地质聚合物及其性能研究[J]. 煤炭科学技术,2013,41(8):122−125. ZHANG Juan,ZHANG Mingxu,XU Zifang,et al. Study on preparation and properties of geopolymer with sludge and coal gangue[J]. Coal Science and Technology,2013,41(8):122−125.
[16] 王超,宋卫锋,杨佐毅,等. 工业固废基地聚合物的制备及其吸附Pb(Ⅱ)的性能[J]. 环境科学学报,2021,41(7):2700−2711. WANG Chao,SONG Weifeng,YANG Zuoyi,et al. Synthesis of industrial wastes-based geopolymer and its adsorption capacity for Pb(Ⅱ)[J]. Acta Scientiae Circumstantiae,2021,41(7):2700−2711.
[17] 马宏强,易成,朱红光,等. 煤矸石集料混凝土抗压强度及耐久性能[J]. 材料导报,2018,32(14):2390−2395. doi: 10.11896/j.issn.1005-023X.2018.14.012 MA Hongqiang,YI Cheng,ZHU Hongguang,et al. Compressive strength and durability of coal gangue aggregate concrete[J]. Materials Review,2018,32(14):2390−2395. doi: 10.11896/j.issn.1005-023X.2018.14.012
[18] 刘瀚卿,白国良,朱可凡,等. 煤矸石混凝土抗折强度试验研究[J]. 建筑材料学报,2023,26(4):346−352,377. doi: 10.3969/j.issn.1007-9629.2023.04.002 LIU Hanqing,BAI Guoliang,ZHU Kefan,et al. Experimental study on flexural strength of coal gangue concrete[J]. Journal of Building Materials,2023,26(4):346−352,377. doi: 10.3969/j.issn.1007-9629.2023.04.002
[19] 周梅,李高年,张倩,等. 自燃煤矸石骨料在预拌混凝土中的应用研究[J]. 建筑材料学报,2015,18(5):830−835. doi: 10.3969/j.issn.1007-9629.2015.05.020 ZHOU Mei,LI Gaonian,ZHANG Qian,et al. Study on application of spontaneous combustion coal gangue aggregate in ready-mixed concrete[J]. Journal of Building Materials,2015,18(5):830−835. doi: 10.3969/j.issn.1007-9629.2015.05.020
[20] 于乐乐,王爱国,仲小凡,等. 煤矸石骨料混凝土力学和耐久性能研究进展[J]. 材料导报,2024,38(20):186−194. YU Lele,WANG Aiguo,ZHONG Xiaofan,et al. Research progress of mechanical and durability performance of concrete with coal gangue aggregates[J]. Materials Reports,2024,38(20):186−194.
[21] 王爱国,朱愿愿,徐海燕,等. 混凝土用煤矸石骨料的研究进展[J]. 硅酸盐通报,2019,38(7):2076−2086. WANG Aiguo,ZHU Yuanyuan,XU Haiyan,et al. Research progress on coal gangue aggregate for concrete[J]. Bulletin of the Chinese Ceramic Society,2019,38(7):2076−2086.
[22] 李虎杰,陶军. 煤矸石制备高强陶粒的试验研究[J]. 非金属矿,2010,33(3):20−22. doi: 10.3969/j.issn.1000-8098.2010.03.006 LI Hujie,TAO Jun. Experimental study on preparation of high strength haydite from gangue[J]. Non-Metallic Mines,2010,33(3):20−22. doi: 10.3969/j.issn.1000-8098.2010.03.006
[23] 陈彦文,王宁,潘文浩,等. 煤矸石陶粒制备工艺的优化实验[J]. 硅酸盐通报,2015,34(3):841−845. CHEN Yanwen,WANG Ning,PAN Wenhao,et al. Preparation process of gangue ceramisite based on the orthogonal optimization method[J]. Bulletin of the Chinese Ceramic Society,2015,34(3):841−845.
[24] 武文龙,王智佳,武军. 全煤矸石原料烧制陶粒的实验室研究[J]. 洛阳理工学院学报(自然科学版),2014,24(3):1−4,16. doi: 10.3969/j.issn.1674-5043.2014.03.001 WU Wenlong,WANG Zhijia,WU Jun. Laboratory study of haydite preparation from full gangue[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition),2014,24(3):1−4,16. doi: 10.3969/j.issn.1674-5043.2014.03.001
[25] 王萍,李国昌. 煤矸石陶粒滤料制备及在生物滤池中应用研究[J]. 非金属矿,2007,30(6):53−56. doi: 10.3969/j.issn.1000-8098.2007.06.018 WANG Ping,LI Guochang. Research on preparing of gangue ceramsite & its application in biological aerated filter[J]. Non-Metallic Mines,2007,30(6):53−56. doi: 10.3969/j.issn.1000-8098.2007.06.018
[26] 裴会芳,张长森,陈景华. 城市污泥/煤矸石制备多孔陶粒的试验研究[J]. 中国陶瓷,2015,51(3):72−77. PEI Huifang,ZHENG Changsen,CHEN Jinghua. Preparation of porous ceramsite with sludge and gangue[J]. China Ceramics,2015,51(3):72−77.
[27] 刘国杰. 煤矸石制备高性能陶粒试验[J]. 洁净煤技术,2023,29(S2):133−135. LIU Guojie. Preparation of high performance ceramics with coal gangue[J]. Clean Coal Technology,2023,29(S2):133−135.
