Research progress of coal seam gas content determination technology and equipment
-
摘要:
瓦斯含量是煤与瓦斯突出危险预测、煤层瓦斯资源量估算、矿井瓦斯治理工程设计的重要参数。围绕如何在大区域准确快速测定煤层瓦斯含量,依托国家科技重大专项、国家自然科学基金和煤炭企业联合基金等项目科技攻关,在取样、测试方面取得了一定进展。主要表现在如下4个方面:①煤层瓦斯含量测定取样经历了孔口接样、岩心管定点取样、压力引射定点取样和密闭取样4个阶段,密闭取样装备保压能力达到11.5 MPa,煤心直径达到38 mm;②针对不同煤层地质条件,发展形成了顺煤层定向长钻孔密闭取样、底板穿层钻孔密闭取样和顶(底)板梳状定向长钻孔密闭取样3种取样技术;③在河南焦作和山西晋城矿区硬煤层中,顺层定向长钻孔取样深度达到516 m,密闭取样法测得煤层瓦斯含量较常规取样法分别平均提高了0.44倍和1.04倍。在安徽淮南矿区碎软煤层中,穿层钻孔密闭取样深度达到209 m,测得煤层瓦斯含量较常规取样法平均提高了0.26倍;在安徽淮北矿区碎软煤层中,顶(底)板梳状钻孔密闭取样深度达到484 m,测得煤层瓦斯含量较常规取样法平均提高了0.19倍,密闭取样法在煤层瓦斯含量测定精度、探测范围上优于常规取样法;④在瓦斯含量测试方面,除了传统解吸法测试,发展了系列煤矿井下瓦斯含量快速测试装备,可实现最快30 min内测得煤层瓦斯含量,一般用于百米孔内的瓦斯含量测试。提出了煤层瓦斯含量测定密闭取样装备需向小型化、轻量化的方向发展,并能实现随钻密闭取样。在测试上,应根据实际情况确定合理的解吸终止限,并将测试装备和密闭取样装备进一步结合,以实现深孔瓦斯含量快速准确测定。密闭取样技术已成为煤层瓦斯含量大区域精准勘查、预测的主要手段,是煤炭安全高效开采的重要技术保障。
Abstract:Gas content is an important parameter for the prediction of coal and gas outburst risk, the estimation of coal seam gas resource, and the design of mine gas control engineering. Focusing on how to accurately and quickly determine the gas content of coal seams in large area, and relying on the National Science and Technology Major Project, the National Natural Science Foundation of China, the Joint Fund of Coal Enterprises and other projects to develop scientific and technological research, some progress had been made in sampling and testing, and the main manifestations were as follows. ① The development of sampling for gas content determination in coal seam has gone through four stages, namely, orifice sampling, core tube spot sampling, pressure injection spot sampling, and sealed sampling. The pressure holding capacity of the sealed sampling equipment reached 11.5 MPa, and the diameter of coal core reached 38 mm. ② According to different geological conditions of coal seams, three types of sampling techniques had been developed, including directional long borehole sealed sampling along coal seam, floor cross-layer borehole sealed sampling, and comb-shaped directional long borehole sealed sampling in roof or floor. ③ In the hard coal seams of Jiaozuo mining area in Henan Province and Jincheng mining area in Shanxi Province, the sampling depth of the directional long borehole along the seam reached 516 m, and the gas content of the coal seam measured by the sealed sampling method was increased by an average of 0.44 and 1.04 times compared with the conventional sampling method, respectively. In the broken soft coal seam of the Huainan mining area in Anhui Province, the sealed sampling depth of the cross-layer borehole reached 209 m, and the measured gas content of the coal seam was increased by 0.26 times on average compared with the conventional sampling method. In the broken soft coal seam of the Huaibei mining area in Anhui Province, the comb drilling sealed sampling depth reached 484 m in roof or floor, and the measured coal seam gas content was 0.19 times higher than that of the conventional sampling method. The sealed sampling method was superior than the conventional sampling method in terms of determination accuracy and detection range of coal seam gas content. ④ In terms of gas content testing, in addition to the traditional natural desorption test, a series of coal mine gas content rapid test equipment had been developed, which can measure the gas content of coal seam within 30 min at the earliest, and was generally used for gas content testing in 100-meter hole. It is proposed that the sealed sampling equipment for coal seam gas content determination needs to be developed in the direction of miniaturization and lightweight, and it can realize sealed sampling with the drilling. In the test, a reasonable desorption termination limit should be determined according to the actual situation, and the testing equipment and sealed sampling equipment should be further combined to achieve the rapid and accurate determination of gas content in deep hole. Sealed sampling technology has become the main means of accurate exploration and prediction of coal seam gas content in large areas, and it is an important technical guarantee for the safe and efficient coal mining.
