Inspirations of typical commercially developed coalbed methane cases in China
-
摘要:
我国煤层气资源具有地域分布广、时域跨度大、品位差异大、地质条件复杂等特征,建立适合差异地质特征的煤层气开发体系能够降低开采难度,推动产业发展。通过系统总结分析30多年来我国煤层气商业开发典型案例,包括潘庄浅部高煤阶、保德浅部中低煤阶、延川南中深煤层、大宁—吉县深煤层和潘河多薄煤层的地面气井开发,以及两淮、晋城和松藻矿区的井下气体(瓦斯)抽采,取得如下主要认识:潘庄、潘河浅部高煤阶含气量高、渗透率较高、水动力较弱,发育向斜−水文控气模式,形成浅部高煤阶单/多支水平井单层开发模式;针对薄−超薄煤层多层综合含气特征,形成直井多组合立体开发模式。保德中低煤阶含气饱和度高、构造稳定且存在生物气补给,发育正向构造−水文控气模式,形成了浅部中低煤阶大平台丛式井合层开发模式。延川南煤层埋藏相对较深、低孔低渗低压、水动力弱,形成中深煤层有效支撑−精细排采开发模式。大宁—吉县西部煤层埋深大、低孔低渗、游离气含量高、水动力弱,形成了深煤层体积压裂−水平井开发模式。两淮矿区发育松软低透气性高瓦斯煤层群,形成中远距离保护层卸压井上下立体开发技术;晋城矿区发育高透气性高瓦斯原生结构煤,形成中厚硬煤层四区联动井上下立体开发技术;松藻矿区发育松软低渗突出煤层群,形成了近距离三区配套三超前增透开发技术。我国煤层气开发突破了深度极限、厚度下限、单类型气体开发和复杂构造背景局限,形成了中国特色煤层气开发地质理论认识。西北和东北地区中低煤阶煤层气、南方复杂构造区煤层气、大型盆地腹部深−超深煤层气开发潜力仍有待进一步挖掘。我国煤层气开发在不同埋深、煤阶、厚度和构造背景下均实现了显著突破,有望推动和引领全球煤层气产业发展新格局。
Abstract:The coalbed methane resources in China are characterized by wide geographical distribution, large time span, significant quality differences and complex coal-forming conditions, thus establishing a coalbed methane development system suitable for geological characteristics can greatly reduce the difficulty of mining and promote industrial development. Through the systematic summary of typical successful cases of commercial development of coalbed methane in China over the past 30 years, including shallow high rank coalbed methane in Panzhuang, shallow medium-low rank coalbed methane in Baode, medium deep coalbed methane in South Yanchuan, deep coalbed methane in Daning-Jixian, thin coalbed methane in Panhe, coal and coalbed methane co-mining in Huainan and Huaibei, gas drainage in four regions linkage in Jincheng and gas drainage in three regions linkage in Songzao, the main understanding is as follows:The shallow high rank coal in Panzhuang and Panhe have high gas content, high permeability, and weak hydrodynamics under the synclinal-hydrological gas control model, forming a single-layer development model of single/multiple horizontal wells for shallow high rank coal. The vertical well multi combination three-dimensional development model is formed based on the comprehensive gas bearing characteristics of thin ultra-thin coal seams in multiple layers. The low rank coal in Baode has high gas saturation, stable structure, and the presence of biogas supply under the positive structure-hydrological gas control model, forming a shallow low rank coal big platform cluster well development model. The coal seams in southern Yanchuan are relatively buried deep, with low porosity, low permeability, low pressure, and weak hydrodynamics, forming an effective support- fine drainage development model for medium-deep coal seam. The coal seam located in the west of Daning-Jixian has a deep burial depth, low porosity and permeability, high free gas content, and weak hydrodynamics, forming a deep coal volume fracturing horizontal well development model. The Huainan and Huaibei mining area have developed a group of soft, low-permeability, and high gas coal seams, forming a development model of medium-long distance “pressure relief of mining protective layer ground and underground three-dimensional drainage”; The Jincheng mining area has developed primary structure coal seam wit high permeability and gas content, forming a development model of “four zone linkage ground and underground three-dimensional drainage”; The Songzao mining area has developed a group of soft and low-permeability prominent coal seams, forming a development model of “three zone supporting three super-advanced enhanced permeability drainage”. The development of coalbed methane in China has basically realized the breakthrough of depth