高级检索

复合激发剂作用下矿渣−钢渣胶凝体系的宏微观特性

顾晓薇, 王营, 孙殿兴, 孙瑞珩, 刘剑平, 王青

顾晓薇,王 营,孙殿兴,等. 复合激发剂作用下矿渣−钢渣胶凝体系的宏微观特性[J]. 煤炭科学技术,2025,53(6):1−12. DOI: 10.12438/cst.2025-0280
引用本文: 顾晓薇,王 营,孙殿兴,等. 复合激发剂作用下矿渣−钢渣胶凝体系的宏微观特性[J]. 煤炭科学技术,2025,53(6):1−12. DOI: 10.12438/cst.2025-0280
GU Xiaowei,WANG Ying,SUN Dianxing,et al. Macroscopic and microscopic characteristics of slag-steel slag cementitious system under the action of composite activator[J]. Coal Science and Technology,2025,53(6):1−12. DOI: 10.12438/cst.2025-0280
Citation: GU Xiaowei,WANG Ying,SUN Dianxing,et al. Macroscopic and microscopic characteristics of slag-steel slag cementitious system under the action of composite activator[J]. Coal Science and Technology,2025,53(6):1−12. DOI: 10.12438/cst.2025-0280

复合激发剂作用下矿渣−钢渣胶凝体系的宏微观特性

基金项目: 

国家重点研发计划资助项目(2023YFC3904303);国家自然科学基金资助项目(52234004)

详细信息
    作者简介:

    顾晓薇: (1971—),女,辽宁凤城人,教授,博士生导师。E-mail:guxiaowei@mail.neu.edu.cn

    通讯作者:

    王营: (1995—),男,辽宁北票人,博士研究生。E-mail:2394553658@qq.com

  • 中图分类号: TU526

Macroscopic and microscopic characteristics of slag-steel slag cementitious system under the action of composite activator

  • 摘要:

    普通硅酸盐水泥是尾砂胶结充填中使用最为广泛的胶凝材料,然而普通硅酸盐水泥生产会造成严重的环境污染。碱激发矿渣−钢渣胶凝体系具有良好的力学性能和工作性能,是普通硅酸盐水泥的潜在替代品之一。为明确矿渣−钢渣胶凝体系在复合激发剂作用下的宏微观特性,采用石灰−碳酸钠作为复合激发剂对矿渣−钢渣胶凝体系进行活化,制备低碳环保的矿渣−钢渣碱激发胶凝材料,讨论复合激发剂掺量、钢渣掺量对胶凝体系凝结时间和抗压强度的影响。并通过XRD、FTIR、SEM等检测手段表征石灰−碳酸钠复合激发剂作用下矿渣−钢渣胶凝体系的水化特征与微观结构。结果表明:石灰−碳酸钠复合激发矿渣−钢渣胶凝体系凝结时间在255 min以内,并未受到钢渣掺量的显著影响,胶凝体系3、28 d抗压强度分别达到23.0、30.4 MPa。钢渣掺量未影响胶凝体系水化产物种类,胶凝体系水化产物主要为C−(A)−S−H凝胶、水滑石和方解石。钢渣掺量增加会减缓胶凝体系的水化放热速率,降低胶凝体系的水化放热并促进胶凝体系的后期水化,提升基体中无害孔比例,掺量在20%时胶凝体系中C−(A)−S−H凝胶生成量最高。然而,钢渣掺量超过40%时,胶凝体系中C−(A)−S−H凝胶随钢渣掺量增加持续减少,胶凝体系基体出现微裂缝,抗压强度降低。研究可为新型低碳胶凝材料的制备以及钢渣的资源化利用提供参考。

    Abstract:

    Ordinary Portland cement is the most widely used cementitious material in tailings cementitious backfill, but its production causes severe environmental pollution. The alkali-activated slag-steel slag cementitious system exhibits excellent mechanical properties and workability, making it a potential substitute for ordinary Portland cement. To clarify the macro- and micro-characteristics of the slag-steel slag cementitious system under the action of a composite activator, lime-sodium carbonate was used as a compound activator to activate the slag-steel slag cementitious system, producing a low-carbon and environmentally friendly alkali-activated slag-steel slag cementitious material. The effects of the composite activator dosage and steel slag content on the setting time and compressive strength of the cementitious system were investigated. The hydration characteristics and microstructure of the slag-steel slag cementitious system under the lime-sodium carbonate composite activator were characterized through XRD, FTIR, SEM, and other testing methods.The results show that the setting time of the lime-sodium carbonate composite-activated slag-steel slag cementitious system was within 255 minutes and was not significantly affected by the steel slag content. The 3-day and 28-day compressive strengths of the cementitious system could reach 23.0 MPa and 30.4 MPa, respectively. The steel slag content did not alter the types of hydration products, which mainly consisted of C−(A)−S−H gel, hydrotalcite, and calcite. Increasing the steel slag content slowed down the hydration heat release rate, reduced the cumulative hydration heat, and promoted later-stage hydration, improving the proportion of harmless pores in the matrix. At a 20% steel slag content, the formation of C−(A)−S−H gel was the highest. However, when the steel slag content exceeded 40%, the amount of C−(A)−S−H gel continued to decrease with increasing steel slag content, microcracks appeared in the matrix, and the compressive strength declined. This study provides a reference for the preparation of novel low-carbon cementitious materials and the resource utilization of steel slag.

  • 图  1   原材料粒径及物相组成

    Figure  1.   Phase composition and particle size of raw materials

    图  2   试验流程及性能测试项目

    Figure  2.   Test procedure and performance measurement items

    图  3   胶凝体系凝结时间

    Figure  3.   Setting time of cementitious system

    图  4   胶凝体系抗压强度

    Figure  4.   Compressive strength of cementitious system

    图  5   不同钢渣掺量下胶凝体系等温量热曲线

    Figure  5.   Isothermal calorimetry curves of cementitious system under different steel slag contents

    图  6   胶凝体系XRD

    1— 水滑石; 2— C−(A)−S−H; 3— 方解石; 4— C3S;5—RO相

    Figure  6.   XRD of cementitious system

    图  7   胶凝体系FTIR

    Figure  7.   FTIR of cementitious system

    图  8   胶凝体系的TG-DTG曲线

    Figure  8.   TG-DTG curves of the cementitious system

    图  9   胶凝体系微观形貌

    Figure  9.   Microscopic morphology of cementitious systems

    图  10   胶凝体系孔结构特征

    Figure  10.   Pore structure of cementitious system

    表  1   原材料化学组成成分

    Table  1   Chemical composition of raw materials %

    成分SiO2Al2O3Fe2O3MgOCaO
    钢渣16.204.8623.456.0542.56
    矿渣34.5017.703.037.0134.00
    下载: 导出CSV

    表  2   试验配比

    Table  2   Experimental proportions

    序号 m(石灰)/g m(碳酸钠)/g m(钢渣)/g m(矿渣)/g m(水)/g
    1 7.4 10.6 108 252 180
    2 14.8 21.2 108 252 180
    3 22.2 31.8 108 252 180
    4 29.6 42.4 108 352 180
    5 14.8 21.2 36 324 180
    6 14.8 21.2 72 288 180
    7 14.8 21.2 144 216 180
    8 14.8 21.2 180 180 180
    下载: 导出CSV
  • [1] 徐先杰,朱志敬,王孟,等. 固体NaOH/Na2SiO3激发矿粉/粉煤灰-炉渣基注浆材料性能研究[J]. 中南大学学报(自然科学版),2024,55(2):628−637.

    XU Xianjie,ZHU Zhijing,WANG Meng,et al. Study on properties of solid NaOH/Na2SiO3 activated slag/fly ashbottom ash based grouting material[J]. Journal of Central South University (Science and Technology),2024,55(2):628−637.

    [2] 郑文忠,邹梦娜,王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报,2019,40(1):28−39.

