Intelligent prediction method for roof gas drainage roadway layout
-
摘要:
顶板瓦斯抽采巷因具有大流量和连续抽采的优点,被广泛用于高瓦斯或突出矿井回采工作面瓦斯治理。如何确定合理的顶板巷布置位置,以高效抽采采空区卸压瓦斯,是保障工作面瓦斯治理效果的关键。为此,在深入分析顶板瓦斯抽采巷布置原则及其布置位置影响因素的基础上,提出了一种基于GA–BP神经网络模型的顶板瓦斯抽采巷布置位置智能预测方法;采用灰色关联分析法确定了GA–BP神经网络模型的预测指标,并设计开发了顶板瓦斯抽采巷布置位置智能预测系统。研究结果表明:①工作面的采厚、埋深、覆岩结构、煤层倾角、倾向长度等5个物理指标是顶板瓦斯抽采巷布置位置的主控因素,且其权重值排序由大到小依次为采厚、埋深、覆岩结构、煤层倾角、倾向长度。②随着遗传代数的增加,GA–BP神经网络适应度不断减小,且当遗传代数为60时其适应度变化基本稳定,表明GA–BP神经网络初始权重和偏置效果较好。③在当前训练样本数据集的前提下,基于GA–BP神经网络模型的顶板瓦斯抽采巷布置位置的预测结果与实际工况值的相对误差仅为0.43%~11.27%,在可接受的范围内。该研究可为顶板瓦斯抽采巷精准设计提供一定的参考。
Abstract:The roof gas drainage roadway, with its advantages of large flow and continuous extraction, is widely used in the gas control of high gas or outburst mine working faces. How to determine the reasonable arrangement position of the roof roadway to efficiently extract the pressure-relief gas in the goaf is key to ensuring the effect of gas control on the working face. Therefore, through a deep analysis of the arrangement principles of the roof gas drainage roadway and the main controlling factors of its arrangement position, an intelligent prediction method for the arrangement position of the roof gas drainage roadway based on the GA–BP neural network model is proposed. The prediction indicators of the GA–BP neural network model were determined using the grey correlation analysis method, and an intelligent prediction system for the arrangement position of the roof gas drainage roadway was designed and developed. The research results show: ① The mining thickness, burial depth, overlying rock structure, coal seam dip angle, and dip length of the working face are the main controlling factors for the arrangement position of the roof gas drainage roadway, and their weight values are ranked as: mining thickness > burial depth > overlying rock structure > coal seam dip angle > dip length; ② With the increase of genetic generations, the fitness of the GA–BP neural network continuously decreases, and when the genetic generation is 60, its fitness change is basically stable, indicating that the initial weight and bias of the GA–BP neural network are good; ③ Under the premise of the current training sample data set, the relative error of the prediction result of the arrangement position of the roof gas drainage roadway based on the GA–BP neural network model and the actual working condition value is only 0.43%~11.27%, which is within an acceptable range. This research can provide a certain reference for the precise design of the arrangement of the roof gas drainage roadway.
-
-
表 1 覆岩采动裂隙空间形态的影响因素
Table 1 Factors influencing spatial morphology of mining-induced fractures
