Heterogeneity and influencing factors of pore structure in different coal ranks
-
摘要:
为研究不同煤级煤孔隙结构的非均质性及其影响因素,通过低温氮气和二氧化碳吸附实验测试了8组不同煤级煤样孔隙结构,利用Frenkel-Halsey-Hill(FHH)模型计算了不同煤级煤分形维数,并分析了分形维数在煤化作用中的演化规律;结合煤样煤质特征,研究了煤质对于孔隙结构分形特征的影响。研究结果表明:① 在煤化作用过程中,煤中水分和挥发分逐渐减少,固定碳含量逐渐增加,而灰分产率与煤化作用并没有显著的相关性;② 煤中介孔参数与成熟度不具有明显的相关性,而微孔参数随着成熟度的增大呈现出“U”型变化,即开始逐渐减小,在第2次煤化跃迁后逐渐增大;③ 不同煤级煤分形维数D1、D2和Dc普遍与煤化作用密切相关,其中微孔分形维数Dc相关性最高(R2=
0.7092 ),这主要与热演化过程中形成了大量次生孔隙有关;④ 分形维数D1、D2和Dc与水分含量和灰分产率之间不存在明显的相关性,而与挥发分和固定碳含量之间存在相反的相关性,这与煤化作用过程中煤质的变化密切相关。本次研究可以为不同煤级煤层气资源评价提供一定的参考依据。Abstract:To study the pore structure heterogeneity and influencing factors of different coal ranks, 8 coal samples with different coal ranks were tested through low-temperature N2 and CO2 adsorption experiments. The fractal dimension of different coal ranks was calculated using the Frenkel-Halsey-Hill (FHH) model, the evolution law of fractal dimension in coalification was analyzed and the influence of coal quality on the fractal characteristics of pore structure was explored based on the characteristics of coal quality. The results show that: ① In the coalification process, the moisture and volatile matter in coal gradually decrease, and the fixed carbon content gradually increases, while the ash yield has no significant correlation with coalification. ② The mesoporous parameters of coal have no significant correlation with maturity, while the micropore parameters exhibit a U-shaped change trend with the increase of maturity, that is the microporous parameters first gradually decrease and then gradually increase after the second coalification jump. ③ The fractal dimensions D1, D2 and Dc of different coal ranks are generally closely related to coalification, with the highest correlation observed in the microporous fractal dimension Dc (R2=
0.7092 ), which is mainly related to the formation of abundant secondary pores during the thermal evolution process. ④ The fractal dimensions D1, D2 and Dc have no significant correlation with moisture content and ash yield, while have a negative correlation with volatile matter and fixed carbon content, which is closely related to the change in coal quality during coalification. The study result can provide a significant reference basis for the evaluation of coalbed methane resources in different coal ranks.-
Keywords:
- different coal ranks /
- pore structure /
- heterogeneity /
- coalification /
- influencing factors
-
-
表 1 实验煤样基本参数
Table 1 Basic parameters of coal samples
