高级检索

鄂尔多斯盆地本溪组煤岩气含气性主控因素及其实践意义

邓泽, 赵群, 范立勇, 黄道军, 丁蓉, 曹毅民, 李珮杰, 高向东

邓 泽,赵 群,范立勇,等. 鄂尔多斯盆地本溪组煤岩气含气性主控因素及其实践意义[J]. 煤炭科学技术,2025,53(S1):233−251. DOI: 10.12438/cst.2025-0236
引用本文: 邓 泽,赵 群,范立勇,等. 鄂尔多斯盆地本溪组煤岩气含气性主控因素及其实践意义[J]. 煤炭科学技术,2025,53(S1):233−251. DOI: 10.12438/cst.2025-0236
DENG Ze,ZHAO Qun,FAN Liyong,et al. Key controlling factors of coal-rock gas of Benxi Formation in Ordos Basin and its practical significance[J]. Coal Science and Technology,2025,53(S1):233−251. DOI: 10.12438/cst.2025-0236
Citation: DENG Ze,ZHAO Qun,FAN Liyong,et al. Key controlling factors of coal-rock gas of Benxi Formation in Ordos Basin and its practical significance[J]. Coal Science and Technology,2025,53(S1):233−251. DOI: 10.12438/cst.2025-0236

鄂尔多斯盆地本溪组煤岩气含气性主控因素及其实践意义

基金项目: 

中国石油科技资助项目(2024DJ23;2023ZZ18);中国石油长庆油田公司关键核心技术攻关资助项目(2023DZZ01)

详细信息
    作者简介:

    邓泽: (1982—),男,高级工程师。E-mail:dengze@petrochina.com.cn

    通讯作者:

    高向东: (1988—),男,讲师,博士。 E-mail:gaoxd@ecut.edu.cn

  • 中图分类号: TE122

Key controlling factors of coal-rock gas of Benxi Formation in Ordos Basin and its practical significance

  • 摘要:

    鄂尔多斯盆地煤岩气资源丰富,多个区块勘探开发取得重大突破,然而煤岩气的含气性主控因素尚未明确,制约整体勘探开发进程。基于含气量、煤岩煤质、煤岩地化、孔隙结构等大量实测资料,系统分析了本溪组煤岩气地质条件,厘定了含气性主控因素,并开展了煤岩气资源条件分区评价。研究表明:沉积、煤阶、埋深奠定了深层煤岩含气量的整体格局。① 沉积环境制约着煤岩生烃物质基础(包括煤层厚度、煤层结构及煤岩煤质)、煤岩气原始赋存空间及保存条件的平面分布。成煤环境演化则决定了煤岩煤质的纵向差异分布,进而影响含气量的纵向非均质性。② 煤阶不仅控制了煤岩生气强度,还通过影响孔裂隙结构从而影响煤岩气的赋存空间及储集性能。随着变质程度提高,煤岩的吸附性能得到了强化。③ 现今埋深主要影响吸附气和游离气的比例,常压储层在临界深度以下,随着埋深的增加,游离气的比例有所增加,3000 m以深总气量呈减小趋势。④ 微幅构造对发育于缓坡带的煤岩气起到了局部富气的作用。⑤ 综合考虑生、储、保有利条件,明确了盆地煤岩气富集带为榆林到宜川的南北条带,平均含气量高达23 cm3/g。⑥ 依据煤岩气的内涵及含气性主控因素,结合煤层展布,构建了煤岩气资源条件评价体系,将盆地本溪组煤岩划分为4大类13个小区,Ⅰ类区主要分布在榆林地区、大宁—吉县地区和延安地区,Ⅱ类区主要分布在乌审旗一带。研究成果以期为鄂尔多斯盆地煤岩气有序勘探开发提供借鉴与参考。

    Abstract:

