高级检索

生物聚合物改良露天矿黏土抗裂性能研究

齐翔, 周伟, 王知乐, 李蕊, 田涯, 涂立啸, 张志远, 董志龙, 杨虎雄

齐 翔,周 伟,王知乐,等. 生物聚合物改良露天矿黏土抗裂性能研究[J]. 煤炭科学技术,2025,53(S1):24−32. DOI: 10.12438/cst.2024-0125
引用本文: 齐 翔,周 伟,王知乐,等. 生物聚合物改良露天矿黏土抗裂性能研究[J]. 煤炭科学技术,2025,53(S1):24−32. DOI: 10.12438/cst.2024-0125
QI Xiang,ZHOU Wei,WANG Zhile,et al. Study on anti-cracking properties of biopolymer-improved clay on open pit mine slopes[J]. Coal Science and Technology,2025,53(S1):24−32. DOI: 10.12438/cst.2024-0125
Citation: QI Xiang,ZHOU Wei,WANG Zhile,et al. Study on anti-cracking properties of biopolymer-improved clay on open pit mine slopes[J]. Coal Science and Technology,2025,53(S1):24−32. DOI: 10.12438/cst.2024-0125

生物聚合物改良露天矿黏土抗裂性能研究

基金项目: 

国家重点研发计划资助项目(2023YFF1306001);国家自然科学基金面上资助项目(52374145)

详细信息
    作者简介:

    齐翔: (2000—),男,安徽桐城人,硕士研究生。E-mail:qxlutian@cumt.edu.cn

    通讯作者:

    周伟: (1982—),男,江苏盐城人,教授,博士生导师。E-mail:zhw19820624@163.com

  • 中图分类号: TD854.6

Study on anti-cracking properties of biopolymer-improved clay on open pit mine slopes

  • 摘要:

    边坡稳定性在露天矿等工程中具有重要意义,在雨水的作用下边坡裂隙的形成和扩大可能导致边坡的失稳和破坏,而生物聚合物的引入可能对黏土边坡的干缩开裂性能产生显著影响。为探究生物聚合物在改善黏土边坡干缩开裂性能方面的效用,选取小龙潭露天煤矿的黏土作为研究对象,引入生物聚合物沙蒿胶和黄原胶进行改性处理。为评估不同掺量生物聚合物的抗裂效果和耐久性,开展了一系列干湿循环试验并记录含水率变化,通过PCAS软件处理对裂隙率、概率熵等指标进行定量分析。结果表明,生物聚合物的掺入会使裂隙显现时间提前,影响试样最终含水率,其中1%掺量的沙蒿胶能够提升黏土体53.5%的最终持水能力;生物聚合物的掺入显著能降低黏土的裂隙率,但对概率熵的影响并不明显,首次干湿循环中1%掺量沙蒿胶和1%掺量黄原胶分别可使黏土裂隙率降低11.83%和16.39%,随干湿循环次数的增高,沙蒿胶试样抗裂能力逐渐降低,而黄原胶展现出一定的耐久性。基于实验结果利用XRD和SEM技术讨论生物聚合物影响黏土体抗裂性能的机理,发现生物聚合物的掺入并没有改变黏土组分,但生物聚合物能够通过静电键合和氢键键合与黏土矿物形成稳定联结,同时通过与水混合形成凝胶,微观层面上凝胶包裹和连接了土体颗粒,并填补了孔隙空间,有效地抵抗了黏土失水引起的抗裂张力。综合分析了沙蒿胶和黄原胶2种生物聚合物改良黏土抗裂性能的特点,为露天矿黏土边坡开裂问题的治理提供了借鉴和参考。

    Abstract:

    Slope stability is of great significance in open pit mines and other projects, while the formation and expansion of slope cracks under the action of rainwater may lead to slope instability and damage, and the introduction of biopolymers may have a significant effect on the drying and cracking properties of clay slopes. To investigate the effectiveness of biopolymers in improving the dry shrinkage cracking performance of clay slopes, the clay from the Xiaolongtan open pit coal mine was selected as the research object, and the biopolymers Artemisia sphaerocephala Krasch gum(ASKG) and Xanthan gum (XG) were introduced for the modification treatment. To evaluate the anti-cracking effect and durability of different dosages of biopolymers, a series of dry and wet cycle tests were carried out the change of water content was recorded, and the indexes such as fracture rate and probability entropy were quantitatively analyzed through PCAS software processing. The results showed that the incorporation of biopolymers would advance the time of fracture appearance and affect the final water content of the specimen, in which 1% dosing of ASKG could enhance the final water-holding capacity of the clay body by 53.5%; the incorporation of biopolymers significantly reduced the fracture rate of the clay, but the effect on the probabilistic entropy was not obvious, and the 1% dosing of ASKG and 1% dosing of XG in the first dry and wet cycle could reduce the fracture rate of the clay by 11.83% and 16.39%, respectively. 11.83% and 16.39%, with the increase in the number of wet and dry cycles, the cracking resistance of ASKG specimens gradually decreases, while XG shows some durability. Based on the experimental results, XRD and SEM techniques were used to discuss the mechanism of biopolymers affecting the cracking resistance of the clay body, and it was found that the incorporation of biopolymers did not change the clay components, but the biopolymers were able to form a stable association with clay minerals through electrostatic bonding and hydrogen bonding, and at the same time, they formed a gel by mixing with water, which encapsulated and connected soil particles at the microscopic level and filled up the pore space, effectively resisting the cracking resistance caused by water loss of clay body. It effectively resists the cracking tension caused by the water loss of clay. To resist the tension of clay water loss and cracking. This study comprehensively analyzes the characteristics of the two biopolymers, ASKG and XG, in improving the cracking performance of clay, which provides a reference for the management of clay slope cracking in open-pit mines.