limit, thickness lower limit, single type gas reservoir development, and complex structural backgrounds, forming a geological theoretical understanding of coalbed methane development with Chinese characteristics. The potential for coalbed methane development in the northwest and northeast middle-low rank coal seams, complex structural areas in the south, and deep-ultra deep coalbed methane in large basin abdomen still needs to be further explored. Significant breakthroughs have been achieved in the development of coalbed methane in China under different burial depths, coal ranks, thicknesses and tectonic settings. which is expected to promote and lead a new pattern of global coalbed methane industry development.
-
0. 引 言
煤是世界上最丰富的化石燃料资源,特别是针对我国富煤、贫油、少气的基本国情,煤炭资源发挥了举足轻重的作用。其中,煤最广泛的用途为燃煤发电,尤其是低阶煤的燃烧。目前各地方“拉闸限电”的背后,无一不体现燃煤发电的重要性[1]。在煤燃烧过程中,外在操作条件如压力、温度、升温速率、氧气浓度和粒径对煤的燃烧特性及其动力学参数有显著影响[2-3];同时,内在因素诸如不同显微组分在煤中的分布,矿物与煤大分子结合的方式,以及煤的变质程度的变化,在很大程度上控制着煤的性质,从而影响煤的燃烧行为[4-5]。然而,基于煤本身的复杂性及其非均质性的特点[6],使得从单一变量考虑煤燃烧的控制因素充满挑战。
热重分析(TGA)是一种广泛用于表征煤在燃烧过程中热分解的技术[7-11]。通过控制燃烧所需的外界条件以及样品选择能进行针对性研究,同时,热重分析方法还能联用红外光谱、质谱、差热分析仪等。据此,借助热重分析方法国内外学者对煤燃烧展开了大量的研究工作;YONG等[12]利用热重分析技术对不同煤阶煤燃烧特性研究,表明无烟煤的着火温度较高。何翔等[13]通过热重红外联用技术同样对比了不同变质程度煤的燃烧特性,发现褐煤的各方面燃烧特性指数最好。LIU等[14]借助热重−红外联用技术研究了低氧浓度下烟煤的燃烧行为,结果表明降低氧浓度导致煤的表观反应速率下降。文虎等[15]通过控制氧气体积分数和升温速率两个变量对弱黏煤燃烧特性进行研究,结果表明,改变氧气体积分数和升温速率对煤的着火温度影响不大,主要对煤的燃烧阶段产生影响,但氧气体积分数对于燃烧的影响更大。赵云鹏等[16]基于热重分析仪研究内在矿物质对不同还原程度煤显微组分半焦燃烧反应性的影响,表明内在矿物质降低了镜质组半焦的起燃温度,但对惰质组半焦燃烧有明显抑制作用。然而,煤显微组分燃烧的研究被较少关注,类脂组由于其较高的挥发分与氢含量,在煤燃烧过程能起到稳定火焰的作用[17]。与煤热解行为不同,煤中镜质组与惰质组对于燃烧行为的影响存在争议,如CAI等[18]研究表明煤燃烧的反应活性随惰质组含量的增大而增加,在碳含量相近的情况下,惰质组比镜质组反应性更强。CHOUDHURY等[19]利用富惰质组分的半焦形态数据进一步证实了惰质组的反应活性,具有良好的燃烧性能。这与ROBERTS等[20]得到的镜质组反应性高于惰质组的结论相悖。
据此,为厘清煤显微组分的燃烧行为,本文从选取的3个不同镜惰比低阶煤入手,利用TG-MS-DTA联用方法,研究一系列不同镜惰比煤的燃烧特性、热量变化及其气体释放行为。此外,还借助Coats-Redfern积分法对煤燃烧过程进行动力学计算,对比反应活化能,深入探讨显微组分对煤燃烧过程的热行为特征,同时还考虑了矿物对燃烧的影响。
1. 试验与方法
1.1 样品及煤质分析
煤样分别采自山西省宝德县赵家庄、马蹄罕、豆塔村散装块煤,以村庄名分别编号为ZJZ、MTH和DT。煤质分析包括工业分析、元素分析和煤灰成分分析,以及最大镜质组反射率测定、煤岩显微组分定量信息见表1[21]。在500倍油浸反射光下对显微组分进行识别与采集,可观察到ZJZ煤中大量的丝质体组分,其中含有不同形态的细胞胞腔结构(图1)。ZJZ,MTH和DT煤中镜质组与惰质组含量之比(V/I)由0.1增加到1.76,最大镜质组反射率在0.47%~0.68%,为低煤阶烟煤[21]。
表 1 煤样煤岩组分分析、工业分析、元素分析[21]Table 1. Petrological, proximate and ultimate analysis of coal samples[21]样品 煤岩分析(体积分数)/% V/I 工业分析/% Ro /% 元素分析/% 镜质组 惰质组 类脂组 矿物 Mad Aad Vdaf Cdaf Hdaf Odaf* Ndaf St,d ZJZ 8.8 88.8 0.4 2 0.10 8.7 7.34 28.69 0.55 82.08 3.78 13.00 1.02 0.12 MTH 40.0 51.6 3.6 4.8 0.76 2.72 12.18 34.95 0.68 83.57 4.72 9.39 1.53 0.69 DT 62.0 35.2 0.4 2.4 1.76 7.3 2.85 38.43 0.47 79.68 4.72 14.12 1.25 0.22 注:Ro为样品最大镜质组反射率;*为差减法计算。 1.2 X射线衍射试验
采用D8 ADVANCE X射线衍射仪,Cu靶,波长为0.15406 nm,Kα辐射,管电流40 mA,管电压40 kV,发射狭缝1 mm,接受狭缝0.16 mm,扫描角度范围为5°~80°,扫描速率为4(°)/min,重点关注原煤矿物的种类。
1.3 热重-质谱-差热试验
采用STA 449 F5/F3 Jupiter 型热重分析仪,测试温度范围在30~1000 ℃,升温速率15 ℃/min,测试气氛为空气,通气流量为300 mL/min。热重逸出气体联用质谱在线监测,热量变化联用差热分析仪同步记录下样品的吸放热损失量数据。
2. 结果与讨论
2.1 样品XRD矿物鉴定
样品的有机结构在此前的研究中已报道,MTH煤的XRD谱图显示较多的尖锐峰表明该样品中矿物含量丰富,这也在之前FTIR结果中得到了证明[21]。利用MDI Jade 6软件对不同镜惰比煤的XRD图谱进行矿物pdf卡片比对,结果如图2所示。其中,DT煤中矿物以方解石、斜绿泥石、石英为主,MTH煤以高岭石、勃姆石、方解石为主,ZJZ煤以高岭石与石英为主。与其灰成分分析得到的数据吻合,其中DT煤灰中CaO含量大于15%,可归于高钙煤[21]。
2.2 样品的燃烧特性参数分析
图3为不同镜惰比煤燃烧的TG-DTG曲线,通过热重曲线计算的主要燃烧特性参数来表征煤样的热行为,计算方法与文献[10-11, 22]相同,其中,着火温度(Ti)表示样品开始燃烧的最低温度;最大燃烧速率温度(Tp)表示燃烧过程中反应最激烈时的温度,即最大质量损失温度;燃尽温度(Tf)表示反应完成时的温度,其剩余质量与灰分有关。图3a为不同镜惰比煤的TG曲线,可以看到,样品的失重量ZJZ煤最多,DT煤其次,MTH煤最少。其中,MTH煤失重量最少可归因于其最高的灰分产率。然而,DT煤中灰分最小,其燃烧失重量却少于ZJZ煤,可能原因在于DT煤矿物中含有相对较多的CaCO3,热分解吸热不利于煤的燃烧,能抑制煤粉的燃烧过程[23]。图3b为不同镜惰比煤的DTG曲线,可以看到,所有样品均在300 ℃左右开始反应,脱挥发分阶段开始。随着温度进一步升高,反应速率也快速增加,这可归因于高温下,特别是在400~600 ℃时,煤中会出现大量渗流孔裂隙,使得氧气能快速与煤表面反应[24]。在489.4、490.0、526.2 ℃时,ZJZ、DT与MTH煤分别达到最大反应速率。其中,ZJZ与DT煤的最大反应速率温度几乎一致,而MTH煤的最大反应速率温度明显向高温移动,且在最大反应速率温度时,MTH煤的最大反应速率明显最低,表明矿物对煤燃烧产生了明显抑制作用,使得需要更高的温度来达到反应峰值。值得注意的是,尽管ZJZ与DT煤有着几乎接近的最大反应速率温度,然而在此时的速率却大有差异,表2为计算得到的样品燃烧特征参数,ZJZ煤的最大燃烧速率Rmax几乎为DT煤的2倍,表明富惰质组煤较强的燃烧反应性。此外,富惰质组ZJZ煤有较高的着火温度,反应温度区间窄,最大燃烧速率高,燃尽温度较低。而与之不同的是,富镜质组DT煤有较低的着火温度,这与其挥发分含量较高有关。最大燃烧速率低于富惰质组ZJZ煤,而燃尽温度略高于ZJZ煤。MTH煤中镜质组与惰质组含量之比介于ZJZ煤与DT煤之间,但其热失重特征变化明显不是介于二者之间的。MTH煤在燃烧过程中,其着火温度后移,达到最大燃烧速率时的温度后移,最大燃烧速率减小。因此,矿物对煤燃烧的影响大于其本身显微组分的差异。此外,MTH煤燃尽温度远大于ZJZ煤、DT煤,其原因可能与灰分产率较高有关,实际上,较高含量的灰分会导致煤表面孔隙堵塞,或者煤颗粒被煤灰包裹,从而使燃尽温度升高。