    The Ordos Basin is rich in coal-rock gas resources, and significant breakthroughs have been made in exploration and development in many blocks. However, the key controlling factors for the gas content of coal have not yet been clarified, which restricts the overall exploration and development process. Based on a large amount of measured data such as gas content, coal rock and coal quality, coal geochemistry,and pore structure, the geological conditions of coal-rock gas in Benxi Formation were systematically analyzed, the main controlling factors of gas content were determined, and the coal-rock gas resource conditions were evaluated by zoning. The results show that sedimentation, coal rank and buried depth have laid the overall pattern of gas content of coal. ① The sedimentary environment restricts the hydrocarbon material base (including coal seam thickness, coal seam structure and coal quality), the original occurrence space of coal-rock gas and the plane distribution of preservation conditions. The evolution of coal-forming environment determines the longitudinal difference distribution of coal quality, which in turn creates the longitudinal heterogeneity of gas content. ② Coal rank not only controls the gas generation intensity of coal, but also affects the occurrence space and reservoir performance of coal-rock gas by affecting the pore structure, and the adsorption performance of coal is strengthened with the increase of metamorphism. ③ The burial depth mainly affects the proportion of adsorbed gas and free gas, and below the critical depth, with the increase of burial depth, the proportion of free gas increases, and the total gas volume decreases after the depth exceeds 3000m. ④ The micro-amplitude structure plays a role in local gas enrichment in the development and gentle slope zone. ⑤ Taking into account the favorable conditions for hydrocarbon generation, storage, and preservation, coal-rock gas enrichment zone is clearly defined as the north-south strip from Yulin to Yichuan, with an average gas content of up to 23 cm3/g. ⑥ According to the connotation and key control factors of coal-rock gas, combined with the distribution of coal seams, the evaluation system of coal-rock gas resource conditions was constructed, and the coal seam of Benxi Formation in the basin were divided into 4 categories and 13 communities. The class I area was mainly distributed in Yulin area, Daning-Jixian area, and Yanan area, and the class II area was mainly distributed in Wushenqi area. The research results are expected to provide reference and guidance for the orderly exploration and development of coal-rock gas in the Ordos Basin.

  • 图  1   鄂尔多斯盆地上古生界煤系地层柱状图和8号煤埋深、厚度、Ro分布

    Figure  1.   Stratigraphic column of Upper Paleozoic coal-bearing strata in Ordos Basin and distribution of burial depth, thickness, and Ro of No. 8 coal

    图  2   本溪组8号煤含气性特征

    Figure  2.   Gas content characteristics of No. 8 coal of Benxi Formation

    图  3   不同沉积相带中的煤层结构和灰分含量

    Figure  3.   Coal seam structure and ash content of different sedimentary facies zones

    图  4   绥德1H井成煤环境制约下的8号煤的煤质、含气性纵向特征

    Figure  4.   Vertical characteristics of coal quality and gas content of No. 8 coal of Suide1H well as constrained by coal-forming environments

    图  5   8号煤含气量与灰分的关系

    Figure  5.   Relationship between gas content and ash content of No. 8 coal

    图  6   镜质组含量与游离气量及其比例与的关系

    Figure  6.   Relationship between vitrinite content and free gas content and its ratio

    图  7   本溪组8号煤、岩组合特征

    Figure  7.   Assemblage characteristics of No. 8 coal and surrounding rock of Benxi Formation

    图  8   本溪组8号煤围岩封闭性对含气量的影响

    Figure  8.   Impact of surrounding strata sealing on gas content of No. 8 coal of Benxi Formation

    图  9   不同煤阶煤岩的生烃模式、孔隙演化及储气性能

    Figure  9.   Hydrocarbon generation modes, pore evolution, and gas storage performance of coal at different coal ranks

    图  10   本溪组8号煤的Ro和孔隙结构参数的关系

    Figure  10.   Relationship between Ro and pore structure parameters of No. 8 coal of Benxi Formation

    图  11   本溪组8号煤成藏演化过程[35]

    Figure  11.   Process of hydrocarbon accumulation and evolution of No. 8 coal of Benxi Formation[35]

    图  12   本溪组8号煤含气量随埋深的变化规律

    Figure  12.   Variation pattern of gas content with burial depth of No. 8 coal of Benxi Formation

    图  13   大宁—吉县区块储量申报区微幅构造划分[22]

    Figure  13.   Microstructural tectonic division of reserve declaration area in Daning—Jixian block[22]