[28] 邓友生,姚志刚,冯爱林,等. 不同垫层下煤矸石桩网复合路基承载特性[J]. 岩土力学,2024,45(7):1895−1905. DENG Yousheng,YAO Zhigang,FENG Ailin,et al. Bearing characteristics of coal gangue pile-net composite embankment with different cushion layers[J]. Rock and Soil Mechanics,2024,45(7):1895−1905.
[29] 王川,刘超,裴文晶,等. 活化煤矸石制备路基充填材料的探讨[J]. 材料科学与工程学报,2022,40(1):97−103. WANG Chuan,LIU Chao,PEI Wenjing,et al. Discussion on the preparation of roadbed filling material with activated coal gangue[J]. Journal of Materials Science and Engineering,2022,40(1):97−103.
[30] 杨晓凯,熊锐,范天奇,等. 活化煤矸石改性沥青胶浆流变性能实验研究[J]. 材料导报,2015,29(12):135−139. YANG Xiaokai,XIONG Rui,FAN Tianqi,et al. Laboratory investigation upon the rheological property of activated coal gangue-modified asphalt binder[J]. Materials Review,2015,29(12):135−139.
[31] 邬俊,高文华,张宗堂,等. 煤矸石路基填料强度与变形特性研究[J]. 铁道科学与工程学报,2021,18(4):885−891. WU Jun,GAO Wenhua,ZHANG Zongtang,et al. Study on strength and deformation characteristics of coal gangue subgrade filling[J]. Journal of Railway Science and Engineering,2021,18(4):885−891.
[32] 耿琳,唐浩,罗军,等. 掺煤矸石高速铁路路基填料冻胀特性试验研究[J]. 铁道建筑,2019,59(2):41−45,49. doi: 10.3969/j.issn.1003-1995.2019.02.11 GENG Lin,TANG Hao,LUO Jun,et al. Experimental study on frost-heaving characteristics of high speed railway subgrade fillers mixed with coal gangue[J]. Railway Engineering,2019,59(2):41−45,49. doi: 10.3969/j.issn.1003-1995.2019.02.11
[33] 王长龙,郑永超,刘世昌,等. 煤矸石铁尾矿制备微晶玻璃的微观结构和力学性能[J]. 稀有金属材料与工程,2015,44(S1):234−238. WANG Changlong,ZHENG Yongchao,LIU Shichang,et al. Microstructure and mechanical properties of glass-ceramics prepared with coal gangue and iron ore tailings[J]. Rare Metal Materials and Engineering,2015,44(S1):234−238.
[34] 罗冰,张雨侬,宋美琪,等. 煤矸石和石棉尾矿制备多孔微晶玻璃的研究[J]. 非金属矿,2022,45(5):102−106. LUO Bing,ZHANG Yunong,SONG Meiqi,et al. Research and preparation of porous glass-ceramics by coal gangue and asbestos tailings[J]. Non-Metallic Mines,2022,45(5):102−106.
[35] 湛玲丽,韩利雄,李璟玮,等. 高掺量煤矸石固废微晶玻璃结构与性能研究[J]. 硅酸盐通报,2022,41(4):1124−1132. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204002 ZHAN Lingli,HAN Lixiong,LI Jingwei,et al. Structure and performance of glass-ceramics with high content of coal gangue solid waste[J]. Bulletin of the Chinese Ceramic Society,2022,41(4):1124−1132. doi: 10.3969/j.issn.1001-1625.2022.4.gsytb202204002
[36] 管艳梅,陈伟,孙道胜. 利用磷渣和煤矸石制备建筑微晶玻璃的研究[J]. 陶瓷学报,2020,41(1):88−92. GUAN Yanmei,CHEN Wei,SUN Daosheng. Preparation of architectural glass-ceramics from phosphorus slag and coal gangue[J]. Journal of Ceramics,2020,41(1):88−92.
[37] 孙道胜,管艳梅,刘开伟,等. 烧结法制备煤矸石微晶玻璃及其烧结性能研究[J]. 材料导报,2016,30(18):134−137. SUN Daosheng,GUAN Yanmei,LIU Kaiwei,et al. Preparation and properties of glass-ceramics based on coal gangue by sintering[J]. Materials Review,2016,30(18):134−137.
[38] 王瑞荣,宁成立. 煤矸石烧结砖生产技术[J]. 新型建筑材料,2007,34(7):32−33. doi: 10.3969/j.issn.1001-702X.2007.07.011 WANG Ruirong,NING Chengli. Production technology of gangue sintered brick[J]. New Building Materials,2007,34(7):32−33. doi: 10.3969/j.issn.1001-702X.2007.07.011
[39] 金彪,赵亮,汪潇,等. 利用煤矸石、页岩、污泥制备烧结砖的研究[J]. 非金属矿,2021,44(5):39−41. doi: 10.3969/j.issn.1000-8098.2021.05.010 JIN Biao,ZHAO Liang,WANG Xiao,et al. Preparation of sintered brick with sludge,shale and gangue[J]. Non-Metallic Mines,2021,44(5):39−41. doi: 10.3969/j.issn.1000-8098.2021.05.010
[40] 刘灏,李青,黄秉章,等. 煤矸石烧结页岩砖材的耐久性研究[J]. 材料导报,2019,33(S2):229−232. LIU Hao,LI Qing,HUANG Bingzhang,et al. Study on durability of sintered shale brick from coal gangue[J]. Materials Reports,2019,33(S2):229−232.