-
-
取样地点 取样方式 取样深度/m 瓦斯含量/(m3·t−1) 同组瓦斯含量比值 祁南煤矿 岩心管提钻取心 32.80 7.15 1.30 孔口接样 32.00 5.49 岩心管提钻取心 24.00 9.56 1.33 孔口接样 23.40 7.20 岩心管提钻取心 34.00 6.60 1.25 孔口接样 33.00 5.29 岩心管提钻取心 23.70 6.98 1.89 孔口接样 22.90 3.69 岩心管提钻取心 23.70 11.16 1.28 孔口接样 23.20 8.71 潘一煤矿 岩心管提钻取心 20.00 2.70 1.93 孔口接样 20.00 1.40 岩心管提钻取心 16.00 1.30 0.88 孔口接样 13.00 1.47 岩心管提钻取心 16.00 1.63 1.02 孔口接样 13.00 1.60 赵庄煤矿 岩心管提钻取心 12.80 0.55 1.17 孔口接样 12.80 0.47 岩心管提钻取心 12.10 1.51 1.25 孔口接样 12.10 1.21 岩心管提钻取心 12.40 0.61 1.15 孔口接样 12.40 0.53 取样地点 取样方式 取样深度/m 取样时间/min 瓦斯含量/(m3·t−1) 同组瓦斯含量比值 河南某矿 压力引射取样 80 4.0 8.93 1.47 孔口接样 78 5.2 6.08 压力引射取样 78 3.3 9.52 1.32 孔口接样 76 4.5 7.21 压力引射取样 93 4.2 10.21 1.52 孔口接样 91 5.0 6.72 平煤十矿 压力引射取样 23 1.0 8.80 2.14 孔口接样 23 — 4.11 压力引射取样 24 3.0 6.80 1.16 孔口接样 24 — 5.86 压力引射取样 65 5.0 9.53 1.77 孔口接样 65 — 5.38 压力引射取样 72 5.0 4.16 1.23 孔口接样 72 — 3.37 大湾煤矿 压力引射取样 62 2.0 8.89 1.42 孔口接样 62 — 6.26 压力引射取样 56 3.0 9.41 1.23 孔口接样 56 — 7.63 压力引射取样 48 3.0 12.26 1.49 孔口接样 48 — 8.25 表 3 不同密闭取样装置技术参数对比
Table 3 Comparison of technical parameters of different sealed sampling devices
结构类型 外筒尺寸/(mm×mm) 内筒尺寸/(mm×mm) 球座直径/mm 球阀关闭压力/MPa 保压能力 双筒单动 USC-Ⅰ型 ø121× 1250 ø50×800.0 22 3.0~4.5 4.0 MPa以上 USC-Ⅱ型 ø100× 1359 ø40×558.5 18 3.0~4.5 三筒单动 ø93× 1260 ø42×600.0 18 8.0~10.0 11.5 MPa 取样地点 煤体结构 取样方式 取样深度/m 瓦斯含量/(m3·t−1) 同组瓦斯含量比值/% 备注 河南焦作矿区 煤体主要为原生结构,
f值为0.86~1.92密闭取样 100 9.38 1.80 常规取样 5.20 密闭取样 300 9.04 1.28 常规取样 7.05 密闭取样 400 5.40 1.24 常规取样 4.37 山西晋城矿区 煤体以原生结构、
碎裂结构为主,
f值为1.0~2.0密闭取样 120 9.73 1.26 常规取样为顺煤层
定向长钻孔常规取样 7.70 密闭取样 180 7.34 2.38 常规取样 3.08 密闭取样 304 11.68 2.81 常规取样 4.16 密闭取样 360 11.18 1.71 常规取样 6.52 密闭取样 150 7.08 1.03 常规取样在煤层底板巷