  • 图  1   试验原材料展示

    Figure  1.   Display of tested raw materials

    图  2   A组试样裂隙发育情况

    Figure  2.   Fissure development of Group A specimens

    图  3   X组试样裂隙发育情况

    Figure  3.   Fissure development of Group X specimens

    图  4   不同含量生物聚合物试样含水率−干燥时长关系曲线

    Figure  4.   Relationship between water content and drying time of biopolymer samples with different contents

    图  5   裂隙图像处理流程

    Figure  5.   Flowchart of fissure image processing

    图  6   不同生物聚合物试样裂隙率随干湿循环次数变化

    Figure  6.   Variation of fracture rate with number of wet and dry cycles for different biopolymer specimens

    图  7   生物聚合物含量−概率熵关系曲线

    Figure  7.   Biopolymer content−probability entropy relationship curve

    图  8   试样X射线衍射图像

    Figure  8.   Specimen X-ray diffraction image

    图  9   试样成分重量占比

    Figure  9.   Graph of sample composition by weight

    图  10   生物聚合物试样微观形貌

    Figure  10.   Microscopic morphology of biopolymer specimens

  • [1] 张谭,林松涛,郑宏,等. 同时考虑张拉−剪切破坏的边坡稳定性分析[J]. 济南大学学报(自然科学版),2023,37(5):591−598.

    ZHANG Tan,LIN Songtao,ZHENG Hong,et al. Slope stability analysis considering tension-shear failure[J]. Journal of University of Jinan (Science and Technology),2023,37(5):591−598.

    [2] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报,2007,26(3):433−454.

    HUANG Runqiu. Large-scale landslides and their sliding mechanisms in China since the 20th century[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(3):433−454.

    [3] 李株丹,孙伯颜,农睿,等. 基于高密度电阻率法的农田土壤表面干缩裂隙成像[J]. 农业工程学报,2022,38(4):105−112.

    LI Zhudan,SUN Boyan,NONG Rui,et al. Imaging dry shrinkage cracks on farmland soil surface using electrical resistivity technology[J]. Transactions of the Chinese Society of Agricultural Engineering,2022,38(4):105−112.

    [4] 周永强,盛谦,宋顶峰,等. 降雨作用下裂缝对杆塔基础滑坡影响的物理模型试验[J]. 工程科学与技术,2022,54(4):88−98.

    ZHOU Yongqiang,SHENG Qian,SONG Dingfeng,et al. Physical model test on the influence of crack on tower foundation landslide under rainfall[J]. Advanced Engineering Sciences,2022,54(4):88−98.

    [5] 栗嘉彬,齐翔,刘籽钰,等. 布沼坝露天矿西帮边坡滑坡机制及综合治理研究[J]. 煤炭工程,2022,54(S1):116−120.

    LI Jiabin,QI Xiang,LIU Ziyu,et al. Study on landslide mechanism and comprehensive treatment of west slope in Buzhaoba open pit mine[J]. Coal Engineering,2022,54(S1):116−120.

    [6] 张永华,张东华,郑哲. 安太堡露天矿南排土场滑坡事故分析[J]. 露天采矿技术,2020,35(3):88−91.

    ZHANG Yonghua,ZHANG Donghua,ZHENG Zhe. Analysis of landslide accident in south dump of Antaibao Open-pit Mine[J]. Opencast Mining Technology,2020,35(3):88−91.

    [7] 靳鹏,申力,韩晓极,等. 辽宁抚顺西露天矿地质灾害时空分布特征及影响因素分析[J]. 中国地质灾害与防治学报,2022,33(3):68−76.