[41] 王占锋,刘小锋,赵林,等. 煤矸石烧结保温砖试验研究[J]. 新型建筑材料,2018,45(12):90−93. doi: 10.3969/j.issn.1001-702X.2018.12.023 WANG Zhanfeng,LIU Xiaofeng,ZHAO Lin,et al. Experimental study on insulation brick for coal gangue sintering[J]. New Building Materials,2018,45(12):90−93. doi: 10.3969/j.issn.1001-702X.2018.12.023
[42] 李学军,李珠,赵林,等. 免烧结煤矸石透水砖的试验研究[J]. 新型建筑材料,2019,46(1):72−74. doi: 10.3969/j.issn.1001-702X.2019.01.019 LI Xuejun,LI Zhu,ZHAO Lin,et al. Experimental study on non-fired coal gangue permeable bricks[J]. New Building Materials,2019,46(1):72−74. doi: 10.3969/j.issn.1001-702X.2019.01.019
[43] 李珠,刘家乐,刘鹏,等. 煤矸石烧结透水砖的试验研究[J]. 新型建筑材料,2018,45(4):21−23. doi: 10.3969/j.issn.1001-702X.2018.04.006 LI Zhu,LIU Jiale,LIU Peng,et al. Experimental study on sintered water permeable brick for coal gangue sintering[J]. New Building Materials,2018,45(4):21−23. doi: 10.3969/j.issn.1001-702X.2018.04.006
[44] 尹青亚,娄广辉,李峰,等. 工业废渣煤矸石和赤泥烧制多孔砖工艺性能研究[J]. 新型建筑材料,2020,47(4):73−76. doi: 10.3969/j.issn.1001-702X.2020.04.018 YIN Qingya,LOU Guanghui,LI Feng,et al. Research on technical properties of fired perforated bricks from coal gangue and red mud[J]. New Building Materials,2020,47(4):73−76. doi: 10.3969/j.issn.1001-702X.2020.04.018
[45] 王明仕,刘琳瑶,宋党育. 煤矸石−粉煤灰烧结砖中微量元素的浸出特征研究[J]. 河南理工大学学报(自然科学版),2016,35(6):823−827. WANG Mingshi,LIU Linyao,SONG Dangyu. Leaching characteristics of trace elements in the sintered brick made from coal gangue and fly ash[J]. Journal of Henan Polytechnic University (Natural Science),2016,35(6):823−827.
[46] 贾敏,杨磊. 煤矸石煅烧活化提取氧化铝技术研究[J]. 矿产综合利用,2020(2):140−144. doi: 10.3969/j.issn.1000-6532.2020.02.025 JIA Min,YANG Lei. Study on technology of alumina extraction from coal gangue activated by calcination[J]. Multipurpose Utilization of Mineral Resources,2020(2):140−144. doi: 10.3969/j.issn.1000-6532.2020.02.025
[47] 李浩林,曾德恢,郑光亚,等. 低温中和−加压酸浸提取煤矸石中铝铁[J]. 化工进展,2021,40(7):4011−4020. LI Haolin,ZENG Dehui,ZHENG Guangya,et al. Extraction of aluminum and iron from coal gangue by low temperature neutralization-pressure acid leaching[J]. Chemical Industry and Engineering Progress,2021,40(7):4011−4020.
[48] 相亚军,纪利春,任根宽. 碱法提取煤矸石中氧化铝试验条件优化[J]. 中国电力,2015,48(1):64−67. XIANG Yajun,JI Lichun,REN Genkuan. Optimization of experimental conditions for alkaline alumina extraction from coal gangue[J]. Electric Power,2015,48(1):64−67.
[49] 郭丽君,李超,赵亮,等. 煤矸石的机械−热复合活化研究[J]. 应用化工,2018,47(8):1800−1802. doi: 10.3969/j.issn.1671-3206.2018.08.056 GUO Lijun,LI Chao,ZHAO Liang,et al. Research on the mechanical and thermal activation of coal gangue[J]. Applied Chemical Industry,2018,47(8):1800−1802. doi: 10.3969/j.issn.1671-3206.2018.08.056
[50] 孔德顺,肖杰,吴红,等. 煤矸石碱熔提取白炭黑的研究[J]. 化工新型材料,2011,39(2):114−116,131. doi: 10.3969/j.issn.1006-3536.2011.02.037 KONG Deshun,XIAO Jie,WU Hong,et al. Study on extracting silica from the coal gangue by alkali fusion[J]. New Chemical Materials,2011,39(2):114−116,131. doi: 10.3969/j.issn.1006-3536.2011.02.037
[51] 龙金芬,张加程,陈呈,等. 煤矸石酸浸渣制备白炭黑的工艺研究[J]. 化工技术与开发,2022,51(5):55−58,77. doi: 10.3969/j.issn.1671-9905.2022.05.013 LONG Jinfen,ZHANG Jiacheng,CHEN Cheng,et al. Preparation technology study of silica from coal gangue acid leaching residue[J]. Technology & Development of Chemical Industry,2022,51(5):55−58,77. doi: 10.3969/j.issn.1671-9905.2022.05.013
[52] 朱晓波,巩文辉,李望,等. 活化焙烧−联合浸出法制备白炭黑实验研究[J]. 矿产综合利用,2021(6):29−33. doi: 10.3969/j.issn.1000-6532.2021.06-006 ZHU Xiaobo,GONG Wenhui,LI Wang,et al. Experiment on preparation of white carbon by activated roasting and combined leaching[J]. Multipurpose Utilization of Mineral Resources,2021(6):29−33. doi: 10.3969/j.issn.1000-6532.2021.06-006
[53] 朱明燕,金会心,聂登攀,等. 煤矸石氟盐烧结法铝硅分离及制备白炭黑的实验研究[J]. 应用化工,2019,48(10):2407−2411. doi: 10.3969/j.issn.1671-3206.2019.10.032 ZHU Mingyan,JIN Huixin,NIE Dengpan,et al. The study of sintering coal gangue villiaumite to separate alumina,silicon and preparation of silica[J]. Applied Chemical Industry,2019,48(10):2407−2411. doi: 10.3969/j.issn.1671-3206.2019.10.032
[54] 王健璋,王明华,宫振宇,等. 预加热−碳热还原−磁选法提取煤矸石中的铁[J]. 材料研究与应用,2024,18(4):668−673. WANG Jianzhang,WANG Minghua,GONG Zhenyu,et al. Extraction of iron from coal gangue by preheating,carbon thermal reduction and magnetic separation[J]. Materials Research and Application,2024,18(4):668−673.