采用穿层短钻孔常规取样 23 6.86 密闭取样 200 7.42 0.97 常规取样 28 7.62 密闭取样 300 7.03 1.07 常规取样 25 6.60 密闭取样 350 7.14 1.04 常规取样 24 6.86 密闭取样 400 7.38 1.01 常规取样 31 7.30 表 5 煤层瓦斯含量测试方法对比[22-28, 36, 49]
Table 5 Comparison of measurement methods of coal seam gas content[22-28, 36, 49]
解吸法 标准 适用范围 取样方式 暴露时间/min 取样质量/g 测试方式 煤层瓦斯含量组成 温度 残余气确定 地勘解吸法 AQ 1046—2007 地质勘探钻孔测定 地面提钻 ≤8 ≥400 常温95~100 ℃恒温 真空脱气+粉碎后自然解吸 损失气量+
解吸气量+
脱气量GB/T 23249—2009 井下解吸法 GB/T 23250—2009 煤矿井下直接测定 井下提钻 ≤5 ≥400 损失气量+
井下解吸气量+
脱气量/常压解吸气量自然解吸法 NB/T 10018—2015 低煤阶煤层含气量测定 地面提钻 ≤10 ≥800 常温 粉碎后自然解吸 损失气量+
解吸气量+
残余气量GB/T 19559—2004 烟煤、无烟煤煤层气含量
测定GB/T 19559—2008 GB/T 19559—2021 加温解吸法 GB/T 28753—2012 烟煤、无烟煤煤层气含量
测定地面提钻 ≤10 ≥800 50 ℃或储层温度 粉碎后恒温解吸 损失气量+
解吸气量+
残余气量密闭取样解吸法 GB/T 35053—2018 地面煤层气含量测定 地面提钻或绳索打捞 — ≥800 常温 粉碎后自然解吸 解吸气量+
残余气量表 6 各煤矿井下瓦斯含量直接测试试验对比[30-31, 50-51]
Table 6 Comparison of direct test of gas content in underground coal mines[30-31, 50-51]
取样地点 测试方式 瓦斯含量/(m3·t−1) 同组瓦斯含量比值 大转湾煤矿 DGC测试 8.59 1.09 实验室测试 7.90 兴凤煤矿 DGC测试 6.66 1.08 实验室测试 6.18 宏福煤矿 DGC测试 7.36 0.89 实验室测试 8.31 大湾煤矿 DGC测试 4.50 1.05 CYW50测试 4.30 DGC测试 5.40 1.06 CYW50测试 5.08 DGC测试 4.18 1.00 CYW50测试 4.17 DGC测试 5.23 0.98 CYW50测试 5.36 晋城成庄矿 CHP50M测试 13.15 1.01 实验室测试 13.02 焦作古汉山矿 CHP50M测试 5.99 1.02 实验室测试 5.89 洛阳何庄矿 CHP50M测试 4.82 1.07 实验室测试 4.52 潘三矿 CWH12测试 2.61 1.21 井下+地面测试 2.16 CWH12测试 2.02 0.97 井下+地面测试 2.08 朱集东矿 CWH12测试 2.77 1.09 井下+地面测试 2.54 CWH12测试 5.02 1.00 井下+地面测试 5.03 -
[1] 苏现波,宋金星,郭红玉,等. 煤矿瓦斯抽采增产机制及关键技术[J]. 煤炭科学技术,2020,48(12):1−30. SU Xianbo,SONG Jinxing,GUO Hongyu,et al. Increasing production mechanism and key technology of gas extraction in coal mines[J]. Coal Science and Technology,2020,48(12):1−30.