编号 采样位置 样品编号 镜质体反射率Ro/% 工业分析/% 显微组分分析/% Mad Aad Vdaf FCad V I E 1 内蒙古海拉尔 HLE‒2 0.24 15.83 11.20 42.73 30.24 52.5 45.3 2.2 2 内蒙古海拉尔 HLE‒1 0.27 12.84 10.90 39.07 37.19 75.0 23.0 2.0 3 内蒙古鄂尔多斯 EER‒1 0.32 10.78 4.80 36.64 47.78 54.6 41.7 3.7 4 内蒙古鄂尔多斯 EER‒2 0.43 8.33 4.15 34.10 53.42 44.2 53.4 2.4 5 内蒙古乌海 WH‒1 0.67 1.91 5.67 33.06 59.36 78.3 17.9 3.8 6 内蒙古乌海 WH‒2 1.02 0.33 13.50 30.67 55.50 62.3 34.8 2.9 7 山西古交 GJ‒1 1.47 0.58 10.33 19.34 69.75 61.6 33.5 4.9 8 山西古交 GJ‒2 1.52 0.52 10.68 19.19 70.00 61.3 34.7 4.0 9 山西阳泉 YQ‒1 2.77 2.19 13.09 8.21 76.51 64.0 34.0 2.0 10 山西晋城 JC‒1 3.00 2.86 14.73 10.14 72.27 67.2 28.8 3.9 注:Mad为空气干燥基水分;Aad为空气干燥基灰分;Vdaf为干燥无灰基挥发分;FCad为空气干燥基固定碳;V为镜质组;I为惰质组;E为壳质组。 表 2 液氮、二氧化碳吸附实验结果
Table 2 Experimental results of nitrogen and carbon dioxide adsorption
样品编号 镜质体反射率Ro/% N2吸附实验 CO2吸附实验 平均孔径/nm BET比表面积/(m2·g‒1) BJH孔容/(cm3·g‒1) DFT比表面积/(m2·g‒1) DFT孔容/(cm3·g‒1) HLE‒1 0.24 25.51 1.91 0.012 5 122.577 0.0243 9HLE‒2 0.27 28.58 1.35 0.009 8 149.881 0.0296 4EER‒1 0.32 16.98 0.88 0.003 7 171.037 0.0334 7WH‒1 0.67 14.03 0.45 0.001 5 116.089 0.0222 1WH‒2 1.02 19.13 0.35 0.001 6 74.728 0.0135 0GJ‒2 1.52 14.24 0.13 0.000 6 77.119 0.0134 5YQ‒1 2.77 4.80 1.88 0.001 7 183.142 0.0389 1JC‒1 3.00 10.54 2.13 0.005 2 182.990 0.0398 5表 3 基于液氮和二氧化碳吸附实验获得的分形维数
Table 3 Fractal dimension obtained from nitrogen and carbon dioxide adsorption experiments
样品编号 镜质体反射率Ro/% D1
P/P0<0.5D2
P/P0>0.5Dc HLE‒1 0.24 2.4656 2.4026 2.7252 HLE‒2 0.27 2.3577 2.3614 2.7344 EER‒1 0.32 2.6810 2.4676 2.7181 WH‒1 0.67 2.6970 2.4477 2.7634 WH‒2 1.02 2.7392 2.4691 2.7816 GJ‒2 1.52 2.9780 2.2643 2.8360 YQ‒1 2.77 2.9014 2.7042 2.7454 JC‒1 3.00 2.7558 2.5977 2.8285 -
[1] 徐凤银,聂志宏,孙伟,等. 大宁—吉县区块深部煤层气高效开发理论技术体系[J/OL]. (2023−11−22) [2024−05−18]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20231120003&dbname=CJFD&dbcode=CJFQ. XU Fengyin,NIE Zhihong,SUN Wei,et al. Theoretical and technical system for efficient development of deep coalbed methane in Daning-Jixian block[J/OL]. (2023−11−22) [2024−05−18]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=MTXB20231120003&dbname=CJFD&dbcode=CJFQ.
[2] 徐凤银,王成旺,熊先钺,等. 鄂尔多斯盆地东缘深部煤层气成藏演化规律与勘探开发实践[J]. 石油学报,2023,44(11):1764−1780. doi: 10.7623/syxb202311002 XU Fengyin,WANG Chengwang,XIONG Xianyue,et al. Evolution law of deep coalbed methane reservoir formation and exploration and development practice in the eastern margin of Ordos Basin[J]. Acta Petrolei Sinica,2023,44(11):1764−1780. doi: 10.7623/syxb202311002
[3] 苏育飞. 山西煤成气勘查开采新进展及发展对策[J]. 非常规油气,2024,11(3):1−9. SU Yufei. New progress and development countermeasures of Shanxi CBM exploration and mining[J]. Unconventional Oil & Gas,2024,11(3):1−9.