表 2 不同镜惰比煤的燃烧特征参数Table 2. Characteristic parameters of coal combustion with different vitrinite/inertinite ratio样品 Ti/℃ Tp/℃ Tf/℃ Rmax/(%·℃−1) ZJZ 457.3 489.4 499.2 2.23 MTH 461 526.4 572.3 0.71 DT 437 490 514.9 1.16 2.3 样品差热分析
图4为不同镜惰比煤燃烧过程的DTA曲线,对于所给出的样品,都包含一个肩峰与一个主峰。前者归属为脱挥发分过程产生的放热峰,挥发性物质开始着火,为反应第一阶段。在400 ℃以后,随着温度进一步增加,热量大量释放,为反应第二阶段。在486 ℃时,ZJZ、DT煤达到峰值,而MTH煤在523 ℃达到峰值,这与最大释放速率温度的规律一致。在峰值温度时,煤颗粒表面与空气中氧气剧烈反应,此前由于初始阶段挥发性物质的释放,导致煤基质中出现大量孔隙,因此空气中的氧气得以到达内部颗粒表面[24]。根据DTA曲线特征,可确定煤样着火机理类型[12],所有样品均发生不均匀着火。尤其是在第二阶段,与煤在其他惰性气体的加热过程不同,煤在空气中分解更快,主要为大分子骨架中C与O2的反应,大量挥发性气体如CO、CO2在此释放。第一阶段(400 ℃之前)时,DT、MTH、ZJZ煤的放热相对含量大小依次减少,表明挥发分在此阶段起主导作用,矿物含量影响不大。而在第二阶段(400 ℃之后),由于MTH煤含有较多的矿物(图2),含有结晶水的矿物在脱水过程中往往会吸收热量,抑制煤燃烧过程,例如勃姆石一般在500 ℃左右失去结晶水转化成不同形式的氧化铝[25]。MTH煤镜质组、惰质组含量虽然在DT与ZJZ煤之间,其最大放热温度峰值滞后于DT煤、ZJZ煤,而DT煤与ZJZ煤的最大放热温度峰值同样一致,显微组分同样与煤燃烧中最大放热温度无关。差热实验结果,进一步吻合了之前TG/DTG得到的结论。随着进一步升温,MTH煤在800 ℃左右处观察到微弱的吸热峰,可能原因是由于方解石受热分解成CaO和CO2吸热导致。
2.4 样品燃烧小分子物质释放特征
图5为不同镜惰比煤燃烧过程中检测到的质谱(m/z: 1~60)数据,检测到的主要气体有CO2、CO、H2O等,还有极少量含N、S气体,此处未做讨论。对所有样品而言,CO2的释放量最大,其次为CO、H2O。对比不同镜惰比煤样的3种气体释放量(图6),在第一阶段(小于400 ℃之前),CO2、CO释放的相对含量较少,而H2O释放量较多。与之相反的是,第二阶段(400 ℃之后)释放大量的CO2、CO,脱挥发分之后,大量O2进入到煤基质表面参与反应。对比3个煤样气体总释放量与释放温度区间可以看出,富镜质组DT煤释放CO2,CO量略多于富惰质组ZJZ煤,释放温度区间大,但MTH煤的释放终温大于DT、ZJZ煤,同样反映出矿物对其燃烧反应性的影响。与CO2和CO的释放规律不同,H2O的释放行为呈现出明显的双峰分布的特征。具有明显的阶段性,在脱挥发分阶段,H2O的释放量呈现出随着镜惰比增加而增加,而在固定碳燃烧阶段,DT煤与ZJZ煤几乎一致,且释放量多于MTH煤,终温小于MTH煤。
为了进一步探明不同镜惰比煤燃烧的气体释放规律,在固定碳燃烧阶段选择最大释放速率温度下,利用质谱信号强度来反映气体逸出含量。图7显示了不同镜惰比煤在最大释放速率温度下质谱信号强度,即在反应最剧烈时,可计算CO2与CO信号强度的比来反映煤颗粒基质与O2燃烧反应情况。ZJZ、MTH与DT煤在最大释放速率温度下,得到的CO2与CO强度的比分别为3.02、1.40、1.67。由此看出尽管ZJZ煤在燃烧过程中释放CO2的含量低于DT煤,但ZJZ释放更低的CO量。可能的因素在于脱挥发分后,富惰质组ZJZ煤中大量丝质体形成的细胞胞腔结构,使得煤颗粒表面与O2的接触面积扩大,燃烧反应充分。这也能进一步解释富惰质组ZJZ煤较强的燃烧反应性,与TG-DTA曲线得到的结果一致。MTH煤生成的CO含量相对最多,表明随着温度的升高,在脱挥发分之后,煤中较多的矿物充填了煤基质中微小孔隙,阻碍了O2进一步与煤基质表面接触进而充分燃烧。同时,较多的矿物也会增加煤颗粒的平均密度,降低煤颗粒的总孔隙率和比表面积[26]。
2.5 燃烧动力学分析
由于热重实验采用的是程序升温法(非等温),可假定分解速率等同于挥发物释放速率,式(1)为动力学基本方程。
$$ \frac{{\rm{d}}\alpha }{{\rm{d}}t}=kf\left(\alpha \right) $$ (1) 式中:
$ \alpha $ 为转化率;$ f\left(\alpha \right) $ 为动力学反应机理函数;$ k $ 为反应速率常数,式(2)为Arrhenius方程。$$ k=A{{\rm{e}}}^{-E/RT} $$ (2) 式中:A为指前因子;E为表观活化能,kJ/mol;R为气体常数,取8.314 J/(mol·K);T为热力学温度。其中表观活化能是发生化学反应所需要的最小能量,是反应的固有属性,即活化能越小反应越容易发生。根据Arrhenius的观点,在热作用下,不是所有分子间的碰撞都会发生化学反应,只有满足“活化分子”之间的有效碰撞,从而达到破坏分子间作用力,其中有效碰撞次数用指前因子A表示,A越大,分子间发生有效碰撞的频率越高,反应速率越大。
根据TG曲线可求得转化率
$ {\alpha } $ ,即:$$ \mathrm{\alpha }=\frac{{W}_{0}-W}{{W}_{0}-{W}_{\infty }} $$ (3) 式中:
$ {W}_{0} $ 为样品起始质量;$ {W}_{\infty } $ 为样品反应结束质量。这里考虑用不同温度下样品质量损失百分比与最终反应结束时样品质量损失比的比值来计算不同温度下的转化率。对于非等温单速率体系,本文采用Coats-Redfern积分法对TG曲线进行动力学分析,设
$$ {f\left(\alpha \right)=\left(1-\alpha \right)}^{n} $$ (4) $$ T={{T}}_{0}+{\beta }{t}\text{,}\mathrm{\beta }=\mathrm{d}{T}/\mathrm{d}{t} $$ (5) 式中:
$ \mathrm{\beta } $ 为升温速率。将式(2)、式(4)、式(5)代入式(1)积分得:
$$ \mathrm{l}\mathrm{n}\left|\frac{-\mathrm{ln}\left(1-\alpha \right)}{{T}^{2}}\right|={\rm{ln}}\frac{AR}{\beta E}\left[1-\frac{2RT}{E}\right]-\frac{{E}}{{R}{T}} \quad (n=1) $$ (6) $$ \mathrm{l}\mathrm{n}\left[\frac{1-{\left(1-\alpha \right)}^{1-n}}{(1-n){T}^{2}}\right]={\rm{ln}}\frac{AR}{\beta E}\left[1-\frac{2RT}{E}\right]-\frac{{E}}{{R}{T}}\quad (n \ne 1) $$ (7) 这里使用式(6),假设为一级反应,即n=1,由于E值很大,故2RT/E项可近似于取0,因此可简化为