[2] 张 群,范章群. 煤层气损失气含量模拟试验及结果分析[J]. 煤炭学报,2009,34(12):1649−1654. ZHANG Qun,FAN Zhangqun. Simulation experiment and result analysis on lost gas content of coalbed methane[J]. Journal of China Coal Society,2009,34(12):1649−1654.
[3] 范章群,张 群,卢相臣,等. 煤层气损失气含量及其影响因素分析[J]. 煤炭科学技术,2010,38(3):104−108. FAN Zhangqun,ZHANG Qun,LU Xiangchen,et al. Analysis on gas lost content of coal bed methane and influenced factors[J]. Coal Science and Technology,2010,38(3):104−108.
[4] 张宏图,魏建平,王云刚,等. 煤层瓦斯含量测定定点取样方法研究进展[J]. 中国安全生产科学技术,2016,12(1):186−192. ZHANG Hongtu,WEI Jianping,WANG Yungang,et al. Sampling methods for coalbed gas content direct determination[J]. Journal of Safety Science and Technology,2016,12(1):186−192.
[5] 袁 亮,薛俊华,尹尚先,等. 一种井下卸压密闭煤芯取样器[P]. 中国:CN201020046987.8,2011−04−27. [6] 齐黎明. 卸压密闭煤层瓦斯含量测定技术研究[D]. 北京:中国地质大学(北京),2011:65−67. QI Liming. Research on the measuring gas content technology of stress-releasing and sealed coal core[D]. Beijing:China University of Geosciences (Beijing),2011:65−67.
[7] 林柏泉,刘 谦,朱传杰,等. 一种煤矿密封取样装置及其使用方法[P]. 中国:CN201310062688.1,2013−05−22. [8] 张丁亮,黑 磊,张培河,等. 一种井下煤层密闭取心装置及其使用方法[P]. 中国:CN201010101528. X,2010−07−07. [9] 张丁亮. 煤矿井下煤层密闭取心装置[J]. 中国煤炭地质,2015,27(7):80−81,87. ZHANG Dingliang. Study on coal seam airtight coring facility in coalmines[J]. Coal Geology of China,2015,27(7):80−81,87.
[10] 孙四清. 煤层气含量地面井密闭取心与快速测定技术研究[D]. 北京:煤炭科学研究总院,2018:50−55. SUN Siqing. Study on surface well sealed coring and fast measurement for coal seam gas content[D]. Beijing:China Coal Research Institute,2018:50−55.
[11] 孙四清,张 群,郑凯歌,等. 地面井煤层气含量精准测试密闭取心技术及设备[J]. 煤炭学报,2020,45(7):2523−2530. SUN Siqing,ZHANG Qun,ZHENG Kaige,et al. Technology and equipment of sealed coring for accurate determination of coalbed gas content in ground well[J]. Journal of China Coal Society,2020,45(7):2523−2530.
[12] 孙四清,张 群,龙威成,等. 煤矿井下长钻孔煤层瓦斯含量精准测试技术及装置[J]. 煤田地质与勘探,2019,47(4):1−5. SUN Siqing,ZHANG Qun,LONG Weicheng,et al. Accurate test technology and device for coal seam gas content in long boreholes in underground coal mines[J]. Coal Geology & Exploration,2019,47(4):1−5.
[13] 高明忠,陈 领,凡 东,等. 深部煤矿原位保压保瓦斯取芯原理与技术探索[J]. 煤炭学报,2021,46(3):885−897. GAO Mingzhong,CHEN Ling,FAN Dong,et al. Principle and technology of coring with in-situ pressure and gas maintaining in deep coal mine[J]. Journal of China Coal Society,2021,46(3):885−897.