[4] 穆福元,王红岩,吴京桐,等. 中国煤层气开发实践与建议[J]. 天然气工业,2018,38(9):55−60. doi: 10.3787/j.issn.1000-0976.2018.09.007 MU Fuyuan,WANG Hongyan,WU Jingtong,et al. Practice of and suggestions on CBM development in China[J]. Natural Gas Industry,2018,38(9):55−60. doi: 10.3787/j.issn.1000-0976.2018.09.007
[5] MOORE T A. Coalbed methane:A review[J]. International Journal of Coal Geology,2012,101:36−81. doi: 10.1016/j.coal.2012.05.011
[6] 侯泉林,李会军,范俊佳,等. 构造煤结构与煤层气赋存研究进展[J]. 中国科学:地球科学,2012,42(10):1487−1495. doi: 10.1360/zd-2012-42-10-1487 HOU Quanlin,LI Huijun,FAN Junjia,et al. Research progress on structural coal structure and coalbed methane occurrence[J]. Scientia Sinica (Terrae),2012,42(10):1487−1495. doi: 10.1360/zd-2012-42-10-1487
[7] CAI Y D,LIU D M,PAN Z J,et al. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from NorthEast China[J]. Fuel,2013,103:258−268. doi: 10.1016/j.fuel.2012.06.055
[8] 刘大锰,李俊乾. 我国煤层气分布赋存主控地质因素与富集模式[J]. 煤炭科学技术,2014,42(6):19−24. LIU Dameng,LI Junqian. Main geological controls on distribution and occurence and enrichment patterns of coalbed methane in China[J]. Coal Science and Technology,2014,42(6):19−24.
[9] 张玉贵,焦银秋,雷东记,等. 煤体纳米级孔隙低温氮吸附特征及分形性研究[J]. 河南理工大学学报(自然科学版),2016,35(2):141−148. ZHANG Yugui,JIAO Yinqiu,LEI Dongji,et al. Study on adsorption characteristics and fractal properties of nano-scale pores at low temperature coal[J]. Journal of Henan Polytechnic University (Natural Science),2016,35(2):141−148.
[10] 赵迪斐,郭英海,毛潇潇,等. 基于压汞、氮气吸附与FE-SEM的无烟煤微纳米孔特征[J]. 煤炭学报,2017,42(6):1517−1526. ZHAO Difei,GUO Yinghai,MAO Xiaoxiao,et al. Characteristics of macro-nanopores in anthracite coal based on mercury injection,nitrogen adsorption and FE-SEM[J]. Journal of China Coal Society,2017,42(6):1517−1526.
[11] YAN J W,MENG Z P,ZHANG K,et al. Pore distribution characteristics of various rank coals matrix and their influences on gas adsorption[J]. Journal of Petroleum Science and Engineering,2020,189:107041. doi: 10.1016/j.petrol.2020.107041
[12] 关欣,刘育伟,任重阳,等. 基于CT三维重构的无烟煤孔隙结构及连通性特征对比表征[J]. 非常规油气,2023,10(1):69−76. GUAN Xin,LIU Yuwei,REN Chongyang,et al. Characterization and comparison of pore structure and connectivity of anthracite based on CT three-dimensional reconstruction[J]. Unconventional Oil & Gas,2023,10(1):69−76.
[13] 张昆,孟召平,金毅,等. 不同煤体结构煤的孔隙结构分形特征及其研究意义[J]. 煤炭科学技术,2023,51(10):198−206. ZHANG Kun,MENG Zhaoping,JIN Yi,et al. Fractal characteristics of pore structures on different coal structures and its research significance[J]. Coal Science and Technology,2023,51(10):198−206.
[14] 陈向军,赵伞,司朝霞,等. 不同变质程度煤孔隙结构分形特征对瓦斯吸附性影响[J]. 煤炭科学技术,2020,48(2):118−124. CHEN Xiangjun,ZHAO San,SI Zhaoxia,et al. Fractal characteristics of pore structure of coal with different metamorphic degrees and its effect on gas adsorption characteristics[J]. Coal Science and Technology,2020,48(2):118−124.
[15] NIE B S,LIU X F,YANG L L,et al. Pore structure characterization of different rank coals using gas adsorption and scanning electron microscopy[J]. Fuel,2015,158:908−917. doi: 10.1016/j.fuel.2015.06.050
[16] 李凤丽,姜波,宋昱,等. 低中煤阶构造煤的纳米级孔隙分形特征及瓦斯地质意义[J]. 天然气地球科学,2017,28(1):173−182. LI Fengli,JIANG Bo,SONG Yu,et al. Nano scale pore structure and fractal characteristics of low-medium metamorphic tectonically deformed coal[J]. Natural Gas Geoscience,2017,28(1):173−182.
[17] 高迪,刘建国. 沁水盆地东南部高阶煤孔隙分形特征及意义[J]. 河南理工大学学报(自然科学版),2017,36(2):7−15. GAO Di,LIU Jianguo. Pore fractal characteristics and significance of high-rank coal in Southern Qinshui Basin[J]. Journal of Henan Polytechnic University (Natural Science),2017,36(2):7−15.