影响因素 影响规律 采厚 覆岩导气裂隙带高度和“O”形圈裂隙区宽度随工作面采厚的增加而增大,且“O”形圈宽度变化整体近似呈对数分布[12-13] 倾向长度 在一定的覆岩结构条件下,工作面倾向长度越大,覆岩“O”形圈裂隙区宽度越大[11,15] 覆岩结构 在其他条件相同时,覆岩岩性越坚硬,覆岩的采动裂隙发育越显著[12,14,19] 埋深 随着工作面埋深的增加,顶板岩层的地应力增大,工作面覆岩裂隙越发育[6] 煤层倾角 当煤层倾角小于45°时,覆岩裂隙带高度随着煤层倾角增大而增大;当煤层倾角为45°~60°时,
覆岩裂隙带高度随倾角的增大而减小[23]推进速度 较慢的推进速度增加覆岩的变形量和裂隙分布,加剧覆岩的破坏程度;而较快的推进速度则可以减小
覆岩变形量和裂隙发育,有效抑制覆岩裂隙发育[20]表 2 寺家庄15303工作面覆岩结构
Table 2 Overlying strata structure of No. 15303 working face in Sijia Village
岩层岩性 厚度/m 距15号煤累厚/m 81号煤 0.90 89.61 砂质泥岩 1.00 88.61 82号煤 0.44 88.17 粉砂岩 4.75 83.42 砂质泥岩 1.39 82.03 粉砂岩 5.80 76.23 泥岩 1.40 74.83 84号煤 1.20 73.63 泥岩 2.30 71.33 9号煤 1.30 70.03 砂质泥岩 1.60 68.43 9号下煤 0.60 67.83 粉砂岩 1.50 66.33 中砂岩 3.73 62.60 细砂岩 1.00 61.60 粗砂岩 6.05 55.55 石灰岩 1.50 54.05 砂质泥岩 0.30 53.75 11号煤 0.30 53.45 砂纸泥岩 2.90 50.55 12号煤 0.90 49.65 粉砂岩 3.90 45.75 细砂岩 3.80 41.95 中砂岩 3.00 38.95 泥岩 0.93 38.02 石灰岩 4.00 34.02 13号煤 0.60 33.42 细砂岩 7.15 26.27 砂质泥岩 3.30 22.97 泥岩 2.00 20.97 石灰岩 4.70 16.27 14号煤 0.23 16.04 泥岩 1.00 15.04 粉砂岩 3.20 11.84 14号下煤 0.26 11.58 砂质泥岩 2.20 9.38 中砂岩 3.56 5.82 细砂岩 3.82 2.00 砂质泥岩 2.00 0 15号煤 5.13 — 砂纸泥岩 4.00 0 细砂岩 6.00 4.00 表 3 顶板巷布置位置训练集
Table 3 Roof gas drainage roadway location training set
序号 工作面 采厚/m 覆岩结构 倾向长度/m 倾角/(°) 埋深/m 日推进距离/m 垂直层位/m 伸入工作面
水平距离/m抽采效果 1 五阳煤矿7603[29,30] 6.10 0.55 180 8.5 480 5.6 35 40 抽采量22 m3/min 2 赵庄矿1310[31] 4.88 0.33 219 10 510 3.6 30 20 抽采浓度29% 3 赵庄矿1307[32,33] 4.50 0.21 220 3 568 4.2 47 34 抽采量30 m3/min 4 漳村煤矿2601[34] 6.00 0.56 225 5 550 4.8 22 21 抽采量8 m3/min 5 寺家庄矿15106[35] 5.40 0.32 286.2 4 480 6.4 30 40 抽采量29 m3/min 6 新大地15201[3] 5.20 0.32 180 10 406 3.0 46 54 抽采率92% 7 李村煤矿1303[36] 5.10 0.40 280 5 482 5.2 45 35 抽采浓度18% 8 阳泉三矿K8206[10] 6.80 0.55 252.2 5 547 3.4 60 50 抽采率87% 9 阳煤三矿K8108[37] 6.35 0.33 190.3 7 580 3.0 70 50 抽采量59 m3/min 10 阳煤三矿K8110[38] 6.42 0.48 190.3 5 527 3.5 80 63 抽采量49 m3/min 11 阳煤一矿S8101[39] 6.02 0.28 240 3 434.5 4.2 67 51 抽采率66% 12 石港煤矿15101[40] 7.02 0.18 152 9 470 2.5 54 60 抽采率70% 13 开元9404[10] 4.23 0.59 180 5 365 3.0 54 28 抽采率77% 14 阳泉一矿S8310[41] 6.51 0.74 220 6 602 5.6 70 50 抽采量28 m3/min 15 开元9801[42] 5.58 0.32 180 8 440 3.6 43 40 抽采浓度45% 16 五阳煤矿7607[43] 6.06 0.52 227 5 450 3.6 35 41 抽采率55% 17 白羊岭煤矿15118[44] 4.60 0.26 240 9 390 3.2 52 45 抽采浓度21% 18 阳煤五矿83206[45] 6.40 0.61 191.5 8 520 2.9 57 45 抽采率90% 19 漳村煤矿2603[46] 5.85 0.46 240 5 538 4.8 20 15 抽采量8 m3/min 20 马兰矿18305高瓦斯工作面[47] 4.20 0.71 228 3 468 6.0 40 25 抽采量16 m3/min 表 4 影响指标权重
Table 4 Influence weight of indicators
影响指标 垂直层位关联度 水平位置关联度 垂直层位影响权重 水平位置影响权重 总权重 综合排名 采厚 0.652 0.744 0.177 0.189 0.366 1 覆岩结构 0.624 0.624 0.170 0.159 0.329 3 倾向长度 0.598 0.647 0.162 0.164 0.326 5 倾角 0.584 0.666 0.159 0.169 0.328 4 埋深 0.651 0.668 0.177 0.170 0.347 2 推进速度 0.572 0.585 0.155 0.149 0.304 6 表 5 GA–BP神经网络参数取值