[55] 张又中,车敏,刘义青,等. 热活化-酸浸法提取煤矸石中铝和铁的实验研究[J]. 能源环境保护,2024,38(6):179−187. ZHANG Youzhong,CHE Min,LIU Yiqing,et al. Experimental study on the extraction of aluminum and iron from coalgangue by thermal activation and acid leaching method[J]. Enengy Environmental Protection,2024,38(6):179−187.
[56] 刘成龙,李艳,梁浩,等. 基于环境友好的酸浸煤矸石制备α-氧化铁研究[J]. 无机盐工业,2018,50(12):64−67. LIU Chenglong,LI Yan,LIANG Hao,et al. Preparation of α-Fe2O3 products based on environmentally friendly acid leaching of coal gangue[J]. Inorganic Chemicals Industry,2018,50(12):64−67.
[57] 孔德顺,范佳鑫,石开仪,等. 高铁煤矸石酸浸液合成氧化铁红的实验研究[J]. 无机盐工业,2013,45(7):56−58. doi: 10.3969/j.issn.1006-4990.2013.07.018 KONG Deshun,FAN Jiaxin,SHI Kaiyi,et al. Experimental study on preparation of iron oxide red from acid leaching solution of high-iron coal gangue[J]. Inorganic Chemicals Industry,2013,45(7):56−58. doi: 10.3969/j.issn.1006-4990.2013.07.018
[58] 郭文超,李望,朱晓波,等. P507萃取煤矸石硫酸浸出液中镓的实验研究[J]. 稀有金属与硬质合金,2022,50(4):28−32. GUO Wenchao,LI Wang,ZHU Xiaobo,et al. Experimental study on extraction of gallium from sulfuric acid leaching solution of coal gangue by using P507[J]. Rare Metals and Cemented Carbides,2022,50(4):28−32.
[59] 王梓硕,臧静坤,王小蕊,等. 用氧化焙烧—盐酸浸出工艺从煤矸石中提取锂试验研究[J]. 湿法冶金,2023,42(6):574−581. WANG Zishuo,ZANG Jingkun,WANG Xiaorui,et al. Extraction of lithium from coal gangue by oxidation roasting:Hydrochloric acid leaching process[J]. Hydrometallurgy of China,2023,42(6):574−581.
[60] 刘成龙,夏举佩,彭健,等. 微波法提取煤矸石中钛的工艺研究[J]. 煤炭转化,2015,38(3):82−86. doi: 10.3969/j.issn.1004-4248.2015.03.018 LIU Chenglong,XIA Jupei,PENG Jian,et al. Study on microwave extraction technique of titanium from coal gangue[J]. Coal Conversion,2015,38(3):82−86. doi: 10.3969/j.issn.1004-4248.2015.03.018
[61] 赵丽,孙艳芳,杨志斌,等. 煤矸石去除矿井水中水溶性有机物及氨氮的实验研究[J]. 煤炭学报,2018,43(1):236−241. ZHAO Li,SUN Yanfang,YANG Zhibin,et al. Removal efficiencies of dissolved organic matter and ammonium in coal mine water by coal gangue through column experiments[J]. Journal of China Coal Society,2018,43(1):236−241.
[62] 迟爽,尚宝月,张雨涵,等. 煤矸石制备聚硅酸铝铁絮凝剂处理氟化工废水[J]. 化工环保,2023,43(4):506−513. doi: 10.3969/j.issn.1006-1878.2023.04.013 CHI Shuang,SHANG Baoyue,ZHANG Yuhan,et al. Preparation of poly aluminum ferric silicate flocculant flocculant from coal gangue for treatment of fluorine chemical wastewater[J]. Environmental Protection of Chemical Industry,2023,43(4):506−513. doi: 10.3969/j.issn.1006-1878.2023.04.013
[63] 曹敏,彭欢玲,杜美利. 煤矸石制备PAFC絮凝剂及其在煤泥水处理中的应用[J]. 应用化工,2017,46(12):2300−2301,2305. doi: 10.3969/j.issn.1671-3206.2017.12.004 CAO Min,PENG Huanling,DU Meili. Preparation of PAFC by coal gangue and its application in slime water[J]. Applied Chemical Industry,2017,46(12):2300−2301,2305. doi: 10.3969/j.issn.1671-3206.2017.12.004
[64] 孙统才,李巧玲. ZnCl2改性煤矸石对甲基橙的吸附性能研究[J]. 现代化工,2016,36(1):93−97. SUN Tongcai,LI Qiaoling. Adsorption of methyl orange by ZnCl2 modified coal gangue[J]. Modern Chemical Industry,2016,36(1):93−97.
