高级检索

煤矿开采水浸弱化流固耦合模拟方法与工程应用

张村, 黄玄皓, 王永乐, 师旭涛, 王方田, 韩鹏华

张 村,黄玄皓,王永乐,等. 煤矿开采水浸弱化流固耦合模拟方法与工程应用[J]. 煤炭科学技术,2025,53(6):407−417. DOI: 10.12438/cst.2024–0383
引用本文: 张 村,黄玄皓,王永乐,等. 煤矿开采水浸弱化流固耦合模拟方法与工程应用[J]. 煤炭科学技术,2025,53(6):407−417. DOI: 10.12438/cst.2024–0383
ZHANG Cun,HUANG Xuanhao,WANG Yongle,et al. Simulation method and engineering application of fluid solid coupling for water immersion weakening in coal mining[J]. Coal Science and Technology,2025,53(6):407−417. DOI: 10.12438/cst.2024–0383
Citation: ZHANG Cun,HUANG Xuanhao,WANG Yongle,et al. Simulation method and engineering application of fluid solid coupling for water immersion weakening in coal mining[J]. Coal Science and Technology,2025,53(6):407−417. DOI: 10.12438/cst.2024–0383

煤矿开采水浸弱化流固耦合模拟方法与工程应用

基金项目: 

国家重点研发计划资助项目(2023YFC3012101);国家自然科学基金资助项目(52474161);中央高校基本科研业务费专项资金资助项目(2024ZKPYNY01)

详细信息
    作者简介:

    张村: (1990—),男,江苏海门人,副教授,博士生导师,博士。E-mail:cumt-zc@cumtb.edu.cn

  • 中图分类号: TD324

Simulation method and engineering application of fluid solid coupling for water immersion weakening in coal mining

  • 摘要:

    煤矿开采造成覆岩含水层涌入开采区域,弱化煤岩体强度进而造成巷道煤柱等失稳。基于此,针对煤矿开采水岩作用弱化工程问题,提出了水浸弱化流固耦合模拟方法,可以实现采动水浸过程中煤岩体渗透率和强度的实时更新。以离散元方法为主详细论述了模拟实现的主要流程,并进一步讨论了有限元模拟方法实现的主要特点。离散元模拟方法主要通过应力和裂隙开度更新渗透率,同时提出了考虑裂隙可压缩性变化的变节理刚度模拟方法。在水渗入节理裂隙中,含水率的更新则通过节理开度变化计算。在煤岩体发生屈服前,煤岩体强度弱化可以根据含水率与煤岩体强度的关系进行更新。相比于离散元模拟方法,有限元模拟方法渗透率更新需要考虑各向异性,饱和含水率的更新则根据孔隙率计算。在此基础上,通过模拟充水断裂构造巷道围岩弱化验证了本文模拟方法的可行性,并进一步通过巷道顶板下沉和围岩裂隙发育实测结果验证了模拟结果的可靠性。最后,讨论和展望了提出的水浸弱化流固耦合模拟方法,认为掌握煤岩体力学渗流特征的尺度效应以及模拟中实现长期水浸弱化更有助于煤矿水岩作用工程问题分析。

    Abstract:

    The overlying aquifer is flowed into the mining area caused by coal mining, which weakens the strength of coal-rock mass and results in the instability of coal pillar and roadway. Focused on the engineering problem of the water-rock interaction weakening in coal mining, the simulation methods of fluid solid coupling for water immersion weakening are proposed. The permeability and strength of coal-rock mass can be realized to update real-time during mining and water immersing in the methods. The implementation process of the simulation is discussed with the discrete element method as focus. And the implementation characteristics of the finite element simulation method are further discussed. The permeability is updated through stress and crack opening in the discrete element simulation method. Meanwhile, the variable joint stiffness simulation method is proposed that considers changes in crack compressibility. When the water seeps into the joint crack, the update of the water content is calculated by the change in joint opening. Before the coal-rock mass is yielded, the weakening strength is updated based on the relationship between water content and coal-rock mass strength. Compared with the discrete element simulation method, the update of the permeability is need to consider anisotropy in the finite element simulation method. The update of the saturated water content is calculated based on the porosity. On this basis, the feasibility of the simulation method is verified by simulating surrounding rock weakening in water filled fracture structure roadway. And on-site measuring results of roof subsidence and surrounding rock crack development are used to verify the results of the simulation for the reliability. Finally, the fluid solid coupling simulation method of water immersion weakening proposed is discussed and prospected. It’s considered to be more helpful for the analysis of water-rock interaction engineering problems in coal mine, that mastering the scale effect of mechanical seepage characteristics for coal-rock mass and implementing long-term water immersion weakening in simulation.