[14] 黄 伟,陈 领,李佳南,等. 煤矿井下水平保压取心保压触发装置研制与试验研究[J]. 煤田地质与勘探,2023,51(8):39−46. doi: 10.12363/issn.1001-1986.22.12.0933 HUANG Wei,CHEN Ling,LI Jianan,et al. R&D and experimental research of pressure-preserved triggering device for horizontal pressure-preserved coring in coal mines[J]. Coal Geology & Exploration,2023,51(8):39−46. doi: 10.12363/issn.1001-1986.22.12.0933
[15] 刘贵康,李 聪,游镇西,等. 煤矿井下原位磁控多向保压取心原理与技术[J]. 煤田地质与勘探,2023,51(8):13−20. LIU Guikang,LI Cong,YOU Zhenxi,et al. Principle and technology of in-situ magnetically controlled multidirectional pressure-preserved coring in the coal mine[J]. Coal Geology & Exploration,2023,51(8):13−20.
[16] 龙威成. 煤层密闭取心瓦斯含量测试技术及其在定向长钻孔中的应用[J]. 河南理工大学学报(自然科学版),2018,37(6):16−21. LONG Weicheng. Study on gas content measurement technology with sealed coal coring and its application in long borehole of directional drilling[J]. Journal of Henan Polytechnic University(Natural Science),2018,37(6):16−21.
[17] 芦 伟,龙威成,康 锴,等. 中硬煤层井下长距离密闭取心瓦斯含量测定技术应用研究[J]. 煤炭技术,2021,40(12):153−156. LU Wei,LONG Weicheng,KANG Kai,et al. Application of gas content measurement technology for long-distance sealed coring in medium hard coal seam[J]. Coal Technology,2021,40(12):153−156.
[18] 龙威成. 井下煤层长距离定点密闭取心技术及应用研究[J]. 河南理工大学学报(自然科学版),2022,41(1):9−16. LONG Weicheng. Research of long distance fixed-point sealed coring technology and application in underground coal seam[J]. Journal of Henan Polytechnic University(Natural Science),2022,41(1):9−16.
[19] 龙威成,孙四清,陈 建. 碎软煤层井下长距离定点密闭取心技术研究[J]. 煤田地质与勘探,2022,50(8):93−98. LONG Weicheng,SUN Siqing,CHEN Jian. Study on long-distance fixed-point sealed coring technology in broken-soft coal seam[J]. Coal Geology & Exploration,2022,50(8):93−98.
[20] 褚志伟,龙威成,贾秉义,等. 煤层底板孔多分支点取样钻进技术及应用研究[J]. 煤田地质与勘探,2022,50(5):153−158. CHU Zhiwei,LONG Weicheng,JIA Bingyi,et al. Study and application on multi branch point sampling drilling technology of coal seam floor borehole[J]. Coal Geology & Exploration,2022,50(5):153−158.
[21] 柴建禄. 基于梳状定向钻孔的碎软煤层瓦斯含量测定取样技术[J]. 煤矿安全,2022,53(6):96−100,107. CHAI Jianlu. Sampling technology for measuring gas content in broken soft coal seam based on comb-shaped directional borehole[J]. Safety in Coal Mines,2022,53(6):96−100,107.
[22] 煤炭科学研究总院抚顺分院. AQ 1046—2007 地勘时期煤层瓦斯含量测定方法[S]. 国家安全生产监督管理总局,2007. [23] 煤炭科学研究总院抚顺分院. GB/T 23249—2009 地勘时期煤层瓦斯含量测定方法[S]. 中华人民共和国国家质量监督检验检疫总局,2009. [24] 煤炭科学研究总院抚顺分院,煤炭科学研究总院重庆研究院. GB/T 23250—2009 煤层瓦斯含量井下直接测定方法[S]. 中华人民共和国国家质量监督检验检疫总局,2009. [25] 中国石油勘探开发研究院廊坊分院,中国石油天然气股份有限公司华北油田分公司,中联煤层气国家工程研究中心有限责任公司,等. NB/T 10018—2015 低煤阶煤层含气量测定方法[S]. 国家能源局,2015. [26] 中煤科工集团西安研究院有限公司. GB/T 19559—2021 煤层气含量测定方法[S]. 国家市场监督管理总局,2021. [27] 中煤科工集团西安研究院,中煤科工集团沈阳研究院. GB/T 28753—2012 煤层气含量测定 加温解吸法[S]. 中华人民共和国国家质量监督检验检疫总局,2012. [28] 中煤科工集团西安研究院有限公司. GB/T 35053—2018 煤层气含量测定用密闭取心方法[S]. 国家市场监督管理总局,2018. [29] 罗培荣,谢 飞. DGC型瓦斯含量快速测定技术在区域防突措施设计中的应用[J]. 矿业安全与环保,2012,39(4):37−39. LUO Peirong,XIE Fei. The application of DGC type gas content rapid determination technology in the design of regional outburst prevention measures[J]. Mining Safety & Environmental Protection,2012,39(4):37−39.