[65] 刘博,刘墨祥,陈晓平. 用废弃煤矸石制备高比表面积的SiO2-Al2O3二元复合气凝胶[J]. 化工学报,2017,68(5):2096−2104. LIU Bo,LIU Moxiang,CHEN Xiaoping. Preparation of SiO2-Al2O3 composite aerogel with high specific surface area by Sol-gel method from coal gangue[J]. CIESC Journal,2017,68(5):2096−2104.
[66] 王旭东,徐海燕,王爱国,等. 酸浸处理热活化的煤矸石制备介孔材料[J]. 材料导报,2016,30(S2):466−468. WANG Xudong,XU Haiyan,WANG Aiguo,et al. Preparation of mesoporous materials from thermally activated coal gangue by acid leaching[J]. Materials Reports,2016,30(S2):466−468.
[67] 尚瑞瑞,韩涛,靳秀芝. 煤矸石基多孔材料对废水中Pb2+的吸附研究[J]. 硅酸盐通报,2019,38(4):1211−1215. SHANG Ruirui,HAN Tao,JIN Xiuzhi. Adsorption of Pb2+ in wastewater by coal gangue-based porous materials[J]. Bulletin of the Chinese Ceramic Society,2019,38(4):1211−1215.
[68] 闫振雷,王兴瑞,李会泉,等. 高铝粉煤灰脱硅液与煤矸石制备13X分子筛的工艺研究[J]. 硅酸盐通报,2017,36(3):778−784. YAN Zhenlei,WANG Xingrui,LI Huiquan,et al. Synthesis and characterization of 13X zeolite prepared from desilication solution of high alumina fly ash and coal gangue[J]. Bulletin of the Chinese Ceramic Society,2017,36(3):778−784.
[69] 张博超,杜飞,童辉,等. 煤矸石基沸石分子筛的制备及其对废水中Cu2+吸附性能研究[J/OL]. 化工新型材料,1−7[2024−12−17]. http://kns.cnki.net/kcms/detail/11.2357.TQ.20250121.1406.009.html. ZHANG Bochao,DU Fei ,TONG Hui,et al. Preparation of coal gangue-based zeolite molecular sieve and its Cu2+ adsorption properties in wastewater [J/OL]. New Chemical Materials ,1−7[2024−12−17]. http://kns.cnki.net/kcms/detail/11.2357.TQ.20250121.1406.009.html.
[70] 姚隆帆,孟凡会,戴露霏,等. 富含高岭石结构的煤矸石活化及合成NaY分子筛[J]. 石油学报(石油加工),2024,40(2):317−326. doi: 10.3969/j.issn.1001-8719.2024.02.005 YAO Longfan,MENG Fanhui,DAI Lufei,et al. Activation of kaolinite-rich coal gangue and synthesis of NaY molecular sieve[J]. Acta Petrolei Sinica (Petroleum Processing Section),2024,40(2):317−326. doi: 10.3969/j.issn.1001-8719.2024.02.005
[71] 全翠,王福栋,郭爱军,等. 煤矸石基沸石分子筛的制备及其CO2捕集性能[J]. 煤炭学报,2024,49(S1):375−381. QUAN Cui,WANG Fudong,GUO Aijun,et al. Preparation of coal gangue-based zeolite molecular sieve and its CO2 trapping performance[J]. Journal of China Coal Society,2024,49(S1):375−381.
[72] 刘甜,郭军康,张蕾,等. 煤基NaA分子筛材料的合成及其对Cd2+的吸附[J]. 农业环境科学学报,2023,42(2):443−450,232. doi: 10.11654/jaes.2022-0971 LIU Tian,GUO Junkang,ZHANG Lei,et al. Synthesis of coal-based NaA molecular sieve material and Cd2+ adsorption[J]. Journal of Agro-Environment Science,2023,42(2):443−450,232. doi: 10.11654/jaes.2022-0971
[73] 梁止水,高琦,刘豪伟,等. 煤矸石制备NaX型分子筛及其对Cd2+的吸附性能[J]. 东南大学学报(自然科学版),2020,50(4):741−747. doi: 10.3969/j.issn.1001-0505.2020.04.019 LIANG Zhishui,GAO Qi,LIU Haowei,et al. Synthesis of NaX zeolite from coal gangue and its adsorption capability for Cd2+[J]. Journal of Southeast University (Natural Science Edition),2020,50(4):741−747. doi: 10.3969/j.issn.1001-0505.2020.04.019
[74] 金世良,成岳,钟立军. 煤矸石合成ZSM-5分子筛及其吸附性能研究[J]. 中国陶瓷,2009,45(7):17−19. JIN Shiliang,CHENG Yue,ZHONG Lijun. A study on synthesis of ZSM-5 zeolite using gangue and adsorption performance[J]. China Ceramics,2009,45(7):17−19.
[75] 李亚清,宋沆,邓军,等. 煤矸石固废资源化利用制备分子筛研究现状及进展[J/OL]. 材料导报,2024:1−27[2024−12−17]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20241216002&dbname=CJFD&dbcode=CJFQ. LI Yaqing,SONG Hang,DENG Jun,et al. Research status and progress of molecular sieves prepared by resource utilization of coal gangue solid waste[J/OL]. Materials Reports,2024:1−27[2024−12−17]. https://kns.cnki.net/KCMS/detail/detail.aspx?filename=CLDB20241216002&dbname=CJFD&dbcode=CJFQ.