[18] 秦勇,姜波,王继尧,等. 沁水盆地煤层气构造动力条件耦合控藏效应[J]. 地质学报,2008,82(10):1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007 QIN Yong,JIANG Bo,WANG Jiyao,et al. Coupling control of tectonic dynamical conditions to coalbed methane reservoir formation in the Qinshui basin,Shanxi,China[J]. Acta Geologica Sinica,2008,82(10):1355−1362. doi: 10.3321/j.issn:0001-5717.2008.10.007
[19] LI M F,ZENG F G,CHANG H Z,et al. Aggregate structure evolution of low-rank coals during pyrolysis by in situ X-ray diffraction[J]. International Journal of Coal Geology,2013,116:262−269.
[20] Gregg Sideny John and Sing Kenneth Stafford William. (1982)Adsorption,Surface Area and Porosity,2nd Edn,Academic Press,London.
[21] MASTALERZ M,SCHIMMELMANN A,DROBNIAK A,et al. Porosity of Devonian and Mississippian new Albany shale across a maturation gradient:Insights from organic petrology,gas adsorption,and mercury intrusion[J]. AAPG Bulletin,2013,97(10):1621−1643. doi: 10.1306/04011312194
[22] 王青青,孟艳军,闫涛滔,等. 不同煤阶煤储层吸附/解吸特征差异及其对产能的影响[J]. 煤田地质与勘探,2023,51(5):66−77. doi: 10.12363/issn.1001-1986.22.10.0816 WANG Qingqing,MENG Yanjun,YAN Taotao,et al. Differences in the adsorption/desorption characteristics of coal reservoirs with different coal ranks and their effects on the reservoir productivity[J]. Coal Geology & Exploration,2023,51(5):66−77. doi: 10.12363/issn.1001-1986.22.10.0816
[23] 刘高峰,李宝林,张震,等. 不同变质煤的瓦斯膨胀能演化特征及其突出预测启示[J]. 煤田地质与勘探,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103 LIU Gaofeng,LI Baolin,ZHANG Zhen,et al. Gas expansion energy of coals with different metamorphic degrees:Evolutionary characteristics and their implications for the outburst prediction[J]. Coal Geology & Exploration,2023,51(10):1−8. doi: 10.12363/issn.1001-1986.23.02.0103
[24] OKOLO G N,EVERSON R C,NEOMAGUS H W J P,et al. Comparing the porosity and surface areas of coal as measured by gas adsorption,mercury intrusion and SAXS techniques[J]. Fuel,2015,141:293−304. doi: 10.1016/j.fuel.2014.10.046
[25] TEICHMÜLLER M. The genesis of coal from the viewpoint of coal geology[J]. International Journal of Coal Geology,1990,16(1-3):121−124. doi: 10.1016/0166-5162(90)90016-R
[26] 王爱宽,王庆晖. 褐煤有机显微组分生物气产出模拟实验研究[J]. 非常规油气,2023,10(2):1−8,42. WANG Aikuan,WANG Qinghui. Simulated experimental study of biogas generation from lignite and its organic maceral[J]. Unconventional Oil & Gas,2023,10(2):1−8,42.
[27] DAI S F,FINKELMAN R B. Coal geology in China:An overview[J]. International Geology Review,2018,60(5−6):531−534. doi: 10.1080/00206814.2017.1405287
[28] JIAN K,FU X H,DING Y M,et al. Characteristics of pores and methane adsorption of low-rank coal in China[J]. Journal of Natural Gas Science and Engineering,2015,27:207−218. doi: 10.1016/j.jngse.2015.08.052
[29] TAO S,CHEN S D,TANG D Z,et al. Material composition,pore structure and adsorption capacity of low-rank coals around the first coalification jump:A case of eastern Junggar Basin,China[J]. Fuel,2018,211:804−815. doi: 10.1016/j.fuel.2017.09.087
[30] ZHAO S,SHAO L Y,HOU H H,et al. Methane adsorption characteristics and its influencing factors of the medium-to-high rank coals in the Anyang-Hebi coalfield,northern China[J]. Energy Exploration & Exploitation,2019,37(1):60−82.