$$ \mathrm{l}\mathrm{n}\left|\frac{-\mathrm{ln}\left(1-\alpha \right)}{{T}^{2}}\right|={\rm{ln}}\frac{AR}{\beta E}-\frac{\mathrm{E}}{\mathrm{R}\mathrm{T}} $$ (8) 以
$ \mathrm{l}\mathrm{n}\left|\dfrac{-\mathrm{ln}\left(1-\alpha \right)}{{T}^{2}}\right| $ −1/T作图,然后进行线性拟合,可近似得到样品的反应活化能E。为了保证样品的对比性,均取转化率10%与90%所对应的温度区间来分析样品燃烧的反应动力学。图8为不同煤样得到的燃烧Arrhenius图,线性拟合度均在0.97以上,表明符合一级反应动力学方程。表3为计算得到的煤燃烧动力学参数,转化率由10%~90%所对应的温度区间上看,与DT煤相比,ZJZ煤的温度范围(411.4~496.3 ℃)更窄,反应更快,MTH煤有着更高的反应温度及更宽的区间范围。表观活化能随着镜惰比增加而减少,表明富镜质组煤DT煤更容易燃烧,这与得到的着火性能趋势大体一致,表观活化能、着火性能与煤中镜质组含量有关。同时,ZJZ煤在燃烧反应过程中,指前因子相对更大,表明富惰质组煤在燃烧过程中分子间发生有效碰撞的频率较高,反应速率较快。值得探究的是,表观活化能较大的ZJZ煤,在燃烧过程中却有着最大的燃烧速率,这似乎与活化能越大,反应性越差这一基本认识相悖。反应活化能越大,温度对反应的过程影响更大,显著地加快了反应速率[27]。
表 3 不同镜惰比煤燃烧动力学参数Table 3. Kinetic parameters of coal combustion with different vitrinite/inertinite ratio样品 T10/℃ T90/℃ 方程 E/(kJ·mol−1) A/min−1 R2 ZJZ 411.4 496.3 y=−16870x+9.1452 140.3 2.37×109 0.9707 MTH 447.0 568.7 y=−14179x+4.2197 117.9 1.45×107 0.9988 DT 385.4 517.0 y=−11535x+2.0218 95.9 1.31×106 0.9844 3. 结 论
1)富镜质组DT煤有较低的着火温度以及活化能,表明着火燃烧特性较好。煤的显微组分含量不影响煤燃烧达到最大反应速率时的温度,但富惰质组ZJZ煤的最大反应速率更大。此外,MTH煤中较多矿物使得反应达到最大速率时温度更高,表明矿物对燃烧有抑制作用。
2)不同镜惰比煤DTA曲线均显示2个放热峰,对应燃烧过程的脱挥发分与固定碳燃烧阶段,放热特征呈现出缓慢放热到快速放热的转变。燃烧过程中主要释放CO2、CO、H2O等气体,但释放的相对含量不同,脱挥发分阶段,有较少的CO2、CO气体释放,H2O的释放相对量较多。而在固定碳燃烧阶段,CO2大量释放,CO释放量略低,H2O最少。
3)富惰质组ZJZ煤尽管有着较高的着火点以及较大的活化能,但在固定碳燃烧阶段能快速燃烧,归因于组分中大量丝质体形成的细胞胞腔结构,使得煤颗粒表面与O2的接触面积扩大。此外,煤样燃烧效果还体现在CO2与CO的释放量上,富惰质组ZJZ煤在燃烧过程中释放相对更多的CO2,在相同条件下,燃烧更加充分。
-
表 1 潘河区块薄煤层储层特征和压裂方案[17]
Table 1 Characteristics and fracturing scheme of thin coal seam reservoirs in Panhe block[17]
煤层 厚度/m 间距/m Ro/% 含气量/ (m3·t−1) 渗透率/10−3 μm2 顶板岩性 压裂方案 5 0.70 12.58 3.77 12.5 — 石灰岩(厚度<1 m) 5号与3号煤平均间距为 11.90 m,
采用投球分层压裂6 0.42 12.58 3.80 13.1 0.2 石灰岩(厚度约1 m) 7 0.78 21.63 3.80 15.7 1.5 泥岩、粉砂质泥岩 采用大规模整体压裂,使缝高
贯穿各煤层及中间隔层8 0.62 21.63 3.89 13.4 1.6 泥岩、粉砂质泥岩 9 1.25 21.63 3.91 16.5 2.8 泥岩、粉砂质泥岩 11 0.62 21.63 4.01 16.3 — 石灰岩或泥岩 12 0.55 7.89 3.74 16.1 0.4 砂质泥岩 采用投球分层压裂,防止裂缝延伸至
15号煤或中间石灰岩层13 0.58 7.89 3.89 16.7 0.3 石灰岩(厚度3~4 m) -
[1] 叶建平. 中国煤层气勘探开发及其科技进步历程回顾与思考[J]. 煤田地质与勘探,2025,53(1):114−127. doi: 10.12363/issn.1001-1986.24.11.0723 YE Jianping. China’s CBM exploration and production and associated technological advancements:A review and reflections[J]. Coal Geology & Exploration,2025,53(1):114−127. doi: 10.12363/issn.1001-1986.24.11.0723
[2] 李勇,潘松圻,宁树正,等. 煤系成矿学内涵与发展:兼论煤系成矿系统及其资源环境效应[J]. 中国科学:地球科学,2022,52(10):1948−1965. LI Yong,PAN Songqi,NING Shuzheng,et al. Coal measure metallogeny:Metallogenic system and implication for resource and environment[J]. Science China:Earth Sciences,2022,52(10):1948−1965.
[3] 秦勇,申建,史锐. 中国煤系气大产业建设战略价值与战略选择[J]. 煤炭学报,2022,47(1):371−387. QIN Yong,SHEN Jian,SHI Rui. Strategic value and choice on construction of large CMG industry in China[J]. Journal of China Coal Society,2022,47(1):371−387.
[4] 邹才能,马锋,潘松圻,等. 论地球能源演化与人类发展及碳中和战略[J]. 石油勘探与开发,2022,49(2):411−428. doi: 10.11698/PED.2022.02.20 ZOU Caineng,MA Feng,PAN Songqi,et al. Earth energy evolution,human development and carbon neutral strategy[J]. Petroleum Exploration and Development,2022,49(2):411−428. doi: 10.11698/PED.2022.02.20
[5] 刘亚姣,张晶,颜敏. 阜新市刘家区煤层气开发利用现状[J]. 中国煤层气,2013,10(3):23−25. doi: 10.3969/j.issn.1672-3074.2013.03.005 LIU Yajiao,ZHANG Jing,YAN Min. Current status of coalbed methane development and utilization in Liujia disctrict of Fuxin City[J]. China Coalbed Methane,2013,10(3):23−25. doi: 10.3969/j.issn.1672-3074.2013.03.005
[6] 高风,惠小勇,吴锦瑜. 我国陆采煤层气首次实现商品化[N]. 中国矿业报,2003−11−27. GAO Feng,HUI Xiaoyong,WU JInyu. China's onshore coal seam gas achieves commercialization for the first time[N]. China MIning News,2003−11−27.