[76] 曹泽宇,高宏宇,宋慧平,等. 水灰比对煤矸石煅烧高岭土基无机水性涂料性能的影响研究[J]. 涂料工业,2020,50(5):14−18. doi: 10.12020/j.issn.0253-4312.2020.5.14 CAO Zeyu,GAO Hongyu,SONG Huiping,et al. Effect of water-cement ratio on performance of coal gangue calcined Kaolin-based inorganic waterborne coatings[J]. Paint & Coatings Industry,2020,50(5):14−18. doi: 10.12020/j.issn.0253-4312.2020.5.14
[77] 张雨涵. 赵雪淞. 王雪松. 等. 纳米级煤研石般烧高岭土的制备工艺参数优化[J]. 煤炭转化,2025,48(1):114−123. ZHANG Yuhan,ZHAO Xuesong. WANG Xuesong. et al. Optimization of process parameters for preparation of nanoscale calcined kaolinitefrom coal gangue[J]. Coal Conversion,2025,48(1):114−123.
[78] 宋志敏,丁建础. 煤系硫铁矿的加热特征及其应用研究[J]. 煤炭学报,2005,30(3):358−361. doi: 10.3321/j.issn:0253-9993.2005.03.020 SONG Zhimin,DING Jianchu. Study on the characteristics of heated FeS2 in coal-measure and its application[J]. Journal of China Coal Society,2005,30(3):358−361. doi: 10.3321/j.issn:0253-9993.2005.03.020
[79] 韦敏,张凌燕,何富超,等. 云南某煤矸石矿回收黄铁矿浮选试验研究[J]. 硅酸盐通报,2016,35(11):3881−3885. WEI Min,ZHANG Lingyan,HE Fuchao,et al. Experimental study on recovering of pyrite from a coal-gangue in Yunnan[J]. Bulletin of the Chinese Ceramic Society,2016,35(11):3881−3885.
[80] 何宪波,乔俊,李紫薇,等. 煤矸石改良盐碱土对马铃薯生长的影响[J]. 农业工程学报,2023,39(14):145−154. doi: 10.11975/j.issn.1002-6819.202303140 HE Xianbo,QIAO Jun,LI Ziwei,et al. Effects of improved saline-alkaline soil with coal gangue on potato growth[J]. Transactions of the Chinese Society of Agricultural Engineering,2023,39(14):145−154. doi: 10.11975/j.issn.1002-6819.202303140
[81] 胡寒,张清,谢途嬡,等. 热驱动煤研石碳氧化过程及产物土壤性能研究[J]. 中国环境科学,2024,44(10):5670−5677. HU Han,ZHANG Qing,XIE Eyuan,et al. Study on carboan oxidaion process of coal gangue driven by heat and soil propenties of its products[J]. China Environmental Science,2024,44(10):5670−5677.
[82] 王琼,张强,王斌,等. 高硫煤矸石对苏打盐化土的改良效果研究[J]. 中国农学通报,2017,33(36):119−123. doi: 10.11924/j.issn.1000-6850.casb17030157 WANG Qiong,ZHANG Qiang,WANG Bin,et al. Improving effect of high-sulfur coal gangue on soda-saline soil[J]. Chinese Agricultural Science Bulletin,2017,33(36):119−123. doi: 10.11924/j.issn.1000-6850.casb17030157
[83] 白雪雨,李望,朱晓波. 煤矸石钠基活化焙烧制备硅肥实验探究[J]. 应用化工,2023,52(7):2010−2015. doi: 10.3969/j.issn.1671-3206.2023.07.014 BAI Xueyu,LI Wang,ZHU Xiaobo. Experimental study on preparation of silicon fertilizer from coal gangue by sodium based activation roasting[J]. Applied Chemical Industry,2023,52(7):2010−2015. doi: 10.3969/j.issn.1671-3206.2023.07.014
[84] 刘信平,吴少尉,张驰. 富硒煤矸石活化技术及煤矸石硒肥高效利用研究[J]. 植物营养与肥料学报,2020,26(8):1526−1535. doi: 10.11674/zwyf.19260 LIU Xinping,WU Shaowei,ZHANG Chi. Activation of Se-enriched coal gangue and the efficient use of coal gangue Se fertilizer[J]. Journal of Plant Nutrition and Fertilizers,2020,26(8):1526−1535. doi: 10.11674/zwyf.19260
[85] 孔涛,黄舒漫,梁冰,等. 木霉菌对煤矸石分解和绿化效果的影响[J]. 煤炭学报,2018,43(11):3204−3211. KONG Tao,HUANG Shuman,LJANG Bing,et al. Efeet of trichoderma o coal gangue deoopsition and revegetaion[J]. Jourmal of China Coul Sociely,2018,43(11):3204−3211.
[86] 盛定红,张景宁,李小军,等. 煤矸石肥料的制备及应用研究[J]. 应用化工,2023,52(3):960−963,967. SHENG Dinghong,ZHANG Jingning,LI Xiaojun,et al. Study on preparation and application of coal gangue fertilizer[J]. Applied Chemical Industry,2023,52(3):960−963,967.