Table 5 Parameter setting of GA–BP neural network
遗传算法参数 取值 神经网络参数 取值 种群大小 60 输入层节点数 5 遗传代数 70 输出层节点数 2 交叉概率 0.7 隐藏层层数 1 变异概率 0.2 隐藏层节点数 8 表 6 模型预测结果
Table 6 Model prediction results
工作面 采厚/m 硬岩岩性
比例系数倾向长度/m 倾角/(°) 埋深/m 垂直层位/m 垂直层位
相对误差/%伸入工作面水平距离/m 伸入工作面
水平距离/%预测 实际 绝对误差 预测 实际 绝对误差 寺家庄15110 5.67 0.35 180.0 5 327 48.6 53 4.4 0.83 46 48 2 4.17 阳煤K8205 6.90 0.62 260.8 8 580 48.8 55 6.2 11.27 47.2 47 0.2 0.43 阳煤五矿8204 6.50 0.58 225.0 8 623 56.7 60 3.3 0.55 41.2 40 0.2 0.50 -
[1] 袁 亮. 我国深部煤与瓦斯共采战略思考[J]. 煤炭学报,2016,41(1):1−6. YUAN Liang. Strategic thinking of simultaneous exploitation of coal and gas in deep mining[J]. Journal of China Coal Society,2016,41(1):1−6.
[2] 周华东,许家林,胡国忠,等. 综采工作面初采期局部高抽巷瓦斯治理效果分析[J]. 煤炭科学技术,2012,40(5):55−59. ZHOU Huadong,XU Jialin,HU Guozhong,et al. Effect analysis on gas control with local high level gas drainage gateway at initial mining period of fully mechanized top coal caving mining face[J]. Coal Science and Technology,2012,40(5):55−59.
[3] 胡国忠,许家林,秦 伟,等. 基于关键层运动的邻近层卸压瓦斯抽采优化设计方法[J]. 煤炭科学技术,2021,49(5):52−59. HU Guozhong,XU Jialin,QIN Wei,et al. Optimization designing method of pressure-relief gas drainage in adjacent layers based on key strata movement[J]. Coal Science and Technology,2021,49(5):52−59.
[4] 胡国忠,李 康,许家林,等. 覆岩采动裂隙空间形态反演方法及在瓦斯抽采中的应用[J]. 煤炭学报,2023,48(2):750−762. HU Guozhong,LI Kang,XU Jialin,et al. Spatial morphology inversion method of mining-induced fractures of overburden and its application in gas drainage[J]. Journal of China Coal Society,2023,48(2):750−762.
[5] 张玉军,申晨辉,张志巍,等. 我国厚及特厚煤层高强度开采导水裂缝带发育高度区域分布规律[J]. 煤炭科学技术,2022,50(5):38−48. ZHANG Yujun,SHEN Chenhui,ZHANG Zhiwei,et al. Regional distribution law of water conducting fractured zone height in high-strength mining of thick and extremely thick coal seam in China[J]. Coal Science and Technology,2022,50(5):38−48.
[6] 尹尚先,徐 斌,徐 慧,等. 综采条件下煤层顶板导水裂缝带高度计算研究[J]. 煤炭科学技术,2013,41(9):138−142. YIN Shangxian,XU Bin,XU Hui,et al. Study on height calculation of water conducted fractured zone caused by fully mechanized mining[J]. Coal Science and Technology,2013,41(9):138−142.
[7] 袁 亮,郭 华,沈宝堂,等. 低透气性煤层群煤与瓦斯共采中的高位环形裂隙体[J]. 煤炭学报,2011,36(3):357−365. YUAN Liang,GUO Hua,SHEN Baotang,et al. Circular overlying zone at longwall panel for efficient methane capture of mutiple coal seams with low permeability[J]. Journal of China Coal Society,2011,36(3):357−365.
[8] 李树刚,李生彩,林海飞,等. 卸压瓦斯抽取及煤与瓦斯共采技术研究[J]. 西安科技学院学报,2002(3):247−249,263. LI Shugang,LI Shengcai,LIN Haifei,et al. Technique of drawing relieved methane and simultaneous extraction of coal and coakbed methane[J]. Journal of Xi'an University of Science and Technology,2002(3):247−249,263.