[7] 米洪刚,朱光辉,赵卫,等. 沁水盆地潘庄煤层气田地质工程一体化应用实践[J]. 中国石油勘探,2022,27(1):120−126. doi: 10.3969/j.issn.1672-7703.2022.01.011 MI Honggang,ZHU Guanghui,ZHAO Wei,et al. Application practice of geology and engineering integration in Panzhuang CBM Field,Qinshui Basin[J]. China Petroleum Exploration,2022,27(1):120−126. doi: 10.3969/j.issn.1672-7703.2022.01.011
[8] 温声明,文桂华,李星涛,等. 地质工程一体化在保德煤层气田勘探开发中的实践与成效[J]. 中国石油勘探,2018,23(2):69−75. doi: 10.3969/j.issn.1672-7703.2018.02.009 WEN Shengming,WEN Guihua,LI Xingtao,et al. Application and effect of geology-engineering integration in the exploration and development of Baode CBM field[J]. China Petroleum Exploration,2018,23(2):69−75. doi: 10.3969/j.issn.1672-7703.2018.02.009
[9] 陈贞龙,王运海,刘晓,等. 延川南深部煤层气开发关键技术与地质工程一体化实践[J]. 煤田地质与勘探,2025,53(1):142. doi: 10.12363/issn.1001-1986.24.09.0592 CHEN Zhenlong,WANG Yunhai,LIU Xiao,et al. Practice and understanding of efficient developme-nt of Deep CBM in Southern Yanchuan CBM field[J]. Coal Geology & Exploration,2025,53(1):142. doi: 10.12363/issn.1001-1986.24.09.0592
[10] 方志明,王润东,杨晨龙. 深部煤层气开发的机遇与挑战[J/OL]. 中国矿业大学学报,2024:1−18[2024−12−02]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=ZGKD20241128002&dbname=CJFD&dbcode=CJFQ. FANG Zhiming,WANG Rundong,YANG Chenlong. Opportunities and challenges in deep coalbed methane development[J/OL]. China Industrial Economics,2024:1−18[2024−12−02]. http://kns.cnki.net/KCMS/detail/detail.aspx? filename=ZGKD20241128002&dbname=CJFD&dbcode=CJFQ.
[11] 梁兴,单长安,李兆丰,等. 山地煤层气勘探创新实践及有效开采关键技术:以四川盆地南部筠连煤层气田为例[J]. 天然气工业,2022,42(6):107−129. doi: 10.3787/j.issn.1000-0976.2022.06.010 LIANG Xing,SHAN Chang’an,LI Zhaofeng,et al. Exploration innovation practice and effective exploitation key technology of mountain coalbed methane:Taking the Junlian coalbed methane field in southern Sichuan Basin as an example[J]. Natural Gas Industry,2022,42(6):107−129. doi: 10.3787/j.issn.1000-0976.2022.06.010
[12] 谢和平,周宏伟,薛东杰,等. 我国煤与瓦斯共采:理论、技术与工程[J]. 煤炭学报,2014,39(8):1391−1397. XIE Heping,ZHOU Hongwei,XUE Dongjie,et al. Theory,technology and engineering of simultaneous exploitation of coal and gas in China[J]. Journal of China Coal Society,2014,39(8):1391−1397.
[13] 刘见中,孙海涛,雷毅,等. 煤矿区煤层气开发利用新技术现状及发展趋势[J]. 煤炭学报,2020,45(1):258−267. LIU Jianzhong,SUN Haitao,LEI Yi,et al. Current situation and development trend of coalbed methane development and utilization technology in coal mine area[J]. Journal of China Coal Society,2020,45(1):258−267.
[14] 李勇,徐立富,张守仁,等. 深煤层含气系统差异及开发对策[J]. 煤炭学报,2023,48(2):900−917. LI Yong,XU Lifu,ZHANG Shouren,et al. Gas bearing system difference in deep coal seams and corresponded development strategy[J]. Journal of China Coal Society,2023,48(2):900−917.
[15] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780. doi: 10.7623/syxb202311002 XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780. doi: 10.7623/syxb202311002
[16] 桑树勋,李瑞明,刘世奇,等. 新疆煤层气大规模高效勘探开发关键技术领域研究进展与突破方向[J]. 煤炭学报,2024,49(1):563−585. SANG Shuxun,LI Ruiming,LIU Shiqi,et al. Research progress and breakthrough directions of the key technical fields for large scale and efficient exploration and development of coalbed methane in Xinjiang[J]. Journal of China Coal Society,2024,49(1):563−585.
[17] 张兵,李勇,贾雨婷,等. 薄—超薄煤层特征及天然气合层开发突破:以沁水盆地潘河区块为例[J]. 天然气工业,2023,43(10):83−93. doi: 10.3787/j.issn.1000-0976.2023.10.009 ZHANG Bing,LI Yong,JIA Yuting,et al. Characteristics and commingled natural gas production breakthrough of thin and ultra-thin coal beds in the Panhe Block of the Qinshui Basin[J]. Natural Gas Industry,2023,43(10):83−93. doi: 10.3787/j.issn.1000-0976.2023.10.009
[18] 张道勇,朱杰,赵先良,等. 全国煤层气资源动态评价与可利用性分析[J]. 煤炭学报,2018,43(6):1598−1604. ZHANG Daoyong,ZHU Jie,ZHAO Xianliang,et al. Dynamic assessment of coalbed methane resources and availability in China[J]. Journal of China Coal Society,2018,43(6):1598−1604.
[19] 叶建平,吴建光,房超,等. 沁南潘河煤层气田区域地质特征与煤储层特征及其对产能的影响[J]. 天然气工业,2011,31(5):16−20,113. doi: 10.3787/j.issn.1000-0976.2011.05.004 YE Jianping,WU Jianguang,FANG Chao,et al. Regional geological and reservoir characteristics of the Panhe CBM Gas Field in the southern Qinshui Basin and their influences on CBM gas production capacity[J]. Natural Gas Industry,2011,31(5):16−20,113. doi: 10.3787/j.issn.1000-0976.2011.05.004
[20] 印薇薇,张海锋,苏羽. 潘庄区块煤层气开发井网优化数值模拟研究[J]. 中国煤层气,2022,19(3):7−11. doi: 10.3969/j.issn.1672-3074.2022.03.002 YIN Weiwei,ZHANG Haifeng,SU Yu. Research on numerical simulation of well pattern optimization for coalbed methane development in panzhuang block[J]. China Coalbed Methane,2022,19(3):7−11. doi: 10.3969/j.issn.1672-3074.2022.03.002
[21] 黄孝波,赵佩,董泽亮,等. 沁水盆地煤层气成藏主控因素与成藏模式分析[J]. 中国煤炭地质,2014,26(2):12−17. doi: 10.3969/j.issn.1674-1803.2014.02.03 HUANG Xiaobo,ZHAO Pei,DONG Zeliang,et al. Main controlling factors of CBM reservoiring and its mode in Qinshui basin[J]. Coal Geology of China,2014,26(2):12−17. doi: 10.3969/j.issn.1674-1803.2014.02.03
[22] 赵贤正,杨延辉,孙粉锦,等. 沁水盆地南部高阶煤层气成藏规律与勘探开发技术[J]. 石油勘探与开发,2016,43(2):303−309. doi: 10.11698/PED.2016.02.19 ZHAO Xianzheng,YANG Yanhui,SUN Fenjin,et al. Enrichment mechanism and exploration and development technologies of high rank coalbed methane in south Qinshui Basin,Shanxi Province[J]. Petroleum Exploration and Development,2016,43(2):303−309. doi: 10.11698/PED.2016.02.19
[23] 杨延辉,张鹏豹,刘忠,等. 沁水盆地南部深层高阶煤层气成藏特征[J]. 中国石油勘探,2024,29(5):107−119. doi: 10.3969/j.issn.1672-7703.2024.05.009 YANG Yanhui,ZHANG Pengbao,LIU Zhong,et al. Gas accumulation characteristics of high-rank coal in deep formations in the southern Qinshui Basin[J]. China Petroleum Exploration,2024,29(5):107−119. doi: 10.3969/j.issn.1672-7703.2024.05.009
[24] 秦绍锋,王若仪. 潘河区块煤层气L型水平井排采工艺及配套技术研究[J]. 煤炭科学技术,2019,47(9):132−137. QIN Shaofeng,WANG Ruoyi. Study on gas drilling technology and supporting technology for L-type horizontal well in Panhe Block[J]. Coal Science and Technology,2019,47(9):132−137.