    图  14   鄂尔多斯盆地煤层气与煤岩气地质条件对比

    Figure  14.   Comparison of geological conditions between coalbed methane and coal-rock gas in Ordos Basin

    图  15   鄂尔多斯盆地本溪组8号煤煤岩气富集区分布

    Figure  15.   Distribution of coal-rock gas enrichment zones of No. 8 coal of Benxi Formation in Ordos Basin

    图  16   鄂尔多斯盆地本溪组煤岩气资源条件评价结果

    Figure  16.   Evaluation results of coal-rock gas resource conditions of Benxi Formation in Ordos Basin

    表  1   泥炭沼泽环境判识指标

    Table  1   Indicators for recognizing peat swamp environment

    古环境指标 煤相指标
    ST/% 低硫 中硫 高硫 GI/% 强凝胶化 中凝胶化 弱凝胶化
    <1 1~3 >3 >10 5~10 <5
    Sr/Ba/% 淡水 半咸水 咸水 TPI/% 保存不完整 保存完整
    <0.6 0.6~1.0 >1.0 <1 >1
    V/(V+Ni)/% 缺氧 弱氧 氧化 GWI/% 值越大代表地下水影响越大
    >0.6 0.45~0.6 <0.45 TI/% 值越大代表水体活动越强
    下载: 导出CSV

    表  2   鄂尔多斯盆地本溪组煤岩气资源条件评价指标体系

    Table  2   Evaluation index system for coal-rock gas resource conditions in Benxi Formation of Ordos Basin

    关键参数
    厚度/m >10 4~10 <4
    灰分/% <20 >20
    Ro/% >1.3 1.0~1.3 0.65~1.0
    埋深/m 18003000 30003750 >375015001800
    煤、岩组合类型 煤−灰岩、煤−泥岩、煤−灰岩+泥岩 煤−砂岩+泥岩 煤−砂岩
    下载: 导出CSV
  • [1] 徐凤银,王勃,赵欣,等. “双碳” 目标下推进中国煤层气业务高质量发展的思考与建议[J]. 中国石油勘探,2021,26(3):9−18.

    XU Fengyin,WANG Bo,ZHAO Xin,et al. Thoughts and suggestions on promoting high quality development of China’s CBM business under the goal of “double carbon”[J]. China Petroleum Exploration,2021,26(3):9−18.

    [2] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003

    XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003

    [3] 李辛子,王运海,姜昭琛,等. 深部煤层气勘探开发进展与研究[J]. 煤炭学报,2016,41(1):24−31.

    LI Xinzi,WANG Yunhai,JIANG Zhaochen,et al. Progress and study on exploration and production for deep coalbed methane[J]. Journal of China Coal Society,2016,41(1):24−31.

    [4] 郭广山,柳迎红,吕玉民. 中国深部煤层气勘探开发前景初探[J]. 洁净煤技术,2015,21(1):125−128.

    GUO Guangshan,LIU Yinghong,LYU Yumin. Preliminary exploration and development prospects on deep coalbed methane in China[J]. Clean Coal Technology,2015,21(1):125−128.

    [5] 周德华,陈刚,陈贞龙,等. 中国深层煤层气勘探开发进展、关键评价参数与前景展望[J]. 天然气工业,2022,42(6):43−51. doi: 10.3787/j.issn.1000-0976.2022.06.004

    ZHOU Dehua,CHEN Gang,CHEN Zhenlong,et al. Exploration and development progress,key evaluation parameters and prospect of deep CBM in China[J]. Natural Gas Industry,2022,42(6):43−51. doi: 10.3787/j.issn.1000-0976.2022.06.004

    [6] 余琪祥,罗宇,曹倩,等. 准噶尔盆地东北缘深层煤层气勘探前景[J]. 天然气地球科学,2023,34(5):888−899. doi: 10.11764/j.issn.1672-1926.2022.10.007

    YU Qixiang,LUO Yu,CAO Qian,et al. Exploration prospect of deep coalbed methane in the northeastern margin of Junggar Basin[J]. Natural Gas Geoscience,2023,34(5):888−899. doi: 10.11764/j.issn.1672-1926.2022.10.007

    [7] 高丽军,谢英刚,潘新志,等. 临兴深部煤层气含气性及开发地质模式分析[J]. 煤炭学报,2018,43(6):1634−1640.