  • 图  1   节理开度与法向应力的关系

    Figure  1.   Relationship between joint opening and normal stress

    图  2   块体离散元流固耦合模拟方法

    Figure  2.   Main fluid-solid coupling ways of discrete element method

    图  3   含水率计算方法

    Figure  3.   Water content calculation method

    图  4   在不同含水率条件下煤岩体的弱化情况

    Figure  4.   Weakening situation of coal and rock masses under different water content conditions

    图  5   离散元水浸弱化流固耦合模拟程序

    Figure  5.   Program diagram of fluid-solid coupling water leaching weakening of coal and rock mass

    图  6   P8201工作面布置

    Figure  6.   P8201 working face layout plan

    图  7   充水断裂构造巷道数值模型与边界条件

    Figure  7.   Numerical models and boundary conditions

    图  8   充水断裂构造巷道围岩损伤弱化及孔隙水压演化特征

    Figure  8.   Characteristics of pore water pressure evolution and surrounding rock damage weakening in water filled fracture structure roadway

    图  9   水浸弱化条件下巷道围岩孔隙压力变化过程

    Figure  9.   Change process of pore pressure in surrounding rock of roadway under water immersion weakening conditions

    图  10   充水断裂构造巷道顶板下沉量的数值模拟和现场实测对比

    Figure  10.   Comparison of numerical roof subsidence and field result in water filled fracture structure roadway

    图  11   充水断裂构造区巷道围岩损伤实测与数值模拟结果

    Figure  11.   Measurement and simulation results of surrounding rock damage in water filled fracture structure roadway

  • [1] 张村,贾胜,王方田,等. 水岩作用下煤体孔裂隙结构演化特征及驱动机制实验研究[J]. 应用基础与工程科学学报,2023,31(1):185−196.

    ZHANG Cun,JIA Sheng,WANG Fangtian,et al. An experimental research on the pore and fracture evolution characteristics and its driving mechanism for coal samples under water-rock interaction[J]. Journal of Basic Science and Engineering,2023,31(1):185−196.

    [2] 房满义,李雪妍,张根,等. 煤矿地下水库水岩作用机理研究:以大柳塔煤矿为例[J]. 煤炭科学技术,2022,50(11):236−242.

    FANG Manyi,LI Xueyan,ZHANG Gen,et al. Research on water-rock interaction mechanism in coal mine underground reservoir:Taking Daliuta Coal Mine as an example[J]. Coal Science and Technology,2022,50(11):236−242.

    [3] 崔凯,吴国鹏,王秀丽,等. 不同水岩作用下板岩物理力学性质劣化实验研究[J]. 工程地质学报,2015,23(6):1045−1052.

    CUI Kai,WU Guopeng,WANG Xiuli,et al. Drying-wetting- saturating experiments for deterioration of physical and mechanical properties of slate[J]. Journal of Engineering Geology,2015,23(6):1045−1052.

    [4] 唐红梅,周福川,宋刚,等. 酸蚀水致灰岩动态弱化机制及试验方法研究[J]. 岩石力学与工程学报,2023,42(6):1312−1324.

    TANG Hongmei,ZHOU Fuchuan,SONG Gang,et al. Experimental study on the dynamic acid water weakening mechanism of limestone[J]. Chinese Journal of Rock Mechanics and Engineering,2023,42(6):1312−1324.

    [5] 陶志刚,李华鑫,曹辉,等. 降雨条件下全段高排土场边坡稳定性实验研究[J]. 煤炭学报,2020,45(11):3793−3805.

    TAO Zhigang,LI Huaxin,CAO Hui,et al. Test on the slope stability of full-section high dump under rainfall[J]. Journal of China Coal Society,2020,45(11):3793−3805.