[30] 隆清明. 煤层瓦斯含量间接快速测定方法研究[D]. 重庆:重庆大学,2018:107−111. LONG Qiming. Study on indirect rapid determination method of coal seam gas content[D]. Chonqing:Chonqing University,2018:107−111.
[31] 杨宏民,王兆丰. 井下便携式煤层瓦斯含量快速测定仪的应用[J]. 煤炭科学技术,2013,41(9):159−162. YANG Hongmin,WANG Zhaofeng. Application of underground portable rapid determinator for gas content[J]. Coal Science and Technology,2013,41(9):159−162.
[32] BERTARD C,BRUYET B,GUNTHER J. Determination of desorbable gas concentration of coal (direct method)[J]. International Journal of Rock Mechanics & Mining Sciences & Geomechanics Abstracts,1970,7(1):43−65.
[33] 胡千庭,邹银辉,文光才,等. 瓦斯含量法预测突出危险新技术[J]. 煤炭学报,2007,32(3):276−280. HU Qianting,ZOU Yinhui,WEN Guangcai,et al. New technology of outburst danger prediction by gas content[J]. Journal of China Coal Society,2007,32(3):276−280.
[34] 陈绍杰,陈学习,高 亮. 2种取样方式测定煤层瓦斯含量对比分析[J]. 煤矿安全,2014,45(5):159−162. CHEN Shaojie,CHEN Xuexi,GAO Liang. Comparative analysis on determining coalbed gas content with two different coal sampling methods[J]. Safety in Coal Mines,2014,45(5):159−162.
[35] 李 祝,段 渊,解锡超. 煤矿井下新型瓦斯含量定点取样装置研究[J]. 煤矿安全,2017,48(5):9−11. LI Zhu,DUAN Yuan,XIE Xichao. Study on new spot sampling device of gas content in coal mine underground[J]. Safety in Coal Mines,2017,48(5):9−11.
[36] 煤炭科学研究总院西安研究院,中联煤层气有限责任公司. GB/T 19559—2008 煤层气含量测定方法[S]. 中华人民共和国国家质量监督检验检疫总局,2008. [37] 殷新胜,石智军,魏欢欢,等. 一种坑道近水平孔用绳索取心钻具[P]. 中国:CN201010243426.1,2010−11−17. [38] 魏欢欢,殷新胜. 近水平孔坑道用绳索取心钻具[J]. 煤田地质与勘探,2011,39(3):74−76,80. WEI Huanhuan,YIN Xinsheng. Wire-line coring drilling tool and pipe used in nearly horizontal boreholes in tunnel[J]. Coal Geology & Exploration,2011,39(3):74−76,80.
[39] 陈功胜. 煤岩地层绳索取芯装备研发及应用实践[J]. 中国安全生产科学技术,2013,9(12):102−106. CHEN Gongsheng. Development and practice application of rope coring equipment in coal and rock seam[J]. Journal of Safety Science and Technology,2013,9(12):102−106.
[40] 吴金生,黄晓林,蒋 炳,等. 水平绳索随钻定向钻进技术研究与应用[J]. 煤田地质与勘探,2021,49(5):260−264,271. WU Jinsheng,HUANG Xiaolin,JIANG Bing,et al. Research and application of horizontal wire-line directional deviation correction while drilling[J]. Coal Geology & Exploration,2021,49(5):260−264,271.