    GAO Lijun,XIE Yinggang,PAN Xinzhi,et al. Gas analysis of deep coalbed methane and its geological model for development in Linxing Block[J]. Journal of China Coal Society,2018,43(6):1634−1640.

    [8] 李勇,徐凤银,唐书恒,等. 鄂尔多斯盆地煤层(岩)气勘探开发进展及发展方向[J]. 天然气工业,2024,44(10):63−79. doi: 10.3787/j.issn.1000-0976.2024.10.005

    LI Yong,XU Fengyin,TANG Shuheng,et al. Progress and development direction of coalbed methane(coal-rock gas) exploration and development in the Ordos Basin[J]. Natural Gas Industry,2024,44(10):63−79. doi: 10.3787/j.issn.1000-0976.2024.10.005

    [9] 秦勇,申建,王宝文,等. 深部煤层气成藏效应及其耦合关系[J]. 石油学报,2012,33(1):48−54. doi: 10.7623/syxb201201006

    QIN Yong,SHEN Jian,WANG Baowen,et al. Accumulation effects and coupling relationship of deep coalbed methane[J]. Acta Petrolei Sinica,2012,33(1):48−54. doi: 10.7623/syxb201201006

    [10] 申建,秦勇,傅雪海,等. 深部煤层气成藏条件特殊性及其临界深度探讨[J]. 天然气地球科学,2014,25(9):1470−1476.

    SHEN Jian,QIN Yong,FU Xuehai,et al. Properties of deep coalbed methane reservoir-forming conditions and critical depth discussion[J]. Natural Gas Geoscience,2014,25(9):1470−1476.

    [11] 秦勇,申建. 论深部煤层气基本地质问题[J]. 石油学报,2016,37(1):125−136.

    QIN Yong,SHEN Jian. On the fundamental issues of deep coalbed methane geology[J]. Acta Petrolei Sinica,2016,37(1):125−136.

    [12] 顾娇杨,张兵,郭明强. 临兴区块深部煤层气富集规律与勘探开发前景[J]. 煤炭学报,2016,41(1):72−79.

    GU Jiaoyang,ZHANG Bing,GUO Mingqiang. Deep coalbed methane enrichment rules and its exploration and development prospect in Linxing block[J]. Journal of China Coal Society,2016,41(1):72−79.

    [13] 郭涛. 深部煤层气赋存态及其含量预测模型[D]. 徐州:中国矿业大学,2021.

    GUO Tao. Occurrence and content prediction model of deep coalbed methane[D]. Xuzhou:China University of Mining and Technology,2021.

    [14] 贾小宝. 大宁—吉县地区深部煤储层物性特征研究[D]. 太原:太原理工大学,2018.

    JIA Xiaobao. Study on physical properties of deep coal reservoirs in Daning-Jixian area[D]. Taiyuan:Taiyuan University of Technology,2018.

    [15] 陈刚,胡宗全. 鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨[J]. 煤炭学报,2018,43(6):1572−1579.

    CHEN Gang,HU Zongquan. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at Southeastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1572−1579.

    [16] 高向东. 临兴深部煤储层孔渗成因演化机制及压裂可改造性研究[D]. 北京:中国矿业大学(北京),2019.

    GAO Xiangdong. Study on genetic evolution mechanism of porosity and permeability and fracturing reconstructability of Linxing deep coal reservoir[D]. Beijing:China University of Mining & Technology,Beijing,2019.

    [17] 梁冰,石迎爽,孙维吉,等. 中国煤系“三气” 成藏特征及共采可能性[J]. 煤炭学报,2016,41(1):167−173.

    LIANG Bing,SHI Yingshuang,SUN Weiji,et al. Reservoir forming characteristics of “the three gases” in coal measure and the possibility of commingling in China[J]. Journal of China Coal Society,2016,41(1):167−173.