    [6] 陈建生,李平,王涛,等. 青藏高原东缘水库绕坝基渗流化学溶蚀研究[J]. 岩土工程学报,2019,41(4):610−616. doi: 10.11779/CJGE201904002

    CHEN Jiansheng,LI Ping,WANG Tao,et al. Chemical dissolution of seepage around dam foundation of a reservoir in eastern margin of the Tibetan Plateau[J]. Chinese Journal of Geotechnical Engineering,2019,41(4):610−616. doi: 10.11779/CJGE201904002

    [7] 李健,张艳博,刘祥鑫,等. 不同含水状态下花岗岩岩爆模拟声发射实验研究[J]. 金属矿山,2014(4):53−59.

    LI Jian,ZHANG Yanbo,LIU Xiangxin,et al. Experimental study of simulated acoustic emission of granites rock burst under different moisture state[J]. Metal Mine,2014(4):53−59.

    [8] 洪儒宝,简文彬,陈雪珍. 覆盖型岩溶土洞对地下水升降作用的响应及其塌陷演化过程研究[J]. 工程地质学报,2023,31(1):240−247.

    HONG Rubao,JIAN Wenbin,CHEN Xuezhen. Study on response of covered Karst soil cave to groundwater changes and its collapse evolution process[J]. Journal of Engineering Geology,2023,31(1):240−247.

    [9] 刘业娇,薛俊华,袁亮,等. 软岩底板突水机理分析及数值试验[J]. 煤炭学报,2017,42(12):3255−3261.

    LIU Yejiao,XUE Junhua,YUAN Liang,et al. Numerical test and mechanism analysis of water-inrush on soft rock floor[J]. Journal of China Coal Society,2017,42(12):3255−3261.

    [10] 孙琪皓,马凤山,赵海军,等. 基于渗流−损伤−应力耦合作用下考虑力学参数弱化的巷道围岩变形破坏分析[J]. 工程地质学报,2019,27(5):955−965.

    SUN Qihao,MA Fengshan,ZHAO Haijun,et al. Deformation and failure of surrounding rock considering weakening of mechanical parameters under seepagedamage-stress coupling[J]. Journal of Engineering Geology,2019,27(5):955−965.

    [11]

    ZHANG C,BAI Q S,HAN P H,et al. Strength weakening and its micromechanism in water–rock interaction,a short review in laboratory tests[J]. International Journal of Coal Science & Technology,2023,10(1):10.

    [12] 李桂臣,李菁华,孙元田,等. 泥岩多尺度模型与水岩作用特性研究进展[J]. 煤炭学报,2022,47(3):1138−1154.

    LI Guichen,LI Jinghua,SUN Yuantian,et al. Advance of multi-scale study on both analytic models and water-rock interaction characteristics of mudstone[J]. Journal of China Coal Society,2022,47(3):1138−1154.

    [13] 卢运虎,杨典儒,金衍,等. 深层龙马溪组页岩气藏黏土矿物水岩作用微观机制[J]. 地球化学,2020,49(1):76−83.

    LU Yunhu,YANG Dianru,JIN Yan,et al. Micro-mechanism of water-rock interaction of clay minerals in a deep shale gas reservoir in the Longmaxi Formation[J]. Geochimica,2020,49(1):76−83.

    [14]

    ZHANG C,BAI Q S,HAN P H. A review of water rock interaction in underground coal mining:Problems and analysis[J]. Bulletin of Engineering Geology and the Environment,2023,82(5):157. doi: 10.1007/s10064-023-03142-2

    [15] 徐超,李小芳,王凯,等. 高瓦斯煤层群保护层工作面留设煤柱合理宽度[J]. 中国矿业大学学报,2020,49(3):445−452.

    XU Chao,LI Xiaofang,WANG Kai,et al. Reasonable coal pillar width of protective layer during high-gas coal seams mining[J]. Journal of China University of Mining & Technology,2020,49(3):445−452.