    ZHENG Wenzhong,ZOU Mengna,WANG Ying. Literature review of alkali-activated cementitious materials[J]. Journal of Building Structures,2019,40(1):28−39.

    [3]

    CHEN K L,LIU Q,CHEN B,et al. Effect of raw materials on the performance of 3D printing geopolymer:A review[J]. Journal of Building Engineering,2024,84:108501. doi: 10.1016/j.jobe.2024.108501

    [4]

    XU J Q,CHEN P. Synergistic effect of iron tailings,steel slag and red mud cementitious materials on mechanical and microstructure properties[J]. Journal of Building Engineering,2024,95:110131. doi: 10.1016/j.jobe.2024.110131

    [5]

    LIU S L,WANG Y M,WU A X,et al. Study on the performance of alkali-activated phosphorus slag cemented paste backfill material:Effect of activator type and amount[J]. Construction and Building Materials,2024,425:136036. doi: 10.1016/j.conbuildmat.2024.136036

    [6]

    WANG J X,LYU X J,WANG L Y,et al. Influence of the combination of calcium oxide and sodium carbonate on the hydration reactivity of alkali-activated slag binders[J]. Journal of Cleaner Production,2018,171:622−629. doi: 10.1016/j.jclepro.2017.10.077

    [7]

    MOBILI A,BLASI E,MAQBOOL Q,et al. Copper mine tailings and metakaolin as precursors for sustainable alkali-activated mortars[J]. Journal of Building Engineering,2025,103:112134. doi: 10.1016/j.jobe.2025.112134

    [8] 张少峰,牛荻涛,罗大明,等. 激发剂对钢渣水泥的活化及作用机理[J]. 哈尔滨工业大学学报,2024,56(1):165−172.

    ZHANG Shaofeng,NIU Ditao,LUO Daming,et al. Activation of activator on steel slag-cement and its hydration mechanism[J]. Journal of Harbin Institute of Technology,2024,56(1):165−172.

    [9] 刘淑贤,苏严,杨敏,等. 钢渣:矿渣复合胶凝材料的制备及胶凝活性激发试验研究[J]. 金属矿山,2022(11):252−258.

    LIU Shuxian,SU Yan,YANG Min,et al. Experimental study on preparation of the steel slag and slag composite cementitious material and its gelling activity inspiration[J]. Metal Mine,2022(11):252−258.

    [10] 南雪丽,杨旭,张宇,等. 钢渣−矿渣基胶凝材料的协同水化机理[J]. 建筑材料学报,2024,27(4):366−374.

    NAN Xueli,YANG Xu,ZHANG Yu,et al. Synergistic hydration mechanism of steel slag-slag based cementitious material[J]. Journal of Building Materials,2024,27(4):366−374.

    [11]

    ZHAO J H,LI Z H,WANG D M,et al. Hydration superposition effect and mechanism of steel slag powder and granulated blast furnace slag powder[J]. Construction and Building Materials,2023,366:130101. doi: 10.1016/j.conbuildmat.2022.130101

    [12] 彭小芹,刘朝,李三,等. 碱激发钢渣矿渣胶凝材料凝结硬化性能研究[J]. 湖南大学学报(自然科学版),2015,42(6):47−52.

    PENG Xiaoqin,LIU Chao,LI San,et al. Research on the setting and hardening performance of alkali-activated steel slag-slag based cementitious materials[J]. Journal of Hunan University (Natural Sciences),2015,42(6):47−52.

    [13]

    GHORBANI S,STEFANINI L,SUN Y B,et al. Characterisation of alkali-activated stainless steel slag and blast-furnace slag cements[J]. Cement and Concrete Composites,2023,143:105230. doi: 10.1016/j.cemconcomp.2023.105230

    [14]

    ZHONG J X,CAO L Y,LI M,et al. Mechanical properties and durability of alkali-activated steel slag–blastfurnace slag cement[J]. Journal of Iron and Steel Research International,2023,30(7):1342−1355. doi: 10.1007/s42243-023-01003-6

    [15]

    ZHOU Y Q,SUN J W,LIAO Y W. Influence of ground granulated blast furnace slag on the early hydration and microstructure of alkali-activated converter steel slag binder[J]. Journal of Thermal Analysis and Calorimetry,2022,147:243−252.