    [18] 秦勇,申建,沈玉林. 叠置含气系统共采兼容性:煤系“三气” 及深部煤层气开采中的共性地质问题[J]. 煤炭学报,2016,41(1):14−23.

    QIN Yong,SHEN Jian,SHEN Yulin. Joint mining compatibility of superposed gas-bearing systems:A general geological problem for extraction of three natural gases and deep CBM in coal series[J]. Journal of China Coal Society,2016,41(1):14−23.

    [19] 贾承造,庞雄奇,宋岩. 论非常规油气成藏机理:油气自封闭作用与分子间作用力[J]. 石油勘探与开发,2021,48(3):437−452. doi: 10.11698/PED.2021.03.01

    JIA Chengzao,PANG Xiongqi,SONG Yan. The mechanism of unconventional hydrocarbon formation:Hydrocarbon self-containment and intermolecular forces[J]. Petroleum Exploration and Development,2021,48(3):437−452. doi: 10.11698/PED.2021.03.01

    [20] 康永尚,邓泽,皇甫玉慧,等. 中煤阶煤层气高饱和—超饱和带的成藏模式和勘探方向[J]. 石油学报,2020,41(12):1555−1566. doi: 10.7623/syxb202012009

    KANG Yongshang,DENG Ze,HUANGFU Yuhui,et al. Accumulation model and exploration direction of high-to over-saturation zone of the midium-rank coalbed methane[J]. Acta Petrolei Sinica,2020,41(12):1555−1566. doi: 10.7623/syxb202012009

    [21] 孙粉锦,周国晓,田文广,等. 煤层气系统的定义、内涵、形成及应用:以鄂尔多斯盆地石炭系:二叠系煤层为例[J]. 天然气工业,2024,44(7):42−53. doi: 10.3787/j.issn.1000-0976.2024.07.004

    SUN Fenjin,ZHOU Guoxiao,TIAN Wenguang,et al. Definition,connotation,formation and application of coalbed methane system:A case study on the Carboniferous-Permian coal seams in the Ordos Basin[J]. Natural Gas Industry,2024,44(7):42−53. doi: 10.3787/j.issn.1000-0976.2024.07.004

    [22] 闫霞,徐凤银,聂志宏,等. 深部微构造特征及其对煤层气高产“甜点区” 的控制:以鄂尔多斯盆地东缘大吉地区为例[J]. 煤炭学报,2021,46(8):2426−2439.

    YAN Xia,XU Fengyin,NIE Zhihong,et al. Microstructure characteristics of Daji area in east Ordos Basin and its control over the high yield dessert of CBM[J]. Journal of China Coal Society,2021,46(8):2426−2439.

    [23] 何发岐,董昭雄,赵兰,等. 深部煤层游离气形成机理及资源意义[J]. 断块油气田,2021,28(5):604−608,613.

    HE Faqi,DONG Zhaoxiong,ZHAO Lan,et al. Formation mechanism and resource significance of free gas in deep coalbed[J]. Fault-Block Oil & Gas Field,2021,28(5):604−608,613.

    [24] 李国欣,张水昌,何海清,等. 煤岩气:概念、内涵与分类标准[J]. 石油勘探与开发,2024,51(4):783−795. doi: 10.11698/PED.20240424

    LI Guoxin,ZHANG Shuichang,HE Haiqing,et al. Coal-rock gas:Concept,connotation and classification criteria[J]. Petroleum Exploration and Development,2024,51(4):783−795. doi: 10.11698/PED.20240424

    [25] 赵喆,徐旺林,赵振宇,等. 鄂尔多斯盆地石炭系本溪组煤岩气地质特征与勘探突破[J]. 石油勘探与开发,2024,51(2):234−247,259. doi: 10.11698/PED.20230679

    ZHAO Zhe,XU Wanglin,ZHAO Zhenyu,et al. Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China[J]. Petroleum Exploration and Development,2024,51(2):234−247,259. doi: 10.11698/PED.20230679

    [26] 周立宏,熊先钺,丁蓉,等. 煤岩气内涵、富集机理及实践意义[J]. 天然气工业,2025,45(3):1−15. doi: 10.3787/j.issn.1000-0976.2025.03.001