[9] 李树刚,林海飞,赵鹏翔,等. 采动裂隙椭抛带动态演化及煤与甲烷共采[J]. 煤炭学报,2014,39(8):1455−1462. LI Shugang,LIN Haifei,ZHAO Pengxiang,et al. Dynamic evolution of mining fissure elliptic paraboloid zone and extraction coal and gas[J]. Journal of China Coal Society,2014,39(8):1455−1462.
[10] 林海飞,李树刚,赵鹏翔,等. 我国煤矿覆岩采动裂隙带卸压瓦斯抽采技术研究进展[J]. 煤炭科学技术,2018,46(1):28−35. LIN Haifei,LI Shugang,ZHAO Pengxiang,et al. Research progress on pressure released gas drainage technology of mining cracking zone in overburden strata of coal mine in China[J]. Coal Science and Technology,2018,46(1):28−35.
[11] 钱鸣高,许家林. 覆岩采动裂隙分布的"O"形圈特征研究[J]. 煤炭学报,1998,23(5):466−469. doi: 10.3321/j.issn:0253-9993.1998.05.004 QIAN Minggao,XU Jialin. Study on the "O-shape" circle distribution characteristics of mining-induced frac- tures in the overlaying strata[J]. Journal of China Coal Society,1998,23(5):466−469. doi: 10.3321/j.issn:0253-9993.1998.05.004
[12] 吴仁伦. 煤层群开采瓦斯卸压抽采“三带”范围的理论研究[D]. 徐州:中国矿业大学,2011. WU Renlun. Study on the scope of the “three zones” of Gas pressure relief and extraction in coal seam group mining[D]. Xuzhou:China University of Mining and Technology,2011.
[13] 吴仁伦,王继林,折志龙,等. 煤层采高对采动覆岩瓦斯卸压运移“三带”范围的影响[J]. 采矿与安全工程学报,2017,34(6):1223−1231. WU Renlun,WANG Jilin,SHE Zhilong,et al. Effects of mining height on range of "Three Zones" of gas pressure relief and migration in overlying strata[J]. Journal of Mining & Safety Engineering,2017,34(6):1223−1231.
[14] 屈庆栋,许家林,钱鸣高. 关键层运动对邻近层瓦斯涌出影响的研究[J]. 岩石力学与工程学报,2007,26(7):1478−1484. QU Qingdong,XU Jialin,QIAN Minggao. Study on influences of key strata movement on gas emissions of adjacent layers[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(7):1478−1484.
[15] 李新华,许家林,汪 锋,等. 工作面宽度对采动裂隙“O”形圈发育形态的影响规律[J]. 煤矿安全,2012,43(9):34−36. LI Xinhua,XU Jialin,WANG FENG,et al. The influence laws of working face width on the developmental morphology of mining fissure “O-shaped” circle[J]. Safety in Coal Mines,2012,43(9):34−36.
[16] 许家林. 煤矿绿色开采20年研究及进展[J]. 煤炭科学技术,2020,48(9):1−15. XU Jialin. Research and progress of coal mine green mining in 20 years[J]. Coal Science and Technology,2020,48(9):1−15.
[17] 李树刚, 李志梁, 林海飞, 等. 采高对采动裂隙演化规律的影响研究[J]. 矿业安全与环保, 2015, 42(5): 25−28. LI Shugang, LI Zhiliang, LIN Haifei, et al. Research on Influence of Mining Height on Mining Fissure Evolution.[J]. Mining Safety & Environmental Protection, 2015, 42(5): 25−28.
[18] 秦 伟. 地面钻井抽采老采空区瓦斯的理论与应用研究[D]. 徐州:中国矿业大学,2013. QIN Wei. Study on the theory and its application of gas drainage from abandoned gob by surface wells[D]. Xuzhou:China University of Mining and Technology,2013.
[19] 胡小娟, 李文平, 曹丁涛, 等. 综采导水裂隙带多因素影响指标研究与高度预计[J]. 煤炭学报, 2012, 37(4): 613−620. HU Xiaojuan, LI WenPing, CAO Dingtao, et al. Index of multiple factors and expected height of fully mechanized water flowing fractured zone.[J]. Journal of China Coal Society, 2012, 37(4): 613−620.
[20] 李全生,李晓斌,许家林,等. 岩层采动裂隙演化规律与生态治理技术研究进展[J]. 煤炭科学技术,2022,50(1):28–47. LI Quansheng,LI Xiaobin,XU Jialin,et al. Research advances in mining fractures evolution law of rock strata and ecological treatment technology. [J] Coal Science and Technology,2022,50(1):28–47.
