高级检索

近距离煤层群多分支水平井井孔对接控压抽采技术

陈亮, 程志恒, 罗欣, 于宏阳, 张喆睿, 王朋, 王向东

陈 亮,程志恒,罗 欣,等. 近距离煤层群多分支水平井井孔对接控压抽采技术[J]. 煤炭科学技术,2025,53(S1):42−56. DOI: 10.12438/cst.2025-0201
引用本文: 陈 亮,程志恒,罗 欣,等. 近距离煤层群多分支水平井井孔对接控压抽采技术[J]. 煤炭科学技术,2025,53(S1):42−56. DOI: 10.12438/cst.2025-0201
CHEN Liang,CHENG Zhiheng,LUO Xin,et al. Multi-branch horizontal well hole docking pressure control extraction technology for close distance coal seam group[J]. Coal Science and Technology,2025,53(S1):42−56. DOI: 10.12438/cst.2025-0201
Citation: CHEN Liang,CHENG Zhiheng,LUO Xin,et al. Multi-branch horizontal well hole docking pressure control extraction technology for close distance coal seam group[J]. Coal Science and Technology,2025,53(S1):42−56. DOI: 10.12438/cst.2025-0201

近距离煤层群多分支水平井井孔对接控压抽采技术

基金项目: 

国家自然科学基金青年基金资助项目(52204133);河北省自然科学基金面上资助项目 (E2024508055);廊坊市科技支撑计划资助项目(2023013099)

详细信息
    作者简介:

    陈亮: (1987—),男,河南信阳人,副教授,博士后。E-mail:sezichan@126.com

    通讯作者:

    罗欣: (1989—),女,河南焦作人,博士研究生。E-mail:luoxin8262008@qq.com

  • 中图分类号: TD712

Multi-branch horizontal well hole docking pressure control extraction technology for close distance coal seam group

  • 摘要:

    为解决近距离煤层群准备区地面井抽采时间长、井下钻孔难以衔接导致矿井抽‒掘‒采整体失衡、产能受限的问题,以山西吕梁沙曲井田为例,通过理论分析、数据统计得出井田地质构造、水动力条件对煤层气成藏的影响,煤层气储层特征及含气性分布。基于不同条件下多分支水平井抽采效果数值模拟分析确定了分支形态、长度、间距、数量及角度的合理参数;建立了多分支水平井与井下钻孔对接的三维数学模型,给出二者相对距离及角度的解析解,并根据钻井测斜、综合录井保障井身轨迹控制和精准钻进,结合井下深孔固孔工艺及装置,确立了井孔高效对接的整套流程,进而提出先正压后负压的控压抽采工艺,且研发了孔口高压缓冲罐、多级气渣分离罐成套装置,并阐明其关键参数及工作原理。同时,构建了该技术应用转化效果的综合评价函数,确立由准备区转向生产区过程的安全、效益及转化三维动态评价指标及临界值。研究结果表明:①确定羽状、混合型分支井分别适用于准备区和生产区,分支长度300~400 m,分支数量为4~8个、分支与主支夹角30°为宜;对接抽采前期正压为0.5 MPa,后期抽采负压为20 kPa;②五采区试验区内井孔对接抽采的单井日产量达到1.3万m3/d,是常规井的3.3倍;区内安全指标均降至临界值以下,3+4号与5号煤层同步消突;吨煤钻孔量较原来降低55%,准备区πz和生产区转化率πs分别为93%、90%,整体转化率为83.7%,煤层气产能提高了465万m3/a,解放优质煤量50万t。

    Abstract:

    In order to solve the problems of long extraction time of surface wells in the preparation area of close distance coal seam group and difficult connection of underground boreholes, which lead to the overall imbalance of mine extraction-excavation-mining and limited production capacity. Taking Shaqu well field in Lyuliang city, Shanxi province as an example, through theoretical analysis and data statistics, the geological structure of coalbed methane accumulation in the well field, the influence of hydrodynamic conditions, coalbed methane reservoir characteristics and gas-bearing distribution are obtained. Based on the numerical simulation analysis of the extraction effect of multi-branch horizontal wells under different conditions, the reasonable parameters of branch shape, length, spacing, number and angle are determined. A three-dimensional mathematical model for the docking of multi-branch horizontal wells and downhole boreholes was established, and the analytical solutions of the relative distance and angle between the two were given. According to the drilling inclinometer, comprehensive mud logging to ensure wellbore trajectory control and precise drilling, combined with the downhole deep hole cementing process and device, the whole process of efficient docking of boreholes was established, and then the pressure-controlled extraction process of positive pressure first and negative pressure second was proposed. The complete set of device for high-pressure buffer tank and multi-stage gas-slag separation tank was developed, and its key parameters and working principle were clarified. At the same time, the comprehensive evaluation function of the application and transformation effect of the technology is constructed, and the three-dimensional dynamic evaluation index and critical value of safety, benefit and transformation from the preparation area to the production area are established. The results show that: ①It is determined that the mixed pinnate and mixed branch wells are suitable for the preparation area and the production area respectively, the branch length is 300~400 m, the number of branches is 4~8, and the angle between the branch and the main branch is 30°. The positive pressure in the early stage of docking extraction is 0.5 MPa, and the negative pressure in the later stage is 20 kPa; ②The daily output of single well in the test area of the fifth mining area reached 13 000 m3/d, which was 3.3 times that of conventional wells. The safety indexes in the area are reduced to below the critical value, and the No. 3+4 and No.5 coal seams are synchronously eliminated. The drilling volume per ton of coal was reduced by 55 % compared with the original, the πz in the preparation area and the conversion rate πs in the production area were 93% and 90%, respectively. The overall conversion rate was 83.7%, the production capacity of coalbed methane is increased by 4.65 million m3/a, and 0.5 million tons of high-quality coal are liberated simultaneously.

  • 图  1   沙曲井田上组煤水文综合柱状图

    Figure  1.   Hydrological comprehensive histogram of upper coal group in Shaqu minefield

    图  2   沙曲井田已有地面井分布

    Figure  2.   Distribution of surface wells in Shaqu minefield

    图  3   3+4号煤层仿生多分支水平井井型布置方案

    Figure  3.   No. 3+4 coal seam bionic multi-branch horizontal well layout scheme

    图  4   不同分支形态不同抽采时间下煤层瓦斯压力变化

    Figure  4.   Change trend of coal seam gas pressure under different branch forms in different extraction time

    图  5   主、分支夹角对产气速率影响

    Figure  5.   Influence of angle between main branch and branch on gas production rate

    图  6   不同抽采参数下产气速率变化趋势

    Figure  6.   Variation trend of gas production rate under different extraction parameters

    图  7   水平井3开井身结构示意

    Figure  7.   Horizontal well three open well casing structure diagram

    图  8   分支水平井与井下定向钻孔对接原理

    Figure  8.   Docking principle of branch horizontal well and downhole directional drilling

    图  9   井下对接钻孔孔身结构及配套装置

    Figure  9.   Downhole docking drilling hole body structure and supporting device

    图  10   旋转磁场测距系统数学建模

    Figure  10.   Mathematical modeling of rotating magnetic field ranging system

    图  11   对接后孔口缓冲分离连抽装置示意

    Figure  11.   Schematic diagram of orifice buffer separation and continuous pumping device after docking

    图  12   控压抽采下产气量与压力变化趋势

    Ⅰ—未见气段;Ⅱ—初见阶段;Ⅲ—产气上升段;Ⅳ—产气稳定段;Ⅴ—产气衰减段;Ⅵ—废弃段

    Figure  12.   Change trend of gas production and pressure under controlled pressure extraction