[25] 朱建英,高正龙,高丽军,等. 煤层气井排采制度定量优化方法:以潘庄煤层气井为例[J]. 中国煤层气,2024,21(4):23−25. doi: 10.3969/j.issn.1672-3074.2024.04.005 ZHU Jianying,GAO Zhenglong,GAO Lijun,et al. Quantitative optimization method for drainage system of coalbed methane wells:Taking Panzhuang coalbed methane well as an example[J]. China Coalbed Methane,2024,21(4):23−25. doi: 10.3969/j.issn.1672-3074.2024.04.005
[26] 叶建平,侯淞译,张守仁. “十三五” 期间我国煤层气勘探开发进展及下一步勘探方向[J]. 煤田地质与勘探,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738 YE Jianping,HOU Songyi,ZHANG Shouren. Progress of coalbed methane exploration and development in China during the 13th Five-Year Plan period and the next exploration direction[J]. Coal Geology & Exploration,2022,50(3):15−22. doi: 10.12363/issn.1001-1986.21.12.0738
[27] 吴裕根,门相勇,娄钰. 我国“十四五” 煤层气勘探开发新进展与前景展望[J]. 中国石油勘探,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001 WU Yugen,MEN Xiangyong,LOU Yu. New progress and prospect of coalbed methane exploration and development in China during the 14th Five-Year Plan period[J]. China Petroleum Exploration,2024,29(1):1−13. doi: 10.3969/j.issn.1672-7703.2024.01.001
[28] 琚宜文,乔鹏,卫明明,等. 区域构造与演化控制下煤层气富集高产典型模式[J]. 煤田地质与勘探,2022,50(9):1−12. doi: 10.12363/issn.1001-1986.22.01.0059 JU Yiwen,QIAO Peng,WEI Mingming,et al. Typical coalbed methane(CBM) enrichment and production modes under the control of regional structure and evolution[J]. Coal Geology & Exploration,2022,50(9):1−12. doi: 10.12363/issn.1001-1986.22.01.0059
[29] 高德利,毕延森,鲜保安. 中国煤层气高效开发井型与钻完井技术进展[J]. 天然气工业,2022,42(6):1−18. doi: 10.3787/j.issn.1000-0976.2022.06.001 GAO Deli,BI Yansen,XIAN Baoan. Technical advances in well types and drilling & completion for high-efficient development of coalbed methane in China[J]. Natural Gas Industry,2022,42(6):1−18. doi: 10.3787/j.issn.1000-0976.2022.06.001
[30] 徐凤银,张伟,李子玲,等. 鄂尔多斯盆地保德区块煤层气藏描述与提高采收率关键技术[J]. 天然气工业,2023,43(1):96−112. doi: 10.3787/j.issn.1000-0976.2023.01.010 XU Fengyin,ZHANG Wei,LI Ziling,et al. Coalbed methane reservoir description and enhanced recovery technologies in Baode block,Ordos Basin[J]. Natural Gas Industry,2023,43(1):96−112. doi: 10.3787/j.issn.1000-0976.2023.01.010
[31] 徐凤银,陈东,梁为,等. 煤层气(煤矿瓦斯)勘探开发技术进展及发展方向[M]. 北京:科学出版社,2020. [32] 张雷,徐凤银,李子玲,等. 煤层气田单/合层开发影响因素分析及应用:以保德区块为例[J]. 煤田地质与勘探,2022,50(9):68−77. doi: 10.12363/issn.1001-1986.21.12.0865 ZHANG Lei,XU Fengyin,LI Ziling,et al. Analysis on influencing factors of single/multi-layer development of coalbed methane field:A case study of Baode Block[J]. Coal Geology & Exploration,2022,50(9):68−77. doi: 10.12363/issn.1001-1986.21.12.0865
[33] 杨秀春,毛建设,林文姬,等. 保德区块煤层气勘探历程与启示[J]. 新疆石油地质,2021,42(3):381−388. YANG Xiuchun,MAO Jianshe,LIN Wenji,et al. Exploration history and enlightenment of coalbed methane in Baode Block[J]. Xinjiang Petroleum Geology,2021,42(3):381−388.
[34] 郑司建,桑树勋. 煤层气勘探开发研究进展与发展趋势[J]. 石油物探,2022,61(6):951−962. doi: 10.3969/j.issn.1000-1441.2022.06.001 ZHENG Sijian,SANG Shuxun. Progress of research on coalbed methane exploration and development[J]. Geophysical Prospecting for Petroleum,2022,61(6):951−962. doi: 10.3969/j.issn.1000-1441.2022.06.001
[35] 曾凡武,姜志高,蔡潇. 延川南深部煤层气富集高产关键因素[J]. 中国煤层气,2022,19(4):16−20. ZENG Fanwu,JIANG Zhigao,CAI Xiao. Key factors for enrichment and high production of deep coalbed methane in southern Yanchuan[J]. China Coalbed Methane,2022,19(4):16−20.
[36] 姚红生,肖翠,陈贞龙,等. 延川南深部煤层气高效开发调整对策研究[J]. 油气藏评价与开发,2022,12(4):545−555. YAO Hongsheng,XIAO Cui,CHEN Zhenlong,et al. Adjustment countermeasures for efficient development of deep coalbed methane in southern Yanchuan CBM Field[J]. Petroleum Reservoir Evaluation and Development,2022,12(4):545−555.
[37] 李勇,徐凤银,唐书恒,等. 鄂尔多斯盆地煤层(岩)气勘探开发进展及发展方向[J]. 天然气工业,2024,44(10):63−79. doi: 10.3787/j.issn.1000-0976.2024.10.005 LI Yong,XU Fengyin,TANG Shuheng,et al. Progress and development direction of coalbed methane(coal-rock gas)exploration and development in the Ordos Basin[J]. Natural Gas Industry,2024,44(10):63−79. doi: 10.3787/j.issn.1000-0976.2024.10.005
[38] 陈刚,胡宗全. 鄂尔多斯盆地东南缘延川南深层煤层气富集高产模式探讨[J]. 煤炭学报,2018,43(6):1572−1579. CHEN Gang,HU Zongquan. Discussion on the model of enrichment and high yield of deep coalbed methane in Yanchuannan area at Southeastern Ordos Basin[J]. Journal of China Coal Society,2018,43(6):1572−1579.
[39] 陈贞龙,郭涛,李鑫,等. 延川南煤层气田深部煤层气成藏规律与开发技术[J]. 煤炭科学技术,2019,47(9):112−118. CHEN Zhenlong,GUO Tao,LI Xin,et al. Enrichment law and development technology of deep coalbed methane in South Yanchuan Coalbed Methane Field[J]. Coal Science and Technology,2019,47(9):112−118.
[40] 姚红生,陈贞龙,郭涛,等. 延川南深部煤层气地质工程一体化压裂增产实践[J]. 油气藏评价与开发,2021,11(3):291−296. YAO Hongsheng,CHEN Zhenlong,GUO Tao,et al. Stimulation practice of geology-engineering integration fracturing for deep CBM in Yanchuannan Field[J]. Petroleum Reservoir Evaluation and Development,2021,11(3):291−296.