    [16]

    SUN X G,LIU J,QIU J P,et al. Alkali activation of blast furnace slag using a carbonate-calcium carbide residue alkaline mixture to prepare cemented paste backfill[J]. Construction and Building Materials,2022,320:126234. doi: 10.1016/j.conbuildmat.2021.126234

    [17]

    YAN S J,PAN D W,DAN J M,et al. Calcium carbide residue and Glauber’s salt as composite activators for fly ash-based geopolymer[J]. Cement and Concrete Composites,2023,140:105081. doi: 10.1016/j.cemconcomp.2023.105081

    [18]

    GAO X,YAO X,YANG T,et al. Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements:Compressive strength,phase assemblage and environmental benefits[J]. Construction and Building Materials,2021,308:125015. doi: 10.1016/j.conbuildmat.2021.125015

    [19] 杨锦湖,林添琦,张检梅,等. 氧化钙-碳酸钠复合激发矿渣砂浆的自收缩机制[J]. 哈尔滨工业大学学报,2024,56(2):86−94.

    YANG Jinhu,LIN Tianqi,ZHANG Jianmei,et al. Mechanism of autogenous shrinkage of hybrid calcium oxide and sodium carbonate-activated slag mortars[J]. Journal of Harbin Institute of Technology,2024,56(2):86−94.

    [20]

    ZHUANG S Y,WANG Q. Inhibition mechanisms of steel slag on the early-age hydration of cement[J]. Cement and Concrete Research,2021,140:106283. doi: 10.1016/j.cemconres.2020.106283

    [21]

    COFFETTI D,CANDAMANO S,CREA F,et al. On the role of alkali content on one-part alkali activated slag pastes produced with tri- blend solid activators[J]. Construction and Building Materials,2023,409:133868. doi: 10.1016/j.conbuildmat.2023.133868

    [22]

    ZHANG B Y,MA Z Y,YAN J H,et al. Effects of fly ash vitrified slag (FVS) dosage and alkali content on the reaction of alkali-activated material (AAM)[J]. Materials Today Communications,2025,46:112507. doi: 10.1016/j.mtcomm.2025.112507

    [23] 万小梅,车雪萍,朱亚光,等. 再生混凝土微粉在碱激发胶材体系中的作用效应研究[J]. 材料导报,2023,37(19):114−120.

    WAN Xiaomei,CHE Xueping,ZHU Yaguang,et al. Investigation on the effect of recycled concrete powder in alkali-activated cementitous materials[J]. Materials Reports,2023,37(19):114−120.

    [24] 高英力,孟浩,万红伟,等. 电石渣碱激发矿渣/粉煤灰胶凝材料性能及微结构[J]. 中南大学学报(自然科学版),2023,54(5):1739−1747.

    GAO Yingli,MENG Hao,WAN Hongwei,et al. Properties and microstructure of alkali-activated cementitious materials prepared with carbide slag-slag-fly ash solid waste[J]. Journal of Central South University (Science and Technology),2023,54(5):1739−1747.

    [25] 张兆瑞,金祖权,李宁. 水胶比对碱激发矿渣早期反应动力学的影响[J]. 建筑材料学报,2024,27(12):1159−1168.

    ZHANG Zhaorui,JIN Zuquan,LI Ning. Effect of water-binder ratio on early reaction kinetics of alkali-activated slag[J]. Journal of Building Materials,2024,27(12):1159−1168.