    [16] 王双明,魏江波,宋世杰,等. 黄河流域陕北煤炭开采区厚砂岩对覆岩采动裂隙发育的影响及采煤保水建议[J]. 煤田地质与勘探,2022,50(12):1−11. doi: 10.12363/issn.1001-1986.22.08.0601

    WANG Shuangming,WEI Jiangbo,SONG Shijie,et al. Influence of thick sandstone on development of overburden mining fissures in northern Shaanxi coal mining area of Yellow River Basin and suggestions on water-preserved coal mining[J]. Coal Geology & Exploration,2022,50(12):1−11. doi: 10.12363/issn.1001-1986.22.08.0601

    [17] 张广超,陶广哲,孟祥军,等. 巨厚松散层下软弱覆岩破坏规律[J]. 煤炭学报,2022,47(11):3998−4010.

    ZHANG Guangchao,TAO Guangzhe,MENG Xiangjun,et al. Failure law of weak overburden stratum underlying extra-thick alluvium[J]. Journal of China Coal Society,2022,47(11):3998−4010.

    [18] 许峰,靳德武,高振宇,等. 煤炭高强度重复采动下地下水资源漏失规律研究[J]. 煤炭科学技术,2022,50(11):131−139.

    XU Feng,JIN Dewu,GAO Zhenyu,et al. Study on law of groundwater resources leakage under high intensity repeated mining[J]. Coal Science and Technology,2022,50(11):131−139.

    [19] 李海祥,曹志国,吴宝杨等. 煤矿覆岩裂隙地下水渗流特征的试验研究[J]. 煤炭科学技术,2023,51(6):168−176.

    LI Haixiang,CAO Zhiguo,WU Baoyang,et al. Experimental study on characteristics of grounawater fracture in coal mine overlying rock[J]. Coal Science and Technology,2023,51(6):168−176.

    [20] 赵春虎,董书宁,王皓,等. 采煤工作面顶板含水层井下疏水钻孔涌水规律数值分析[J]. 煤炭学报,2020,45(S1):405−414.

    ZHAO Chunhu,DONG Shuning,WANG Hao,et al. Numerical analysis of water inrush law of underground drainage borehole in roof aquifer of coal mining face[J]. Journal of China Coal Society,2020,45(S1):405−414.

    [21]

    POULSEN B A,SHEN B,WILLIAMS D J,et al. Strength reduction on saturation of coal and coal measures rocks with implications for coal pillar strength[J]. International Journal of Rock Mechanics and Mining Sciences,2014,71:41−52. doi: 10.1016/j.ijrmms.2014.06.012

    [22]

    BAI Q S,TU S H,ZHANG C,et al. Discrete element modeling of progressive failure in a wide coal roadway from water-rich roofs[J]. International Journal of Coal Geology,2016,167:215−229. doi: 10.1016/j.coal.2016.10.010

    [23] 张村,屠世浩,赵毅鑫,等. 基于渗流实验的三轴流固耦合离散元数值模拟研究[J]. 矿业科学学报,2019,4(1):23−33.

    ZHANG Cun,TU Shihao,ZHAO Yixin,et al. Discrete element numerical simulation of triaxial fluid solid coupling based on seepage experiment[J]. Journal of Mining Science and Technology,2019,4(1):23−33.

    [24] 董琪,王媛,冯迪. 水压致裂起裂压力的细观离散元模拟及试验研究[J]. 岩土力学,2022,43(12):3270−3280.

    DONG Qi,WANG Yuan,FENG Di. Discrete element simulation and experimental study on the initiation pressure of hydraulic fracturing[J]. Rock and Soil Mechanics,2022,43(12):3270−3280.

    [25] 余学义,穆驰,李剑锋. 孟巴矿强含水体下分层开采覆岩导水裂隙带发育规律[J]. 煤炭学报,2022,47(S1):29−38.

    YU Xueyi,MU Chi,LI Jianfeng. Development law of water-conducting fracture zone in overlying strata under slicing mining in Mengba Mine with strong water content[J]. Journal of China Coal Society,2022,47(S1):29−38.

    [26] 张村,屠世浩,张磊. 覆岩不同采动损伤煤样应力敏感性研究[J]. 中国矿业大学学报,2018,47(3):502−511.

    ZHANG Cun,TU Shihao,ZHANG Lei. Study of stress sensitivity of coal samples with different mining damage in overlying strata[J]. Journal of China University of Mining & Technology,2018,47(3):502−511.