[31] 邵龙义,李佳旭,王帅,等. 海拉尔盆地褐煤液氮吸附孔的孔隙结构及分形特征[J]. 天然气工业,2020,40(5):15−25. doi: 10.3787/j.issn.1000-0976.2020.05.002 SHAO Longyi,LI Jiaxu,WANG Shuai,et al. Pore structures and fractal characteristics of liquid nitrogen adsorption pores in lignite in the Hailar Basin[J]. Natural Gas Industry,2020,40(5):15−25. doi: 10.3787/j.issn.1000-0976.2020.05.002
[32] JAKAB E,TILL F,VÁRHEGYI G. Thermogravimetric-mass spectrometric study on the low temperature oxidation of coals[J]. Fuel Processing Technology,1991,28(3):221−238. doi: 10.1016/0378-3820(91)90076-O
[33] ARENILLAS A,RUBIERA F,PIS J J,et al. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J]. Journal of Analytical and Applied Pyrolysis,2003,68:371−385.
[34] ERDENETSOGT B O,LEE I,LEE S K,et al. Solid-state C-13 CP/MAS NMR study of baganuur coal,Mongolia:Oxygen-loss during coalification from lignite to subbituminous rank[J]. International Journal of Coal Geology,2010,82(1-2):37−44. doi: 10.1016/j.coal.2010.02.005
[35] HOU H H,SHAO L Y,LI Y H,et al. Influence of coal petrology on methane adsorption capacity of the Middle Jurassic coal in the Yuqia Coalfield,northern Qaidam Basin,China[J]. Journal of Petroleum Science and Engineering,2017,149:218−227. doi: 10.1016/j.petrol.2016.10.026
[36] CHEN S D,TAO S,TANG D Z,et al. Pore structure characterization of different rank coals using N2 and CO2 adsorption and its effect on CH4 adsorption capacity:A case in panguan syncline,western Guizhou,China[J]. Energy & Fuels,2017,31(6):6034−6044.
[37] LIU Y,ZHU Y M,LIU S M,et al. Molecular structure controls on micropore evolution in coal vitrinite during coalification[J]. International Journal of Coal Geology,2018,199:19−30. doi: 10.1016/j.coal.2018.09.012
[38] 张守仁,曹代勇,陈佩佩,等. 高煤阶煤的阶跃性演化机理研究[J]. 煤炭学报,2002,27(5):525−528. doi: 10.3321/j.issn:0253-9993.2002.05.017 ZHANG Shouren,CAO Daiyong,CHEN Peipei,et al. Study on the step evolution mechanism of high-rank coal[J]. Journal of China Coal Society,2002,27(5):525−528. doi: 10.3321/j.issn:0253-9993.2002.05.017
[39] 李伍,朱炎铭,陈尚斌,等. 低煤级煤生烃与结构演化的耦合机理研究[J]. 光谱学与光谱分析,2013,33(4):1052. doi: 10.3964/j.issn.1000-0593(2013)04-1052-05 LI Wu,ZHU Yanming,CHEN Shangbin,et al. Study of coupling mechanism between hydrocarbon generation and structure evolution in low rank coal[J]. Spectroscopy and Spectral Analysis,2013,33(4):1052. doi: 10.3964/j.issn.1000-0593(2013)04-1052-05
[40] 郝盼云,孟艳军,曾凡桂,等. 红外光谱定量研究不同煤阶煤的化学结构[J]. 光谱学与光谱分析,2020,40(3):787. HAO Panyun,MENG Yanjun,ZENG Fangui,et al. Quantitative study of chemical structures of different rank coals based on infrared spectroscopy[J]. Spectroscopy and Spectral Analysis,2020,40(3):787.
[41] 刘宇. 煤镜质组结构演化对甲烷吸附的分子级作用机理[D]. 徐州:中国矿业大学,2019. LIU Yu. Molecular mechanism of methane adsorption by structural evolution of coal vitrinite[D]. Xuzhou:China University of Mining and Technology,2019.