[41] 姚红生,陈贞龙,何希鹏,等. 深部煤层气“有效支撑” 理念及创新实践:以鄂尔多斯盆地延川南煤层气田为例[J]. 天然气工业,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009 YAO Hongsheng,CHEN Zhenlong,HE Xipeng,et al. “Effective support” concept and innovative practice of deep CBM in South Yanchuan Gas Field of the Ordos Basin[J]. Natural Gas Industry,2022,42(6):97−106. doi: 10.3787/j.issn.1000-0976.2022.06.009
[42] 吴聿元,陈贞龙. 延川南深部煤层气勘探开发面临的挑战和对策[J]. 油气藏评价与开发,2020,10(4):1−11,141. WU Yuyuan,CHEN Zhenlong. Challenges and countermeasures for exploration and development of deep CBM of South Yanchuan[J]. Reservoir Evaluation and Development,2020,10(4):1−11,141.
[43] 范立勇,周国晓,杨兆彪,等. 鄂尔多斯盆地深部煤层气差异富集的地质控制[J]. 煤炭科学技术,2025,53(1):203−215. doi: 10.12438/cst.2024-1144 FAN Liyong,ZHOU Guoxiao,YANG Zhaobiao,et al. Geological control of differential enrichment of deep coalbed methane in the Ordos Basin[J]. Coal Science and Technology,2025,53(1):203−215. doi: 10.12438/cst.2024-1144
[44] 徐凤银,王成旺,熊先钺,等. 深部(层)煤层气成藏模式与关键技术对策:以鄂尔多斯盆地东缘为例[J]. 中国海上油气,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003 XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Deep(layer)coalbed methane reservoir forming modes and key technical countermeasures:Taking the eastern margin of Ordos Basin as an example[J]. China Offshore Oil and Gas,2022,34(4):30−42,262. doi: 10.11935/j.issn.1673-1506.2022.04.003
[45] 闫霞,徐凤银,张雷,等. 微构造对煤层气的控藏机理与控产模式[J]. 煤炭学报,2022,47(2):893−905. YAN Xia,XU Fengyin,ZHANG Lei,et al. Reservoir-controlling mechanism and production-controlling patterns of microstructure to coalbed methane[J]. Journal of China Coal Society,2022,47(2):893−905.
[46] 徐凤银,聂志宏,孙伟,等. 鄂尔多斯盆地东缘深部煤层气高效开发理论技术体系[J]. 煤炭学报,2024,49(1):528−544. XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technological system for Highly efficient development of deep coalbed methane in the Eastern edge of Erdos Basin[J]. Journal of China Coal Society,2024,49(1):528−544.
[47] 闫霞,熊先钺,李曙光,等. 深层煤岩气水平井各段产出贡献及其主控因素:以鄂尔多斯盆地东缘大宁—吉县区块为例[J]. 天然气工业,2024,44(10):80−92. doi: 10.3787/j.issn.1000-0976.2024.10.006 YAN Xia,XIONG Xianyue,LI Shuguang,et al. Production contributions of deep CBM horizontal well sections and their controlling factors:A case study of Daning-Jixian area,eastern Or-dos Basin[J]. Natural Gas Industry,2024,44(10):80−92. doi: 10.3787/j.issn.1000-0976.2024.10.006
[48] 陈明,王大猛,余莉珠,等. 大宁—吉县区块深部煤层气井排采制度研究与实践[J/OL]. 煤炭学报,1−11[2025−02−27]. https://doi.org/10.13225/j.cnki.jccs.2024.0318. CHEN Ming,WANG Dameng,YU Lizhu,et al. Drainage system research and application of deep coalbed methane gas reservoirs in the Daning-Jixian block[J/OL]. Journal of China Coal Society,1−11[2025−02−27]. https://doi.org/10.13225/j.cnki.jccs.2024.0318.
[49] 桑树勋,韩思杰,周效志,等. 华东地区深部煤层气资源与勘探开发前景[J]. 油气藏评价与开发,2023,13(4):403−415. SANG Shuxun,HAN Sijie,ZHOU Xiaozhi,et al. Deep coalbed methane resource and its exploration and development prospect in East China[J]. Petroleum Reservoir Evaluation and Development,2023,13(4):403−415.
[50] 蒋健明,韩锋,丁海,等. 安徽省两淮煤田废弃煤炭矿井剩余资源综合调查、开发利用现状及展望[J]. 中国矿业,2024,33(8):46−58. doi: 10.12075/j.issn.1004-4051.20240752 JIANG Jianming,HAN Feng,DING Hai,et al. Comprehensive survey,status and prospect of exploitation and utilization of residual resources of abandoned coal mine in Huainan and Huaibei Coalfields,Anhui Province[J]. China Mining Magazine,2024,33(8):46−58. doi: 10.12075/j.issn.1004-4051.20240752
[51] 雷毅,申宝宏,刘见中. 煤矿区煤层气与煤炭协调开发模式初探[J]. 煤矿开采,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001 LEI Yi,SHEN Baohong,LIU Jianzhong. Initial discussion of coalbed methane and coal coordination mining mode[J]. Coal mining Technol-ogy,2012,17(3):1−4. doi: 10.3969/j.issn.1006-6225.2012.03.001
[52] 孔祥喜,唐永志,李平,等. 淮南矿区松软低透煤层煤层气开发利用技术与思考[J]. 煤炭科学技术,2022,50(12):26−35. KONG Xiangxi,TANG Yongzhi,LI Ping,et al. Thingking and utilization technology of coalbed methane in soft and low permeability coal seams in Huainan Mining Area[J]. Coal Science and Technology,2022,50(12):26−35.
[53] 桑树勋,皇凡生,单衍胜,等. 碎软低渗煤储层强化与煤层气地面开发技术进展[J]. 煤炭科学技术,2024,52(1):196−210. doi: 10.12438/cst.2023-0997 SANG Shuxun,HUANG Fansheng,SHAN Yansheng,et al. Technology processes of enhancement of broken soft and low permeability coal reservoir and surface development of coalbed methane[J]. Coal Science and Technology,2024,52(1):196−210. doi: 10.12438/cst.2023-0997
[54] 李琰庆,唐永志,唐彬,等. 淮南矿区煤与瓦斯共采技术的创新与发展[J]. 煤矿安全,2020,51(8):77−81. LI Yanqing,TANG Yongzhi,TANG Bin,et al. Innovation and development of coal and gas co-mining technology in Huainan mining area[J]. Safety in Coal Mines,2020,51(8):77−81.
[55] 高磊. 晋城矿区井上下联合瓦斯抽采工艺及现场应用[J]. 煤炭与化工,2023,46(6):100−104. GAO Lei. Combined gas extraction technology and field application in Jincheng mining area[J]. Coal and Chemical Industry,2023,46(6):100−104.
[56] 李广昌,成国清,傅雪海. 晋城新区煤层瓦斯赋存特征及评价[J]. 煤田地质与勘探,2001,29(6):18−20. doi: 10.3969/j.issn.1001-1986.2001.06.006 LI Guangchang,CHENG Guoqing,FU Xuehai. Occurrence characteristice and evaluation of CBM in the new area,Jincheng[J]. Coal Geology & Exploration,2001,29(6):18−20. doi: 10.3969/j.issn.1001-1986.2001.06.006
[57] 刘彦青,赵灿,李国富,等. 晋城矿区煤与煤层气协调开发模式优化决策方法[J]. 煤炭学报,2020,45(7):2575−2589. LIU Yanqing,ZHAO Can,LI Guofu,et al. Optimized decision method of coordinated development mode of coal and coalbed methane in Jincheng mining area[J]. Journal of China Coal Society,2020,45(7):2575−2589.