    [27] 田佳丽,王惠民,刘星星,等. 考虑不同尺度孔隙压缩敏感性的砂岩渗透特性研究[J]. 岩土力学,2022,43(2):405−415.

    TIAN Jiali,WANG Huimin,LIU Xingxing,et al. Study on permeability characteristics of sandstone considering pore compression sensitivity at different scales[J]. Rock and Soil Mechanics,2022,43(2):405−415.

    [28]

    WANG C,ZHANG C,LI Z C,et al. Using discrete element numerical simulation to determine effect of persistent fracture morphology on permeability stress sensitivity[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2023,47(4):570−584. doi: 10.1002/nag.3482

    [29]

    ZHANG C,ZHANG L,WANG W. The axial and radial permeability testing of coal under cyclic loading and unloading[J]. Arabian Journal of Geosciences,2019,12(11):371. doi: 10.1007/s12517-019-4551-5

    [30]

    ZHANG C,ZHANG L,ZHAO Y X,et al. Experimental study of stress–permeability behavior of single persistent fractured coal samples in the fractured zone[J]. Journal of Geophysics and Engineering,2018,15(5):2159−2170. doi: 10.1088/1742-2140/aac12e

    [31] 张慧梅,王赋宇,李焕容,等. 不同浸润时间和应力水平下煤(岩)蠕变损伤模型研究[J]. 采矿与安全工程学报,2023,40(2):399−407.

    ZHANG Huimei,WANG Fuyu,LI Huanrong,et al. Study on creep damage model of coal-rock under different infiltration time and stress level[J]. Journal of Mining & Safety Engineering,2023,40(2):399−407.

    [32] 周辉,宋明,张传庆,等. 三轴应力下水对泥质砂岩力学特性影响的试验研究[J]. 岩土力学,2022,43(9):2391−2398.

    ZHOU Hui,SONG Ming,ZHANG Chuanqing,et al. Experimental study of influences of water on mechanical behaviors of argillaceous sandstone under tri-axial compression[J]. Rock and Soil Mechanics,2022,43(9):2391−2398.

    [33] 姚强岭,王伟男,杨书懿,等. 含水率影响下砂质泥岩直剪特性及声发射特征[J]. 煤炭学报,2021,46(9):2910−2922.

    YAO Qiangling,WANG Weinan,YANG Shuyi,et al. Direct shear and acoustic emission characteristics of sandy mudstone under the effect of moisture content[J]. Journal of China Coal Society,2021,46(9):2910−2922.

    [34] 姚强岭,郝琪,陈翔宇,等. 煤矿地下水库煤柱坝体宽度设计[J]. 煤炭学报,2019,44(3):891−899.

    YAO Qiangling,HAO Qi,CHEN Xiangyu,et al. Design on the width of coal pillar dam in coal mine groundwater reservoir[J]. Journal of China Coal Society,2019,44(3):891−899.

    [35]

    YAO Q L,TANG C J,XIA Z,et al. Mechanisms of failure in coal samples from underground water reservoir[J]. Engineering Geology,2020,267:105494. doi: 10.1016/j.enggeo.2020.105494

    [36]

    HAN P H,ZHANG C,HE X,et al. DEM fluid–solid coupling method for progressive failure simulation of roadways in a fault structure area with water-rich roofs[J]. Geomechanics and Geophysics for Geo-Energy and Geo-Resources,2022,8(6):194. doi: 10.1007/s40948-022-00517-9

  • 期刊类型引用(1)

    1. 郭晨,史康,秦勇,袁航,陈贞龙,高为,卢玲玲,李猴强,张旭阳,王祥,何红斌,张润涵. 基于排采数据的煤层气井排水—降压—产气有效性研究——以黔西织金区块为例. 煤炭科学技术. 2025(03): 370-384 . 本站查看

    其他类型引用(0)

图(11)
计量
  • 文章访问数:  49
  • HTML全文浏览量:  7
  • PDF下载量:  21
  • 被引次数: 1
出版历程
  • 收稿日期:  2024-03-26
  • 网络出版日期:  2025-06-06
  • 刊出日期:  2025-06-24

目录

    /

    返回文章
    返回