[42] PAN J N,ZHU H T,HOU Q L,et al. Macromolecular and pore structures of Chinese tectonically deformed coal studied by atomic force microscopy[J]. Fuel,2015,139:94−101. doi: 10.1016/j.fuel.2014.08.039
[43] ROMERO-SARMIENTO M F,ROUZAUD J N,BERNARD S,et al. Evolution of Barnett Shale organic carbon structure and nanostructure with increasing maturation[J]. Organic Geochemistry,2014,71:7−16. doi: 10.1016/j.orggeochem.2014.03.008
[44] PRINZ D,PYCKHOUT-HINTZEN W,LITTKE R. Development of the meso- and macroporous structure of coals with rank as analysed with small angle neutron scattering and adsorption experiments[J]. Fuel,2004,83(4-5):547−556. doi: 10.1016/j.fuel.2003.09.006
[45] PAN J N,ZHAO Y Q,HOU Q L,et al. Nanoscale pores in coal related to coal rank and deformation structures[J]. Transport in Porous Media,2015,107(2):543−554. doi: 10.1007/s11242-015-0453-5
[46] 姚铭檑,邵龙义,侯海海,等. 两淮煤田煤储层吸附孔孔隙结构及分形特征[J]. 中国煤炭地质,2018,30(1):30−36,47. doi: 10.3969/j.issn.1674-1803.2018.01.05 YAO Minglei,SHAO Longyi,HOU Haihai,et al. Coal reservoir adsorptive pore structural and fractal features in Huainan and Huaibei coalfields[J]. Coal Geology of China,2018,30(1):30−36,47. doi: 10.3969/j.issn.1674-1803.2018.01.05
[47] RODRIGUES C F,LEMOS DE SOUSA M J. The measurement of coal porosity with different gases[J]. International Journal of Coal Geology,2002,48(3−4):245−251. doi: 10.1016/S0166-5162(01)00061-1
[48] 唐书恒,蔡超,朱宝存,等. 煤变质程度对煤储层物性的控制作用[J]. 天然气工业,2008,28(12):30−33,53,136. doi: 10.3787/j.issn.1000-0976.2008.12.007 TANG Shuheng,CAI Chao,ZHU Baocun,et al. Control effect of coal metamorphic degree on physical properties of coal reservoirs[J]. Natural Gas Industry,2008,28(12):30−33,53,136. doi: 10.3787/j.issn.1000-0976.2008.12.007
[49] 姚艳斌,刘大锰. 煤储层精细定量表征与综合评价模型[M]. 北京:地质出版社,2013. [50] FU H J,TANG D Z,XU T,et al. Characteristics of pore structure and fractal dimension of low-rank coal:A case study of Lower Jurassic Xishanyao coal in the southern Junggar Basin,NW China[J]. Fuel,2017,193:254−264. doi: 10.1016/j.fuel.2016.11.069
[51] 周三栋,刘大锰,蔡益栋,等. 低阶煤吸附孔特征及分形表征[J]. 石油与天然气地质,2018,39(2):373−383. doi: 10.11743/ogg20180216 ZHOU Sandong,LIU Dameng,CAI Yidong,et al. Characterization and fractal nature of adsorption pores in low rank coal[J]. Oil & Gas Geology,2018,39(2):373−383. doi: 10.11743/ogg20180216