    ZHOU Lihong,XIONG Xianyue,DING Rong,et al. Connotation,enrichment mechanism and practical significance of coal-rock gas[J]. Natural Gas Industry,2025,45(3):1−15. doi: 10.3787/j.issn.1000-0976.2025.03.001

    [27] 牛小兵,赵伟波,史云鹤,等. 鄂尔多斯盆地本溪组天然气成藏条件及勘探潜力[J]. 石油学报,2023,44(8):1240−1257. doi: 10.7623/syxb202308004

    NIU Xiaobing,ZHAO Weibo,SHI Yunhe,et al. Natural gas accumulation conditions and exploration potential of Benxi Formation in Ordos Basin[J]. Acta Petrolei Sinica,2023,44(8):1240−1257. doi: 10.7623/syxb202308004

    [28] 杨秀春,徐凤银,王虹雅,等. 鄂尔多斯盆地东缘煤层气勘探开发历程与启示[J]. 煤田地质与勘探,2022,50(3):30−41. doi: 10.12363/issn.1001-1986.21.12.0823

    YANG Xiuchun,XU Fengyin,WANG Hongya,et al. Exploration and development process of coalbed methane in eastern margin of Ordos Basin and its enlightenment[J]. Coal Geology & Exploration,2022,50(3):30−41. doi: 10.12363/issn.1001-1986.21.12.0823

    [29] 江同文,熊先钺,金亦秋. 深部煤层气地质特征与开发对策[J]. 石油学报,2023,44(11):1918−1930. doi: 10.7623/syxb202311013

    JIANG Tongwen,XIONG Xianyue,JIN Yiqiu. Geological characteristics and development countermeasures of deep coalbed methane[J]. Acta Petrolei Sinica,2023,44(11):1918−1930. doi: 10.7623/syxb202311013

    [30] 鲁静,邵龙义,孙斌,等. 鄂尔多斯盆地东缘石炭-二叠纪煤系层序-古地理与聚煤作用[J]. 煤炭学报,2012,37(5):747−754.

    LU Jing,SHAO Longyi,SUN Bin,et al. Sequence-paleogeography and coal accumulation of Carboniferous-Permian coal measures in the Eastern Ordos Basin[J]. Journal of China Coal Society,2012,37(5):747−754.

    [31] 李勇. 鄂尔多斯盆地东缘煤层气富集成藏规律研究[D]. 北京:中国地质大学(北京),2015.

    LI Yong. Study on the law of coalbed methane enrichment and accumulation in the eastern margin of Ordos basin[D]. Beijing:China University of Geosciences,2015.

    [32] 赵伟波, 刘洪林, 王怀厂, 等. 煤层微观孔隙特征及沉积环境对孔隙结构的控制作用—以鄂尔多斯盆地8号煤层为例[J]. 煤炭科学技术,2024,52(6):142−154.

    ZHAO Weibo, LIU Honglin, WANG Huaichang, et al. Microscopic pore characteristics of coal seam and the controlling effect of sedimentary environment on pore structure in No. 8 coal seam of the Ordos Basin[J]. Coal Science and Technology,2024,52(6):142−154.

    [33]

    LI S,TANG D Z,PAN Z J,et al. Evaluation of coalbed methane potential of different reservoirs in western Guizhou and eastern Yunnan,China[J]. Fuel,2015,139:257−267. doi: 10.1016/j.fuel.2014.08.054

    [34] 陶传奇. 鄂尔多斯盆地东缘临兴地区深部煤层气富集成藏规律研究[D]. 北京:中国矿业大学(北京),2019.

    TAO Chuanqi. Study on the law of deep coalbed methane accumulation in Linxing area,eastern margin of Ordos Basin[D]. Beijing:China University of Mining & Technology,Beijing,2019.