[58] 李国富,张遂安,季长江,等. 煤矿区煤层气“四区联动”井上下联合抽采模式与技术体系[J]. 煤炭科学技术,2022,50(12):14−25. LI Guofu,ZHANG Suian,JI Changjiang,et al. Mechanism and technical system of ground and underground combined drainage of CBM in "four region linkage" in coal mining area[J]. Coal Science and Technology,2022,50(12):14−25.
[59] 孙海涛,舒龙勇,姜在炳,等. 煤矿区煤层气与煤炭协调开发机制模式及发展趋势[J]. 煤炭科学技术,2022,50(12):1−13. SUN Haitao,SHU Longyong,JIANG Zaibing,et al. Progress and trend of key technologies of CBM development and utilization in China coal mine areas[J]. Coal Science and Technology,2022,50(12):1−13.
[60] 李日富,李保东,张军. 松藻矿区煤层气开发技术优选[J]. 煤矿安全,2011,42(4):31−34. LI Rifu,LI Baodong,ZHANG Jun. Optimization of coalbed methane development technology in Songzao mining area[J]. Safety in Coal Mines,2011,42(4):31−34.
[61] 黄昌文,杨良智. 松藻矿区瓦斯抽采的现状和发展方向[J]. 矿业安全与环保,2009,36(4):69−72. doi: 10.3969/j.issn.1008-4495.2009.04.024 HUANG Changwen,YANG Liangzhi. The current situation and development direction of gas extraction in Songzao mining area[J]. Mining Safety & Environmental Protection,2009,36(4):69−72. doi: 10.3969/j.issn.1008-4495.2009.04.024
[62] 申宝宏,刘见中,雷毅. 我国煤矿区煤层气开发利用技术现状及展望[J]. 煤炭科学技术,2015,43(2):1−4. SHEN Baohong,LIU Jianzhong,LEI Yi. Present status and prospects of coalbed methane development and utilization technology of coal mine area in China[J]. Coal Science and Technology,2015,43(2):1−4.
[63] 刘见中,沈春明,雷毅,等. 煤矿区煤层气与煤炭协调开发模式与评价方法[J]. 煤炭学报,2017,42(5):1221−1229. LIU Jianzhong,SHEN Chunming,LEI Yi,et al. Coordinated development mode and evaluation method of coalbed methane and coal in coal mine area in China[J]. Journal of China Coal Society,2017,42(5):1221−1229.
[64] 任波,薛俊华,余国锋,等. 典型开采条件下煤与瓦斯共采实践与思考[J]. 能源与环保,2018,40(3):174−179. REN Bo,XUE Junhua,YU Guofeng,et al. Practice and thinking on simultaneous exploitation of coal and gas under typical mining conditions[J]. China Energy and Environmental Protection,2018,40(3):174−179.
[65] 李瑞明,周梓欣,张伟,等. “十四五” 以来新疆煤炭地质工作进展及发展方向[J]. 新疆地质,2024,42(1):7−13. doi: 10.3969/j.issn.1000-8845.2024.01.002 LI Ruiming,ZHOU Zixin,ZHANG Wei,et al. The progress and development direction of coal ggeological work in Xinjiang during the 14th five year plan period[J]. Xinjiang Geology,2024,42(1):7−13. doi: 10.3969/j.issn.1000-8845.2024.01.002
[66] 赵元媛. 我国西北地区中低煤阶煤层气成藏规律及控气因素探讨[J]. 中国煤炭地质,2024,36(10):22−27,5. doi: 10.3969/j.issn.1674-1803.2024.10.04 ZHAO Yuanyuan. Discussion on the law of coalbed methane accumulation and gas control factors of middle and low coal rank in northwest China[J]. Coal Geology of China,2024,36(10):22−27,5. doi: 10.3969/j.issn.1674-1803.2024.10.04
[67] 杜世涛,杨曙光,李瑞明,等. 新疆地区煤层气勘探开发工艺技术难点与对策[J/OL]. 地质通报,1−13[2025-02-27]. http://kns.cnki.net/kcms/detail/11.4648.P.20240523.1545.004.html. DU Shitao,YANG Shuguang,LI Ruiming,et al. Difficulties and countermeasures in exploration and development of coalbed methane in Xinjiang region[J/OL]. Geological Bulletin of China, 1−13[2025-02-27]. http://kns.cnki.net/kcms/detail/11.4648.P.20240523.1545.004.html.
[68] 桑树勋,韩思杰,刘世奇,等. 高煤阶煤层气富集机理的深化研究[J]. 煤炭学报,2022,47(1):388−403. SANG Shuxun,HAN Sijie,LIU Shiqi,et al. Comprehensive study on the enrichment mechanism of coalbed methane in high rank coal reservoirs[J]. Journal of China Coal Society,2022,47(1):388−403.
[69] 王勃,梁兴,马斌,等. 川南筠连地区煤层气地质特征与富集规律[J]. 断块油气田,2021,28(3):311−317. WANG Bo,LIANG Xing,MA Bin,et al. Geological characteristics and enrichment rule of the CBM in Junlian area of southern Sichuan[J]. Fault-Block Oil & Gas Field,2021,28(3):311−317.
[70] 明盈,孙豪飞,汤达祯,等. 四川盆地上二叠统龙潭组深-超深部煤层气资源开发潜力[J]. 煤田地质与勘探,2024,52(2):102−112. doi: 10.12363/issn.1001-1986.23.09.0528 MING Ying,SUN Haofei,TANG Dazhen,et al. Potential for the production of deep to ultradeep coalbed methane resources in the Upper Permian Longtan Formation,Sichuan Basin[J]. Coal Geology & Exploration,2024,52(2):102−112. doi: 10.12363/issn.1001-1986.23.09.0528
[71] 金晓波. 渝东南地区深部煤层气成藏特征及有利区评价[J]. 非常规油气,2024,11(6):25−33. JIN Xiaobo. Reservoir forming characteristics and favorable area evaluation of deep coalbed methane in southeastern Chongqing[J]. Unconventional Oil & Gas,2024,11(6):25−33.
[72] 乔博,刘海锋,贺刚,等. 纳林河地区本溪组深部煤层气地质特征及开发潜力[J]. 西安石油大学学报(自然科学版),2024,39(5):43−49. doi: 10.3969/j.issn.1673-064X.2024.05.006 QIAO Bo,LIU Haifeng,HE Gang,et al. Geological features and development potential of deep coalbed methane resources in Benxi formation of Nalinhe area,Ordos basin[J]. Journal of Xi’an Shiyou University (Natural Science Edition),2024,39(5):43−49. doi: 10.3969/j.issn.1673-064X.2024.05.006
[73] 谢宾,曾凌翔,李彬,等. 鄂尔多斯盆地苏里格气田深层煤层气直井压裂实践与认识[J]. 天然气勘探与开发,2024,47(6):45−52. doi: 10.12055/gaskk.issn.1673-3177.2024.06.006 XIE Bin,ZENG Lingxiang,LI Bin,et al. Practice and understanding of vertical well fracturing for deep CBM reservoirs in Sulige gas field,Ordos Basin[J]. Natural Gas Exploration and Development,2024,47(6):45−52. doi: 10.12055/gaskk.issn.1673-3177.2024.06.006