    JIN Peng,SHEN Li,HAN Xiaoji,et al. Spatial-temporal distribution characteristics and influencing factors of geological disasters in the open-pit mining area of western Fushun,Liaoning Province[J]. The Chinese Journal of Geological Hazard and Control,2022,33(3):68−76.

    [8] 张峰. 黑山头露天煤矿采场裂隙区边坡稳定性评价与治理技术研究[J]. 中国矿山工程,2021,50(5):45−48,83.

    ZHANG Feng. Study on slope stability evaluation and treatment technology in the fissure area of Heishantou open-pit coal mine[J]. China Mine Engineering,2021,50(5):45−48,83.

    [9] 何贤辉. 露天矿边坡安全与防治技术分析[J]. 价值工程,2023,42(19):38−40.

    HE Xianhui. Brief analysis of slope safety and prevention technology in open pit mines[J]. Value Engineering,2023,42(19):38−40.

    [10] 王翔,顾凯,张玉萍,等. 生物炭对不同土体干缩开裂特性的影响及其机理研究[J]. 岩土工程学报,2023,45(4):876−882.

    WANG Xiang,GU Kai,ZHANG Yuping,et al. Effects of biochar on desiccation cracking characteristics of different soils and their mechanism[J]. Chinese Journal of Geotechnical Engineering,2023,45(4):876−882.

    [11] 岳建伟,李嘉乐,刘东鹭,等. MICP技术对遗址土开裂抑制作用的试验探究[J]. 防灾减灾工程学报,2021,41(3):455−462.

    YUE Jianwei,LI Jiale,LIU Donglu,et al. Study on crack prevention of earthen sites using MICP technology[J]. Journal of Disaster Prevention and Mitigation Engineering,2021,41(3):455−462.

    [12] 宋京雷,何伟,郝社锋,等. 岩质边坡表层黏性客土抗裂特性试验研究[J]. 水文地质工程地质,2021,48(3):144−149.

    SONG Jinglei,HE Wei,HAO Shefeng,et al. An experimental study of the anti-cracking characteristics of foreign-clay based on rock slope[J]. Hydrogeology & Engineering Geology,2021,48(3):144−149.

    [13] 吕家栋,赵立财. 黄原胶改善黏土断裂性能研究[J]. 人民长江,2023,54(4):205−210,217.

    LYU Jiadong,ZHAO Licai. Study on fracture performance of xanthan gum-improved clay[J]. Yangtze River,2023,54(4):205−210,217.

    [14]

    CHANG I,PRASIDHI A K,IM J,et al. Soil strengthening using thermo-gelation biopolymers[J]. Construction and Building Materials,2015,77:430−438.

    [15]

    CHRISTINA K,SUBBIAH K,ARULRAJ P,et al. A sustainable and eco-friendly approach for environmental and energy management using biopolymers chitosan,lignin and cellulose:A review[J]. International Journal of Biological Macromolecules,2024,257:128550.

    [16]

    WENG Z Y,YU J,DENG Y F,et al. Mechanical behavior and strengthening mechanism of red clay solidified by xanthan gum biopolymer[J]. Journal of Central South University,2023,30(6):1948−1963. doi: 10.1007/s11771-023-5327-3

    [17] 邬文昊,孙宏磊,翁振奇. 生物聚合物对高含水量淤泥压缩渗透特性的影响[J]. 哈尔滨工业大学学报,2023,55(6):117−124.

    WU Wenhao,SUN Honglei,WENG Zhenqi. Effect of biopolymers on compressibility and permeability of high water-content sludge[J]. Journal of Harbin Institute of Technology,2023,55(6):117−124.

    [18]

    WANG H L,YANG J,ZHA H Y,et al. The use of artemisia sphaerocephala Krasch. gum as an eco-friendly stabilizer to improve the mechanical properties of disintegrated carbonaceous mudstone[J]. Construction and Building Materials,2022,316:125833. doi: 10.1016/j.conbuildmat.2021.125833

    [19] 付宏渊,查焕奕,潘浩强,等. 生物聚合物改良预崩解炭质泥岩水稳性及冲刷试验研究[J]. 中南大学学报(自然科学版),2022,53(7):2633−2644.

    FU Hongyuan,ZHA Huanyi,PAN Haoqiang,et al. Experimental study on water stability and scour resistance of biopolymer modified disintegrated carbonaceous mudstone[J]. Journal of Central South University (Science and Technology),2022,53(7):2633−2644.

    [20]

    GEDELA R,INDRARATNA B,NGUYEN T T,et al. The effect of biopolymer treatment on the potential instability of a soft soil under cyclic loading[J]. Transportation Geotechnics,2023,42:101102. doi: 10.1016/j.trgeo.2023.101102

    [21]

    FATEHI H,ONG D E L,YU J,et al. Sustainable soil treatment:Investigating the efficacy of carrageenan biopolymer on the geotechnical properties of soil[J]. Construction and Building Materials,2024,411:134627.