    [26]

    ZHAO Y Q,GU X W,XU X C,et al. Using calcium carbide residue to prepare ecological alkali activated slag composites:Effect of anion type[J]. Ceramics International,2023,49(15):25092−25104. doi: 10.1016/j.ceramint.2023.05.039

    [27]

    SHI Y X,ZHAO Q X,XUE C H,et al. Preparation and curing method of red mud-calcium carbide slag synergistically activated fly ash-ground granulated blast furnace slag based eco-friendly geopolymer[J]. Cement and Concrete Composites,2023,139:104999. doi: 10.1016/j.cemconcomp.2023.104999

    [28]

    BURCIAGA-DÍAZ O,BETANCOURT-CASTILLO I E,MONTES-ESCOBEDO M E,et al. One-part pastes and mortars of CaO-Na2CO3 activated blast furnace slag:Microstructural evolution,cost and CO2 emissions[J]. Construction and Building Materials,2023,368:130431. doi: 10.1016/j.conbuildmat.2023.130431

    [29]

    MACHNER A,ZAJAC M,BEN HAHA M,et al. Limitations of the hydrotalcite formation in Portland composite cement pastes containing dolomite and metakaolin[J]. Cement and Concrete Research,2018,105:1−17. doi: 10.1016/j.cemconres.2017.11.007

    [30]

    GU X W,WANG H Y,ZHU Z G,et al. Synergistic effect and mechanism of lithium slag on mechanical properties and microstructure of steel slag-cement system[J]. Construction and Building Materials,2023,396:131768. doi: 10.1016/j.conbuildmat.2023.131768

    [31]

    FENG D L,WANG J,WANG Y X,et al. Experimental study on solidification/stabilisation of high-salt sludge by alkali-activated GGBS and MSWI bottom ash cementitious materials[J]. Case Studies in Construction Materials,2023,19:e02417. doi: 10.1016/j.cscm.2023.e02417

    [32]

    ZHANG W Y,WANG S,DUAN X H,et al. Mechanical properties,durability and microstructure of cementitious materials with low-calcium circulating fluidized bed fly ash[J]. Construction and Building Materials,2023,369:130394. doi: 10.1016/j.conbuildmat.2023.130394

    [33]

    PENG D D,WANG Y G,LIU X M,et al. Preparation,characterization,and application of an eco-friendly sand-fixing material largely utilizing coal-based solid waste[J]. Journal of Hazardous Materials,2019,373:294−302. doi: 10.1016/j.jhazmat.2019.03.092

    [34] 张艳佳,汤畅,刘生玉,等. 精炼渣基矿山充填胶凝材料制备及水化机理[J]. 金属矿山,2022(6):230−236.

    ZHANG Yanjia,TANG Chang,LIU Shengyu,et al. Preparation and hydration mechanism of refining slag-based mine filling cementitious material[J]. Metal Mine,2022(6):230−236.

    [35]

    WANG S Y,GU X W,GE X W,et al. Re−utilization of Ca−based and Na−based desulfurization by−product as alternative sulfate activator in supersulfated cement system:Mineral transformation and reaction mechanism[J]. Construction and Building Materials,2025,472:140838. doi: 10.1016/j.conbuildmat.2025.140838

    [36]

    XU R S,LIU W Y,WANG A G,et al. Strength development,phase evolution,microstructure change and environmental leaching behavior of alkali-activated copper slag[J]. Construction and Building Materials,2025,473:141037. doi: 10.1016/j.conbuildmat.2025.141037

    [37]

    PONOMAR V,OHENOJA K,ILLIKAINEN M. Optimizing activating solution and environmental leaching characteristics of Fe-rich alkali-activated Zn slag[J]. Journal of Hazardous Materials,2023,445:130575. doi: 10.1016/j.jhazmat.2022.130575

    [38] 韩志园,杨鹰,孟维琦,等. 钼尾矿粉对砂浆强度和微结构影响的试验研究[J]. 中南大学学报(自然科学版),2024,55(11):4236−4248.

    HAN Zhiyuan,YANG Ying,MENG Weiqi,et al. Experimental study on effect of molybdenum tailings powder on strength and microstructure of mortar[J]. Journal of Central South University (Science and Technology),2024,55(11):4236−4248.

图(10)  /  表(2)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  11
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2025-03-04
  • 网络出版日期:  2025-06-03

目录

    /

    返回文章
    返回