[87] 王应兰,姜雄,吉俐,等. 基于高效解磷菌的煤矸石肥料制备及其应用潜力分析[J]. 浙江农业学报,2020,32(11):2035−2041. doi: 10.3969/j.issn.1004-1524.2020.11.14 WANG Yinglan,JIANG Xiong,JI Li,et al. Preparation of coal gangue fertilizer based on high-efficiency phosphate solubilizing bacteria and its application potential[J]. Acta Agriculturae Zhejiangensis,2020,32(11):2035−2041. doi: 10.3969/j.issn.1004-1524.2020.11.14
[88] 袁向芬,谢承卫. 利用巨大芽孢杆菌制备高硫煤矸石肥料[J]. 环境工程学报,2015,9(2):946−950. YUAN Xiangfen,XIE Chengwei. Preparation of high-sulfur coal gangue fertilizer by bacillus megaterium[J]. Chinese Journal of Environmental Engineering,2015,9(2):946−950.
[89] 秦琪焜,方健梅,王根柱,等. 煤矸石与城市污泥混合制备植生基质的试验研究[J]. 煤炭科学技术,2022,50(7):304−314. QIN Qikun ,FANG Jiannei,WANG Genzhu,et al. Experimental sludy of planting substrate mixed with coal gangue and municipal sludge[J]. Coal Science and Technology,2022,50(7):304−314.
[90] 柯凯恩,董晓芸,周金星,等. 煤矸石生态基质的制备配方及其肥力特征研究[J]. 中国土壤与肥料,2021(4):308−317. doi: 10.11838/sfsc.1673-6257.20212 KE Kaien,DONG Xiaoyun,ZHOU Jinxing,et al. Evaluation of the formula for coal gangue ecological substrate and its fertility indexes[J]. Soil and Fertilizer Sciences in China,2021(4):308−317. doi: 10.11838/sfsc.1673-6257.20212
[91] 邵玉飞,马建,陈欣. 利用煤矸石制作水稻育苗基质的研究[J]. 农业资源与环境学报,2017,34(6):555−561. SHAO Yufei,MA Jian,CHEN Xin. Rice seedling substrate produced by coal gangue[J]. Journal of Agricultural Resources and Environment,2017,34(6):555−561.
[92] 唐升引,蒋永吉,陈静,等. 煤矸石主要物理特性及在栽培基质中应用的可行性分析[J]. 干旱地区农业研究,2014,32(3):209−213. TANG Shengyin,JIANG Yongji,CHEN Jing,et al. Major physical characteristics of gangue and feasible analysis for the application in cultivation matrix[J]. Agricultural Research in the Arid Areas,2014,32(3):209−213.
[93] 苏迪,高宏宇,廖洪强,等. 煤矸石多孔土壤与天然土壤特性对比研究[J]. 矿产保护与利用,2020,40(3):106−109. SU Di,GAO Hongyu,LIAO Hongqiang,et al. Comparative study on characteristics of coal gangue porous soil and natural soil[J]. Conservation and Utilization of Mineral Resources,2020,40(3):106−109.
[94] 姚粉霞,陈贵屏,胡伟,等. 利用不同有机和无机固体废物配制人工土壤的研究[J]. 环境污染与防治,2016,38(1):8−13. YAO Fenxia,CHEN Guiping,HU Wei,et al. Exploration of the artificial soil made of different organic and inorganic solid wastes[J]. Environmental Pollution & Control,2016,38(1):8−13.
[95] 张汝翀,王冬梅,张英,等. 煤矸石绿化基质对白三叶草生长及其抵御重金属污染的影响[J]. 应用与环境生物学报,2018,24(4):908−914. ZHANG Ruchong,WANG Dongmei,ZHANG Ying,et al. Effects of green substrates composed of coal gangue on the growth of Trifolium repens L. and its resistance to heavy metal pollution[J]. Chinese Journal of Applied and Environmental Biology,2018,24(4):908−914.
[96] 杜韬,王冬梅,张泽洲,等. 煤矸石植生基质保水性能对黑麦草生长的影响[J]. 中国水土保持科学,2019,17(4):75−84. DU Tao,WANG Dongmei,ZHANG Zezhou,et al. Effect of the water-retaining property of coal gangue planting substrate on the growth of Lolium perenne[J]. Science of Soil and Water Conservation,2019,17(4):75−84.
[97] 张吉雄,张强,周楠,等. 煤基固废充填开采技术研究进展与展望[J]. 煤炭学报,2022,47(12):4167−4181. ZHANG Jixiong,ZHANG Qiang,ZHOU Nan,et al. Research progress and prospect of coal based solid waste backfilling mining technology[J]. Journal of China Coal Society,2022,47(12):4167−4181.
[98] 谢和平,张吉雄,高峰,等. 煤矿负碳高效充填开采理论与技术构想[J]. 煤炭学报,2024,49(1):36−46. XIE Heping,ZHANG Jixiong,GAO Feng,et al. Theory and technical conception of carbon-negative and high-efficient backfill mining in coal mines[J]. Journal of China Coal Society,2024,49(1):36−46.
[99] 王双明,刘浪,朱梦博,等. “双碳”目标下煤炭绿色低碳发展新思路[J]. 煤炭学报,2024,49(1):152−171. WANG Shuangming,LIU Lang. ZHU Mengbo,et al. New way for gren and low-carbon development of coal industry under the target of“daul-carbon”[J]. Journal of China Coal Socicty,2024,49(1):152−171.
[100] 刘浪,夏磊,王双明,等. 多源固废基固碳矿用材料制备及多场景利用关键技术[J]. 煤炭学报,2025,50(2):1203−1222. LIU Lang,XIA Lei,WANG Shuangming,et al. Key technologies for preparation and multi scene utilization of multi-source solid waste based carbon fixation mining materials[J]. Journal of China Coal Society,2025,50(2):1203−1222.