    图  13   L型井日产气量与压力变化趋势

    Figure  13.   L type well daily gas production and pressure change trend

    图  14   三区转化动态评价指标示意

    Figure  14.   Schematic diagram of dynamic evaluation index of three-zone transformation

    图  15   五采区多分支水平井井孔对接工程示意

    Figure  15.   Schematic diagram of multi-branch horizontal well hole docking project in No.5 mining area

    图  16   SQN-0501-42井产气量统计

    Figure  16.   Statistical chart of gas production in SQN-0501-42 well

    图  17   沙曲一矿上组煤安全指标转化示意

    Figure  17.   Safety index transformation diagram of upper group coal in Shaqu No.1 Mine

    表  1   上组煤层瓦斯基础参数

    Table  1   Upper group coal seam gas basic parameters

    煤层编号 瓦斯含量/
    (m3∙t‒1)
    瓦斯压力/
    MPa
    吸附常数a/
    (m3∙t‒1)
    吸附常数b/
    MPa‒1
    含气饱和度/
    %
    瓦斯压力增长梯度/
    (MPa∙100 m‒1)
    瓦斯含量增长梯度/
    [m3∙(t∙100 m)‒1]
    2号 7.92~12.10 0.74~1.85 25.09~25.53 0.62~0.73 31.7~47.5 0.44 2.06
    3+4号 6.05~14.59 0.97~2.15 24.57~25.62 0.41~0.56 24.6~56.9 0.28 2.02
    5号 6.36~15.42 1.41~2.40 31.19~32.76 0.28~0.29 21.4~47.1 0.24 2.15
    下载: 导出CSV

    表  2   上组煤层渗透性表征参数

    Table  2   Upper group coal seam permeability characterization parameters

    煤层
    编号
    煤层透气性系数/
    [λm2∙ (MPa2·d)‒1]
    渗透率/
    mD
    孔隙率/%
    2号 2.12~2.17 0.052~0.054 3. 56
    3+4号 3.52~3.78 0.088~0.095 2. 68
    5号 1.99~2.23 0.050~0.056 5. 52
    下载: 导出CSV

    表  3   3+4号煤层物理参数

    Table  3   No.3+4 coal seam physical parameters

    物理参数 符号
    煤体杨氏模量/MPa E 2 713
    煤骨架杨氏模量/MPa Es 8 469
    煤体密度/(kg∙m‒3) ρ 1 370
    煤体初始渗透率/m2 k0 0.065×e‒15
    瓦斯动力黏度/(Pa·s) μ 1.84
    Langmuir b值/MPa−1 b 0.57
    Langmuir体积/(m3∙kg‒1) a 0.028 7
    抽采负压/MPa p1 ‒0.01
    泊松比 ν 0.35
    煤体初始孔隙率 φ0 0.037
    下载: 导出CSV

    表  4   准备区−生产区动态评价指标

    Table  4   Dynamic evaluation index of preparation area-production area

    准备区 生产区
    W(t) 实测 实测
    P(t) 实测 实测
    G(t) (hMρνtQdQz)K1 MeρeheDetK2
    Q(t) Qz·1440 t +∑Qj ·t Qs·1440 t+∑Qj ·t
    Z(t) ∑(Lj+Lz)t/Gx Lzt/Gd
    η(t) t/Tz t/Ts
    注释: M为煤层厚度,m;t为煤层气抽采时长,d;Qj为地面井及平均日产量,m3/d;vDe分别掘进面、工作面日进尺,m/d;K1K2分别准备区、生产区煤炭采出率,%;QdQz为地质因素和压煤引起不可采煤量,t;he为回采面斜长平均值,m;LjLz分别为单井、单台钻机的钻进效率,m/d,TzTs为准备区、生产区设计理论抽采时长,d。
    下载: 导出CSV
  • [1] 张永将,邹全乐,杨慧明,等. 突出煤层群井上下联合抽采防突模式与关键技术[J]. 煤炭学报,2023,48(10):3713−3730.