    [35] 许浩,汤达祯,陶树,等. 深、浅部煤层气地质条件差异性及其形成机制[J]. 煤田地质与勘探,2024,52(2):33−39. doi: 10.12363/issn.1001-1986.23.10.0693

    XU Hao,TANG Dazhen,TAO Shu,et al. Differences in geological conditions of deep and shallow coalbed methane and their formation mechanisms[J]. Coal Geology & Exploration,2024,52(2):33−39. doi: 10.12363/issn.1001-1986.23.10.0693

    [36] 范立勇,周国晓,杨兆彪,等. 鄂尔多斯盆地深部煤层气差异富集的地质控制[J]. 煤炭科学技术,2025,53(1):203−215. doi: 10.12438/cst.2024-1144

    FAN Liyong,ZHOU Guoxiao,YANG Zhaobiao,et al. Geological control of differential enrichment of deep coalbed methane in the Ordos Basin[J]. Coal Science and Technology,2025,53(1):203−215. doi: 10.12438/cst.2024-1144

  • 期刊类型引用(16)

    1. 吴震, 高恒, 樊兆峰, 呼天亮, 王小虎, 王学刚, 姚金鹏. 鄂尔多斯矿区冲击地压致灾机制及动力显现防治. 煤矿安全. 2025(07) 百度学术
    2. 安成, 王静宜, 逯峰. 基于新一代信息技术提升煤矿物联感知和控制交互能力研究. 信息通信技术与政策. 2025(06) 百度学术
    3. 姚阳,刘猛,郭靖,李越. 采煤工作面高压环形供液系统研发设计. 煤矿现代化. 2025(03): 123-126+132 . 百度学术
    4. 郭文兵,吴东涛. 我国煤矿开采技术发展与人才培养需求分析. 河南理工大学学报(社会科学版). 2025(03): 92-103 . 百度学术
    5. 姚阳,王子亚,葛张一. 综采工作面液压支架性能提升应用研究. 中国设备工程. 2025(10): 106-108 . 百度学术
    6. 王雪峰,王佳,叶荣文,周剑,白德威. 德兴铜矿数字化智能矿山探索与应用实践. 有色金属(矿山部分). 2025(03): 111-118 . 百度学术
    7. 柴修伟,张龙,胡建华,肖红星,彭亚利,刘光俊,徐亮,赵祥波. 鄂西磷矿智能矿山建设现状与发展方向. 金属矿山. 2025(05): 137-144 . 百度学术
    8. 李伟,孙希奎. 深地煤炭资源安全高效智能化开采关键技术与实践. 煤炭科学技术. 2024(01): 52-64 . 本站查看
    9. 年立营,孙文佳,李肖飞,朱家强. 疏水改性对粗精煤泥助滤脱水效果的影响研究. 选煤技术. 2024(01): 18-23 . 百度学术
    10. 张运华,豆景乐,姚阳. 浅析液压支架应力测试与理论计算. 中国设备工程. 2024(11): 88-91 . 百度学术
    11. 邓双飞. 厚煤层综放工作面末采阶段火灾综合防治技术研究. 能源与节能. 2024(09): 197-199 . 百度学术
    12. 常冶衡,张令兰. 数据要素市场下山东省企业资本协同管理模式设计——来自坪效比、产权结构与区域经济模式的机理. 商业会计. 2024(22): 14-19 . 百度学术
    13. 于永宁,郭佳策. 采空区煤体自热效应及多元气体吸附研究. 山东煤炭科技. 2024(12): 71-75 . 百度学术
    14. 蔡峰,孔令华,程志恒. 大型煤炭企业煤矿智能化建设进展、问题和对策研究. 中国煤炭. 2023(06): 14-18 . 百度学术
    15. 文虎,黄剑,赵炬,张铎,黎杰. 基于FLUENT的气化灰渣灌浆输送特性模拟. 煤炭技术. 2023(09): 119-124 . 百度学术
    16. 雷亚军,闫少宏,王锐,申宇鹏,华照来,周小坡. 曹家滩煤矿大采高智能化综放面工艺优化. 煤炭工程. 2022(12): 7-12 . 百度学术

    其他类型引用(11)

图(16)  /  表(2)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  4
  • PDF下载量:  21
  • 被引次数: 27
出版历程
  • 收稿日期:  2025-02-23
  • 录用日期:  2025-02-23
  • 网络出版日期:  2025-06-08
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回