[101] GAO Y H,LIU L,FANG Z Y,et al. A backfill material without cementitious material:Carbonation curing magnesium slag based full solid waste backfill material[J]. Journal of Central South University,2024,31(5):1507−1525. doi: 10.1007/s11771-024-5635-2
[102] 马立强,翟江涛,NGO Ichhuy. CO2矿化煤基固废制备保水开采负碳充填材料试验研究[J]. 煤炭学报,2022,47(12):4228−4236. MA Liqiang,ZHAI Jiangtao,NGO Ichhuy. Experimental study on preparation of negative carbon filling material forwater protection mining by CO2 mineralization of coal-based solid waste[J]. Journal of China Coal Society,2022,47(12):4228−4236.
[103] 胡振琪,赵艳玲,毛缜. 煤矸石规模化生态利用原理与关键技术[J]. 煤炭学报,2024,49(2):978−987. HU Zhenqi,ZHAO Yanling,MAO Zhen. Principles and key technologies for the large-scale ecological utilization of coal gangue[J]. Journal of China Coal Society,2024,49(2):978−987.
[104] 马腾辉,李蓉,王坤,等. 时间序列下煤矸石充填复垦耕地和林地的土壤碳动态特征[J]. 煤炭科学技术,2023,51(5):260−268. MA Tenghui,LI Rong,WANG Kun,et al. Soil carbon dynamic characteristics of coal gangue-filled reclaimed cropland and forest land under time series[J]. Coal Science and Technology,2023,51(5):260−268.
[105] 焦赫,李新举. 煤矸石充填复垦土壤细菌群落变化[J]. 煤炭学报,2021,46(10):3332−3341. JIAO He,LI Xinju. Variation in the soil bacterial community of reclaimed land filled with coal gangue[J]. Journal of China Coal Society,2021,46(10):3332−3341.
[106] 陈敏,陈孝杨,王校刚,等. 煤矿区重构土壤剖面水气变化及其对温度梯度的响应[J]. 煤炭学报,2021,46(4):1309−1319. CHEN Min,CHEN Xiaoyang,WANG Xiaogang,et al. Variation of water and air in reconstruction soil profile and its response to temperature gradient in coal mine area[J]. Journal of China Coal Society,2021,46(4):1309−1319.
[107] 王忠波,张金博,王斌,等. 煤矸石填充对沟道导排水性能和土壤肥力及重金属污染的影响[J]. 农业工程学报,2019,35(24):289−297. doi: 10.11975/j.issn.1002-6819.2019.24.034 WANG Zhongbo,ZHANG Jinbo,WANG Bin,et al. Effects of coal gangue filling on drainage performance,soil fertility and heavy metal pollution in erosion gully[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(24):289−297. doi: 10.11975/j.issn.1002-6819.2019.24.034
[108] 冯印成,赵康,田向勤,等. 煤矸石回填塌陷区重金属淋溶迁移时空规律[J]. 中国环境科学,2025,45(3):1422−1430. doi: 10.3969/j.issn.1000-6923.2025.03.023 FENG Yincheng,ZHAO Kang,TIAN Xiangqin,et al. Research on spatiotemporal patterns of heavy metal leaching and migration in coal gangue backfill subsidence area[J]. China Environmental Science,2025,45(3):1422−1430. doi: 10.3969/j.issn.1000-6923.2025.03.023
[109] 董兴玲,董书宁,王皓,等. 古土壤层对煤矸石淋滤液中典型污染物的防污性能[J]. 煤炭学报,2021,46(6):1957−1965. DONG Xingling,DONG Shuning,WANG Hao,et al. Antifouling property of the paleosol layer to the contaminants in the coal gaugue leachate[J]. Journal of China Coal Society,2021,46(6):1957−1965.
[110] 王新富,王彦君,高良敏,等. 煤矸石对草原煤矿区生态风险影响研究[J]. 煤炭科学技术,2022,50(10):226−234. WANG Xinfu,WANG Yanjun,GAO Liangmin,et al. Research on infuence of coal gangue on ecological nisk in grassland coal mining area[J]. Coal Science and Technology,2022,50(10):226−234.
[111] 吴玉意,朱磊,徐凯,等. 一种放顶式矸石充填液压支架及填充方法:CN114233359B[P]. 2024−03−01. [112] 吴玉意,朱磊,徐凯,等. 一种采凝采充平行式膏体充填液压支架:CN212406773U[P]. 2021−01−26. [113] 朱磊,古文哲,袁超峰,等. 煤矸石浆体充填技术应用与展望[J]. 煤炭科学技术,2024,52(4):93−104. doi: 10.12438/cst.2023-1919 ZHU Lei,GU Wenzhe,YUAN Chaofeng,et al. Application and prospect of coal gangue slurry filling technology[J]. Coal Science and Technology,2024,52(4):93−104. doi: 10.12438/cst.2023-1919
[114] 马新青. 煤矸石离层注浆充填“五位一体” 开采工艺研究[J]. 煤炭工程,2024,56(10):139−144. MA Xinqing. Study on the “five-in-one” mining method of coal gangue grouting and filling in separated bed[J]. Coal Engineering,2024,56(10):139−144.
[115] 轩大洋,许家林,王秉龙. 覆岩隔离注浆充填绿色开采技术[J]. 煤炭学报,2022,47(12):4265−4277. XUAN Dayang,XU Jialin,WANG Binglong. Green mining technology of overburden isolated grout injection[J]. Journal of China Coal Society,2022,47(12):4265−4277.