    ZHANG Yongjiang,ZOU Quanle,YANG Huiming,et al. Joint ground and underground gas extraction mode and its key technology for outburst coal seam group[J]. Journal of China Coal Society,2023,48(10):3713−3730.

    [2] 陈亮,程志恒,王宏冰,等. 厚煤层沿空留巷变形漏风机制及多元协同防治技术[J]. 煤炭科学技术,2024,52(10):114−126.

    CHEN Liang,CHENG Zhiheng,WANG Hongbing,et al. Deformation and air leakage mechanism of gob-side entry retaining and multiple collaborative prevention and control technology in thick coal seam[J]. Coal Science and Technology,2024,52(10):114−126.

    [3] 程志恒,陈亮,苏士龙,等. 近距离煤层群井上下联合防突模式及其效果动态评价[J]. 煤炭学报,2020,45(5):1635−1647.

    CHENG Zhiheng,CHEN Liang,SU Shilong,et al. Outburst prevention mode of ground and underground technology joint and its dynamic evaluation in contiguous coal seams[J]. Journal of China Coal Society,2020,45(5):1635−1647.

    [4] 徐凤银,闫霞,林振盘,等. 我国煤层气高效开发关键技术研究进展与发展方向[J]. 煤田地质与勘探,2022,50(3):1−14.

    XU Fengyin,YAN Xia,LIN Zhenpan,et al. Research progress and development direction of key technologies for efficient coalbed methane development in China[J]. Coal Geology & Exploration,2022,50(3):1−14.

    [5] 秦勇,袁亮,胡千庭,等. 我国煤层气勘探与开发技术现状及发展方向[J]. 煤炭科学技术,2012,40(10):1−6.

    QIN Yong,YUAN Liang,HU Qianting,et al. Status and development orientation of coal bed methane exploration and development technology in China[J]. Coal Science and Technology,2012,40(10):1−6.

    [6] 穆永亮. 沙曲一矿多分支井仿叶脉顺层布井基础研究[D]. 阜新:辽宁工程技术大学,2021.

    MU Yongliang. Basic research on in-seam layout of multilateral well by imitating leaf veins in Shaqu No. 1 Mine[D]. Fuxin:Liaoning Technical University,2021.

    [7] 王剑,崔秀奇,杨国军. 煤层气多分支水平井施工工艺[J]. 煤炭工程,2010,42(2):30−31.

    WANG Jian,CUI Xiuqi,YANG Guojun. Construction technology of multi-branch horizontal well of coalbed methane[J]. Coal Engineering,2010,42(2):30−31.

    [8] 杨建超,李贵红,刘钰辉,等. 晋城地区煤层气井多层合采效果评价[J]. 煤田地质与勘探,2019,47(6):26−31.

    YANG Jianchao,LI Guihong,LIU Yuhui,et al. Evaluation of coalbed methane drainage effect for multi-target seams in Jincheng region[J]. Coal Geology & Exploration,2019,47(6):26−31.

    [9] 李国富,付军辉,李超,等. 山西重点煤矿采动区煤层气地面抽采技术及应用[J]. 煤炭科学技术,2019,47(12):83−89.

    LI Guofu,FU Junhui,LI Chao,et al. Surface drainage technology and application of CBM in key mining areas of Shanxi Province[J]. Coal Science and Technology,2019,47(12):83−89.

    [10] 徐凤银,闫霞,李曙光,等. 鄂尔多斯盆地东缘深部(层)煤层气勘探开发理论技术难点与对策[J]. 煤田地质与勘探,2023,51(1):115−130.

    XU Fengyin,YAN Xia,LI Shuguang,et al. Theoretical and technological difficulties and countermeasures of deep CBM exploration and development in the eastern edge of Ordos Basin[J]. Coal Geology & Exploration,2023,51(1):115−130.