[21] 李 奇,秦玉金,高中宁. 基于BP神经网络的覆岩“两带”高度预测研究[J]. 煤炭科学技术,2021,49(8):53−59. LI Qi,QIN Yujin,GAO Zhongning. Research on prediction of water conducted fissure height in roof of coal mining seam[J]. Coal Science and Technology,2021,49(8):53−59.
[22] 赵德星. 基于Elman神经网络的导水裂隙带高度预测模型[J]. 山西煤炭,2022,42(2):8−14. ZHAO Dexing. Prediction model for the height of water flowing fractured zones based on elman neural network[J]. Shanxi Coal,2022,42(2):8−14.
[23] 娄高中,谭 毅. 基于PSO–BP 神经网络的导水裂隙带高度预测[J]. 煤田地质与勘探,2021,49(4):198−204. LOU Gaozhong,TAN Yi. Prediction of the height of water flowing fractured zone based on PSO–BP neural network[J]. Coal Geology Exploration,2021,49(4):198−204.
[24] 樊振宇. BP神经网络模型与学习算法[J]. 软件导刊, 2011, 10(7): 66−68. FAN Zhenyu. BP neural network model and learning algorithm.[J]. Software Guide, 2011, 10(7): 66−68.
[25] 边 霞, 米 良. 遗传算法理论及其应用研究进展[J]. 计算机应用研究, 2010, 27(7): 2425−2429, 2434. BIAN Xiao, MI Liang. Development on genetic algorithm theory and its applications.[J]. Application Research of Computers, 2010, 27(7): 2425−2429, 2434.
[26] 阳 俊, 曾维伟. 基于GA–BP神经网络的采空区地表沉降预测模型[J]. 矿冶工程, 2022, 42(2): 42−45. YANG Jun, ZENG Weiwei. A surface subsidence prediction model for underground goafs based on GA–BP neural network.[J]. Mining and Metallurgical Engineering, 2022, 42(2): 42−45.
[27] 刘奕君,赵 强,郝文利. 基于遗传算法优化BP神经网络的瓦斯浓度预测研究[J]. 矿业安全与环保,2015,42(2):56−60. LIU Yijun,ZHAO Qiang,HAO Wenli. Study of gas concentration prediction based on genetic algorithm and optimizing bp neural network[J]. Mining Safety & Environmental Protection,2015,42(2):56−60.
[28] 栾元重, 纪赵磊, 崔 诏, 等. 基于组合权重的地表下沉系数预测分析[J]. 煤炭科学技术, 2022, 50(4): 223−228. LUAN Yuanzhong, JI Zhaolei, CUl Zhao, et al. Prediction and analysis of surface subsidence coefficient based on combined weight.[J]. Coal Science and Technology, 2022, 50(4): 223−228.
[29] 秦 帅. 高瓦斯综放面走向高抽巷布置与抽采技术研究[D].徐州:中国矿业大学,2014. QIN Shuai. Research on Strike High Extraction Roadway Drainage Technology in Wuyang Coal Caving Face with High Gas[D]. Xuzhou:China University of Mining and Technology,2014.
[30] 王雷超. 五阳煤矿7603工作面动压回采巷道围岩控制技术研究[D]. 焦作:河南理工大学,2015. WANG Leichao. Study on control technology of dynamic pressure roadway of wuyang coal,7603 Island Face[D]. Jiaozuo:Henan Polytechnic University,2015.
[31] 王文林, 李 翔. 赵庄二号井高抽巷抽采技术及位置优化[J]. 建井技术, 2020, 41(1): 17−20. WANG Wenlin, LI Xiang. Mine gas drainage technology and optimization on location in high level gas drainage gateway of zhaozhuang No. 2 mine.[J]. Mine Construction Technology, 2020, 41(1): 17−20.
[32] 高 宏. 赵庄矿高抽巷层位布置及瓦斯抽放效果分析[J]. 煤炭工程, 2018, 50(3): 8−11. GAO Hong. Position arrangement of high level gas drainage roadway and investigation on the gas drainage effect in Zhaozhuang Coal Mine.[J]. Coal Engineering, 2018, 50(3): 8−11.
[33] 田茂霖. 深厚工作面软弱顶板与煤壁偏压失稳机理研究[D]. 徐州:中国矿业大学,2020. TIAN Maolin. Study on the mechanism of deviatoric pressure instability of weak roof and thick coal wall in the deep buried working face[D]. Xuzhou:China University of Mining and Technology,2020.