-
期刊类型引用(30)
1. 赵文华,刘鹏亮,于健浩. 高水材料在邻位注浆充填中的研究与应用. 煤炭工程. 2025(01): 71-76 . 百度学术
2. 李志华,耿倩,邹恩隆,马国军. 粉煤灰流态化浆体垮落带充填扩散规律试验研究. 煤炭工程. 2025(02): 142-148 . 百度学术
3. 成云海,王旭东,申昊,黄国栩. 架间底板拖管充填采空区浆液流动特性试验研究. 煤炭工程. 2024(02): 99-104 . 百度学术
4. 朱磊,刘成勇,刘治成,古文哲,潘浩,宋天奇. 关中矿区煤矸井下分选及短壁充填设计与实践. 煤炭技术. 2024(04): 73-78 . 百度学术
5. 张宪良,秋丰岐. 塔山煤矿井下煤矸智能分选方案设计. 陕西煤炭. 2024(05): 85-88 . 百度学术
6. 孙凯华,胡彦飞,赵旭. 基于响应面法的煤矸石充填料浆流变特性实验研究. 矿产保护与利用. 2024(02): 11-21 . 百度学术
7. 朱磊,古文哲,袁超峰,刘成勇,潘浩,宋天奇,盛奉天. 煤矸石浆体充填技术应用与展望. 煤炭科学技术. 2024(04): 93-104 . 本站查看
8. 段单峰. 矿井采空区矸石充填方案设计与工程应用. 现代矿业. 2024(06): 77-80 . 百度学术
9. 魏帅,贾建伟,梁大海. 宽煤柱窄条带点柱式充填开采技术与实践. 中国矿业. 2024(07): 208-215 . 百度学术
10. 熊咸玉,欧阳一博,戴俊,陈新年,张玲. 垮落带邻位矸石注浆渗流模型. 金属矿山. 2024(08): 70-78 . 百度学术
11. 郭振亮,丁维波,李岚. 曹家滩煤矿煤矸石规模化注浆充填设计与应用. 煤炭工程. 2024(09): 7-13 . 百度学术
12. 杨宝贵,顾成进,施展,杨发光,王龙飞,李红骄. 深部高浓度胶结充填开采地表沉陷控制因素及影响规律. 绿色矿山. 2024(03): 234-245 . 百度学术
13. 付文俊,贾振刚,罗应奇. 立井施工智能化技术现状与展望. 煤炭工程. 2024(11): 68-75 . 百度学术
14. 郭香. 煤矿固体废弃物环保治理技术探究. 生态与资源. 2024(08): 65-67 . 百度学术
15. 古文哲,杨宝贵,顾成进. 矸石浆体邻位注浆充填技术研究. 煤炭技术. 2023(01): 75-79 . 百度学术
16. 张吉雄,周楠,高峰,闫浩. 煤矿开采嗣后空间矸石注浆充填方法. 煤炭学报. 2023(01): 150-162 . 百度学术
17. 古文哲,杨宝贵,顾成进. 煤炭管道输送技术应用前景研究. 煤炭工程. 2023(02): 158-163 . 百度学术
18. 古文哲,杨宝贵,朱磊,赵萌烨. 矸石浆体充填空间特征研究与工程实践. 矿业科学学报. 2023(03): 409-418 . 百度学术
19. 张伟龙,张杰,蔚保宁,左小,刘文静,杨玉玉,曹鑫. 综放工作面局部采空区浆体充填试验研究. 煤炭技术. 2023(06): 10-15 . 百度学术
20. 顾成进,杨宝贵,路绍杰,古文哲,杨发光. 双碳背景下龙王沟煤矿新型绿色矿山建设. 煤炭科学技术. 2023(S1): 440-448 . 本站查看
21. 谢伟,连全东. 综放开采矸石注浆充填技术的研究与应用. 中国煤炭. 2023(12): 116-124 . 百度学术
22. 朱磊,刘成勇,古文哲,盛奉天,袁超峰. 双碳目标下“煤基固废-CO_2”协同充填封存技术构想. 矿业安全与环保. 2023(06): 16-21+28 . 百度学术
23. 朱磊,宋天奇,古文哲,徐凯,刘治成,秋丰岐,袁超峰. 矸石浆体输送阻力特性及采空区流动规律试验研究. 煤炭学报. 2022(S1): 39-48 . 百度学术
24. 李亮,黄庆享,吴杰,左小,张伟龙,张杰,胡俊峰,杨玉玉. 煤矸石井下处理与冒落区流态化充填技术. 西安科技大学学报. 2022(05): 865-873 . 百度学术
25. 余伟健,万幸,刘芳芳,王直. 红土膏体充填材料及其物理特性试验研究. 煤炭科学技术. 2021(02): 61-68 . 本站查看
26. 张昊,张强,左小,武中亚,范文昌,刘宏军,田秀国. 生态环境保护性的采选充系统设计及应用. 中国矿业大学学报. 2021(03): 548-557 . 百度学术
27. 何志伟,董超伟,郭宇鸣,郭亚奔,杨康,王萌萌. 长壁逐巷胶结充填工作面关键参数设计. 矿业研究与开发. 2021(08): 22-30 . 百度学术
28. 朱磊. 西部生态脆弱区固废多态充填技术应用与实践. 矿业安全与环保. 2021(04): 81-86 . 百度学术
29. 刘团结,赵象卓,韩永亮,李云鹏,陈希. 基于GRA—BP神经网络的固体废弃物充填体强度预测. 煤矿安全. 2021(09): 231-238 . 百度学术
30. 朱磊,宋天奇,古文哲. 煤基固废浆体管道充填技术研究与应用. 煤炭技术. 2021(10): 47-51 . 百度学术
其他类型引用(8)