    [11] 林柏泉,李庆钊,原德胜,等. 彬长矿区低煤阶煤层气井的排采特征与井型优化[J]. 煤炭学报,2015,40(1):135−141.

    LIN Baiquan,LI Qingzhao,YUAN Desheng,et al. CBM production character and surface well selection in Binchang low rank coal field[J]. Journal of China Coal Society,2015,40(1):135−141.

    [12] 李进朋,张勋,黎凤岐,等. 基于模糊结构元多分支水平井瓦斯抽采多因素群评价[J]. 煤炭科学技术,2019,47(2):114−119.

    LI Jinpeng,ZHANG Xun,LI Fengqi,et al. Multi-factor group evaluation of gas drainage in mutti-branch horizontal well based on fuzzy structural element[J]. Coal Science and Technology,2019,47(2):114−119.

    [13] 姜小强,樊少武,程志恒,等. 基于井上下联合抽采的三区联动瓦斯综合治理模式[J]. 煤炭科学技术,2018,46(6):107−113.

    JIANG Xiaoqiang,FAN Shaowu,CHENG Zhiheng,et al. Three region linkage comprehensive gas control model based on ground and underground gas joint drainage[J]. Coal Science and Technology,2018,46(6):107−113.

    [14] 郭晓阳,邓存宝,凡永鹏,等. 煤层多分支水平井叶脉仿生瓦斯抽采实验研究[J]. 岩石力学与工程学报,2019,38(12):2418−2427.

    GUO Xiaoyang,DENG Cunbao,FAN Yongpeng,et al. Experimental study on leaf vein bionic gas drainage of multi-branch horizontal wells in coal seams[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(12):2418−2427.

    [15] 刘云亮,郑凯歌. 双煤层多分支水平井煤层气开采技术研究及应用[J]. 中国煤炭,2019,45(3):47−50,69.

    LIU Yunliang,ZHENG Kaige. Research and application of CBM mining technology in multi-branch horizontal wells with double coal seams[J]. China Coal,2019,45(3):47−50,69.

    [16] 李艳昌,刘海龙,贾进章. 对称多分支水平井煤层气水电模拟试验研究[J]. 煤炭科学技术,2022,50(10):135−142.

    LI Yanchang,LIU Hailong,JIA Jinzhang. Hydroelectric simulation test of coalbed methane in symmetric multi branch horizontal wells[J]. Coal Science and Technology,2022,50(10):135−142.

    [17] 史宁,潘霄. 多分支水平井技术提高煤层透气性机理分析及数值模拟[J]. 世界科技研究与发展,2010,32(6):808−809,831.

    SHI Ning,PAN Xiao. Mechanism analysis and numerical simulation of multi-lateral horizontal wells on improvment of gas permeability[J]. World Sci-Tech R$D,2010,32(6):808−809,831.

    [18] 徐加祥,赵洋,董丹丹,等. 考虑煤层割理的多分支水平井煤层气开发数值模拟研究[J]. 煤炭学报,2024,49(07):3167−3177.

    XU Jiaxiang,ZHAO Yang,DONG Dandan,et al. Numerical simulation of coalbed methane development in multi-branch horizontal wells considering coal seam cleavage[J]. Journal of China Coal Society,2024,49(07):3167−3177.

    [19] 简阔,马斌,许晓晨,等. 低压低渗煤层气多分支水平井开发关键技术研究:以沁水盆地郑庄区块15号煤层为例[J]. 钻探工程,2023,50(6):99−106.

    JIAN Kuo,MA Bin,XU Xiaochen,et al. Research on key technologies for developing multi-branched horizontal of CBM wells in low pressure and low permeability coal reservoirs[J]. Drilling Engineering,2023,50(6):99−106.

    [20] 桑树勋,韩思杰,周效志,等. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发,2023,13(4):403−415.

    SANG Shuxun,HAN Sijie,ZHOU Xiaozhi,et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development,2023,13(4):403−415.