[41] 袁 亮,薛 生,秦永洋,等. 煤样采集装置及方法[P]. 中国:CN200910179643.6,2011−05−04. [42] 胡千庭,文光才,隆清明,等. 正负压联合栓流定点取样装置[P]. 中国:CN201210291852.1,2012−11−28. [43] 李建功,吕贵春,隆清明,等. 深孔定点快速取样技术在瓦斯含量测定中的应用效果考察[J]. 工业安全与环保,2014,40(11):5−7,51. LI Jiangong,LYU Guichun,LONG Qingming,et al. Application effects research on deep hole fixed-point fast sampling technology in gas content measurement[J]. Industrial Safety and Environmental Protection,2014,40(11):5−7,51.
[44] 隆清明. 深孔定点取样技术在平煤十矿的应用研究[J]. 矿业安全与环保,2015,42(1):83−86. doi: 10.3969/j.issn.1008-4495.2015.01.022 LONG Qingming. Application of long-hole fixed-point sampling technique in Pingdingshan No. 10 Mine[J]. Mining Safety & Environmental Protection,2015,42(1):83−86. doi: 10.3969/j.issn.1008-4495.2015.01.022
[45] 隆清明,李秋林,胡 杰. 深孔定点取样技术在大湾煤矿的应用研究[J]. 煤炭技术,2015,34(5):188−190. LONG Qingming,LI Qiulin,HU Jie. Application of deep hole fixed-point sampling technique and device in Dawan Mine[J]. Coal Technology,2015,34(5):188−190.
[46] 李泉新,方 俊,许 超,等. 井下长距离定点保压密闭煤层瓦斯含量测定取样技术[J]. 煤炭科学技术,2017,45(7):68−73. LI Quanxin,FANG Jun,XU Chao,et al. Sampling technology for measuring gas content in caol seam with long distance fixed-point pressure sealing in underground mine[J]. Coal Science and Technology,2017,45(7):68−73.
[47] 石智军,姚 克,姚宁平,等. 我国煤矿井下坑道钻探技术装备40年发展与展望[J]. 煤炭科学技术,2020,48(4):1−34. SHI Zhijun,YAO Ke,YAO Ningping,et al. 40 years of development and prospect on underground coal mine tunnel drilling technology and equipment in China[J]. Coal Science and Technology,2020,48(4):1−34.
[48] 任海慧,李泉新,方 俊. 顶板高位定向钻孔无线随钻测量定向钻进技术及应用[J]. 煤矿安全,2018,49(9):110−113. REN Haihui,LI Quanxin,FANG Jun. Technology and application of directional drilling with mud pulse measurement with drilling in high level directional drilling of roof[J]. Safety in Coal Mines,2018,49(9):110−113.
[49] 煤炭科学研究总院西安研究院,中联煤层气有限责任公司. GB/T 19559—2004 煤层气含量测定方法[S]. 国家安全生产监督管理总局,2004. [50] 周福宝,康建宏,王有湃,等. 煤层瓦斯含量井下一站式自动化精准测定方法[J]. 煤炭学报,2022,47(8):2873−2882. ZHOU Fubao,KANG Jianhong,WANG Youpai,et al. Method of underground integrated automatic and accurate determination of coalbed gas content[J]. Journal of China Coal Society,2022,47(8):2873−2882.
[51] 刘志伟,何俊材,冯康武. 瓦斯含量直接测定法在大方煤田的研究[J]. 中国煤炭,2011,37(1):99−101. LIU Zhiwei,HE Juncai,FENG Kangwu. Trial research of gas-content direct mensuration in Dafang coal field[J]. China Coal,2011,37(1):99−101.
[52] 王国法,潘一山,赵善坤,等. 冲击地压煤层如何实现安全高效智能开采[J]. 煤炭科学技术,2024,52(1):1−14. WANG Guofa,PAN Yishan,ZHAO Shankun,et al. How to realize safe-efficient-intelligent mining of rock burst coal seam[J]. Coal Science and Technology,2024,52(1):1−14.