    [22] 冯志强,余颜圃,王艳,等. 沙蒿胶对糯米淀粉糊化特性和流变特性的影响[J]. 轻工学报,2023,38(1):18−26.

    FENG Zhiqiang,YU Yanpu,WANG Yan,et al. Effects of Artemisia sphaerocephala Krasch. gum on gelatinization and rheological properties of waxy rice starch[J]. Journal of Light Industry,2023,38(1):18−26.

    [23] 卫晓怡,司晓晶,崔琳琳,等. 羧甲基化和乳化沙蒿胶对小麦粉的增筋作用[J]. 食品工业科技,2022,43(23):64−70.

    WEI Xiaoyi,SI Xiaojing,CUI Linlin,et al. Effects of carboxymethyl and emulsive artemisia sphaerocephala krasch gum on gluten reinforcement of wheat flour[J]. Science and Technology of Food Industry,2022,43(23):64−70.

    [24] 王宏伟,陈彬云,张艳艳,等. 亚麻籽胶及沙蒿胶对冻融面筋蛋白微观结构和持水性的影响[J]. 食品科学,2023,44(6):90−96.

    WANG Hongwei,CHEN Binyun,ZHANG Yanyan,et al. Effects of flaxseed gum and artemisia sphaerocephala krasch. gum on the microstructure and water-binding capacity of gluten obtained from frozen-thawed wheat dough[J]. Food Science,2023,44(6):90−96.

    [25] 宋泽卓,刘瑾,梅红,等. 黄原胶−黏土复合基材岩坡生态修复试验研究[J]. 中南大学学报(自然科学版),2023,54(5):1978−1989.

    SONG Zezhuo,LIU Jin,MEI Hong,et al. Experimental study on ecological restoration of rock slope with xanthan gum-clayey soil composite substrate[J]. Journal of Central South University (Science and Technology),2023,54(5):1978−1989.

    [26]

    MAHAMAYA M,DAS S K,REDDY K R,et al. Interaction of biopolymer with dispersive geomaterial and its characterization:An eco-friendly approach for erosion control[J]. Journal of Cleaner Production,2021,312:127778. doi: 10.1016/j.jclepro.2021.127778

    [27]

    KUMAR M A,ALI BAIG MOGHAL A,VYDEHI K V,et al. Embodied energy in the production of guar and xanthan biopolymers and their cross-linking effect in enhancing the geotechnical properties of cohesive soil[J]. Buildings,2023,13(9):2304. doi: 10.3390/buildings13092304

    [28]

    HAMZA M,NIE Z H,AZIZ M,et al. Geotechnical properties of problematic expansive subgrade stabilized with xanthan gum biopolymer[J]. Road Materials and Pavement Design,2023,24(7):1869−1883.

    [29]

    LIU C,SHI B,ZHOU J,et al. Quantification and characterization of microporosity by image processing,geometric measurement and statistical methods:Application on SEM images of clay materials[J]. Applied Clay Science,2011,54(1):97−106.

    [30] 杨续金,刘阳,范贵生,等. 影响沙蒿籽胶表观黏度的因素[J]. 食品科学,2015,36(17):114−117.

    YANG Xujin,LIU Yang,FAN Guisheng,et al. Factors influencing the apparent viscosity of Artemis sphaerocephala krasch gum[J]. Food Science,2015,36(17):114−117.

    [31]

    HATAF N,GHADIR P,RANJBAR N. Investigation of soil stabilization using chitosan biopolymer[J]. Journal of Cleaner Production,2018,170:1493−1500. doi: 10.1016/j.jclepro.2017.09.256

    [32] 任宏洋,王新惠. 黄原胶的特性、生产及应用进展[J]. 酿酒,2010,37(2):17−19.

    REN Hongyang,WANG Xinhui. Study on production,properties and development of xanthan gum[J]. Liquor Making,2010,37(2):17−19.

    [33] 李广信. 高等土力学[M]. 2版. 北京:清华大学出版社,2016.
    [34] 欧阳淼,张红日,邓人睿,等. 黄原胶生物聚合物改良膨胀土裂隙演化规律研究[J]. 岩土工程学报,2025,47(1):106−114.

    OUYANG Miao,ZHANG Hongri,DENG Renrui,et al. Development of cracks in expansive soil improved by xanthan gum biopolymer[J]. Chinese Journal of Geotechnical Engineering,2025,47(1):106−114.

图(10)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  7
  • PDF下载量:  21
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-21
  • 网络出版日期:  2025-04-09
  • 刊出日期:  2025-05-31

目录

    /

    返回文章
    返回