    [21]

    YANG Y,CUI S Q,NI Y Y,et al. Key technology for treating slack coal blockage in CBM recovery:A case study from multi-lateral horizontal wells in the Qinshui Basin[J]. Natural Gas Industry B,2016,3(1):66−70. doi: 10.1016/j.ngib.2016.02.007

    [22]

    WU J B,FANG H,HUANG X M,et al. An online MFL sensing method for steel pipe based on the magnetic guiding effect[J]. Sensors,2017,17(12):2911. doi: 10.3390/s17122911

    [23] 苏忠奇. 井间旋转磁场建模及定位算法研究[D]. 西安:西安石油大学,2023.

    SU Zhongqi. Research on modeling and location algorithm of rotating magnetic field between wells[D]. Xi’an:Xi’an Shiyou University,2023.

    [24] 曹东建. 小井间距磁导向定位技术研究[D]. 大庆:东北石油大学,2023.

    CAO Dongjian. Research on magnetic guiding positioning technology of small well spacing[D]. Daqing:Northeast Petroleum University,2023.

    [25] 戴楠. 大佛寺煤层气水平井降压与产气的耦合分析[D]. 西安:西安科技大学,2018.

    DAI Nan. Coupling analysis of depressurization and gas production in horizontal wells of coalbed methane in Dafosi[D]. Xi’an:Xi’an University of Science and Technology,2018.

    [26] 国家安全生产监督管理总局. 煤矿井下煤层瓦斯压力的直接测定方法:AQ/T 1047—2007[S]. 北京:煤炭工业出版社,2007.
  • 期刊类型引用(10)

    1. 张晓蕾,高进东,赵开功,李严肃,李长明,谢子彬. 煤矿事故智能应急预案生成方法研究. 矿业安全与环保. 2024(01): 78-85+91 . 百度学术
    2. 赵中昊,冯彬浩,曾成,杨梦. 基于文本挖掘的煤矿事故案例分析与可视化研究. 电脑与信息技术. 2024(03): 63-67 . 百度学术
    3. 李长明,赵开功,张晓蕾,王睿迪,李严肃. 煤矿智能化项目风险评价云模型及其应用. 中国安全科学学报. 2024(05): 168-174 . 百度学术
    4. 王启飞,赵逸涵,刘帅,刘昊霖,孙英峰,李成武. 煤矿事故大数据驱动的风险治理模式研究综述. 中国安全科学学报. 2024(07): 28-37 . 百度学术
    5. 魏珂. 多功能作业车防倾覆稳定系统关键技术研究. 工矿自动化. 2024(S2): 272-276 . 百度学术
    6. 李全贵,李建波,胡千庭,吴江杰,郑梦浩,李赏,周俊江. 基于案例推理的煤与瓦斯突出预警模型研究. 矿业安全与环保. 2023(05): 24-29+36 . 百度学术
    7. 盛伟,关城,张苏,傅炜,王金贵. 基于情景相似的电网企业台风灾害应急决策. 中国安全科学学报. 2023(11): 174-180 . 百度学术
    8. 霍建军,杨景惠,孙波. 综采辅巷多通道回撤工艺通风系统管理研究. 煤炭科学技术. 2022(S1): 142-146 . 本站查看
    9. 陈赟,陈玉斌,刘湘慧. 基于CBDT和KNN的地铁施工坍塌事故应急措施生成研究. 长沙理工大学学报(自然科学版). 2021(03): 45-54 . 百度学术
    10. 庞义辉. 液压支架支护状态感知与数据处理技术. 工矿自动化. 2021(11): 66-73 . 百度学术

    其他类型引用(8)

图(17)  /  表(4)
计量
  • 文章访问数:  28
  • HTML全文浏览量:  4
  • PDF下载量:  15
  • 被引次数: 18
出版历程
  • 收稿日期:  2025-01-11
  • 网络出版日期:  2025-05-27
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回