[34] 马 巍. 漳村矿2601工作面高抽巷层位确定研究[D]. 阜新:辽宁工程技术大学,2020. MA Wei. Study on the layer of high-level entry in the,2601 Face of Zhangcun Mine[D]. Fuxin:Liaoning Technical University,2020.
[35] 朱红青, 霍雨佳, 方书昊, 等. 寺家庄矿综采工作面顶板走向高抽巷合理层位研究[J]. 煤炭科学技术, 2021, 49(1): 234−239. ZHU Hongging, HUO Yujia, FANG Shuhao, et al. Study on the reasonable stratum of high-drainage roadway with roof strike of fully-mechanized working face in Sijiazhuang Mine.[J]. Coal Science and Technology, 2021, 49(1): 234−239.
[36] 郝家兴. 基于覆岩裂隙带发育高度的走向高抽巷合理位置确定[J]. 中国安全生产科学技术,2020,16(7):75–81. HAO Jiaxing. Determination of reasonable location of strike high-level drainage roadway basedon development height of overlying strata fracture zone. [J] Journal of Safety Science and Technology,2020,16(7):75–81.
[37] 娄金福. 顶板瓦斯高抽巷采动变形机理及优化布置研究[D]. 徐州:中国矿业大学,2008. LOU Jinfu. Research on the deformation mechanism and the location optimization of high-level entry for gas extraction[D]. Xuzhou:China University of Mining and Technology,2008.
[38] 王义江,杨胜强,许家林,等. 阳泉三矿大采长综放工作面瓦斯涌出特征分析[J]. 河南理工大学学报(自然科学版),2007(1):11–15. WANG Yijiang,YANG Shengqiang,XU Jialin,et al. Analysis of methane emission for the bigger mining-length and fully mechanized top-coal caving face in yangquan III mine. [J] Journal of Henan Polytechnic University(Natural Science),2007(1):11–15.
[39] 张瑞功. 综放工作面瓦斯治理技术效果研究分析[J]. 煤矿现代化,2014(2):33–35. ZHANG Ruigong. A study and analysis of the effectiveness of gas control technology in the comprehensive management of working face gas. [J] Coal Mine Modernization,2014(2):33–35.
[40] 胡起晨, 鹿存荣. 石港煤矿15101综放面瓦斯综合治理技术及效果分析[J]. 煤炭科技, 2013(3): 122−124. HU Qichen, LU Cunrong. The comprehensive governance technology and effect analysis of gas in the, 15101 fully mechanized mining face in Shigang coal mine.[J]. Coal Science & Technology Magazine, 2013(3): 122−124.
[41] 赵 杰. 阳煤一矿S8310工作面瓦斯抽采技术研究与应用[J]. 能源技术与管理,2020,45(5):36–38. ZHAO jie. Study on gas drainage technology of S8310 working face in Yangquan Coal industry group. [J] Energy Technology and Management,2020,45(5):36–38.
[42] 申文斌,王毅. 开元矿综放面高抽巷瓦斯抽采研究[J]. 煤炭技术,2017,36(4):182–184. SHEN Wenbin,WANG Yi. Research on technology of mining gas drainage in Kaiyuan Mine fully mechanized face. [J] Coal Technology,2017,36(4):182–184.
[43] 宋计生. 厚煤层综采工作面采用高抽巷治理瓦斯[J]. 煤, 2017, 26(8): 95−97. doi: 10.3969/j.issn.1005-2798.2017.08.035 SUN Jisheng. The thick coal seam fully mechanized mining face adopts high-ventilation roadway to control gas.[J]. Coal, 2017, 26(8): 95−97. doi: 10.3969/j.issn.1005-2798.2017.08.035
[44] 董雪剑. 邻近层灰岩瓦斯异常涌出条件下的高抽巷瓦斯抽采特性与布置研究[D]. 徐州:中国矿业大学,2021. DONG Xuejian. Research on gas drainage characteristics and layout of high-drainage roadway under the condition of abnormal gas emission from neighboring limestone[D]. Xuzhou:China University of Mining and Technology,2021.
[45] 唐江波. 阳煤五矿走向高抽巷布置位置的合理确定[J]. 能源技术与管理, 2017, 42(1): 40−42. TANG Jiangbo. The reasonable determination of the layout of high extraction roadway in Yangmei coal mine.[J]. Energy Technology and Management, 2017, 42(1): 40−42.
[46] 刘梦晨. “Y+高抽巷”工作面初采期瓦斯治理技术研究与应用[D]. 徐州:中国矿业大学,2020. LIU Mengchen. "Y high pumping lane" working face research and application of gas control technology in early mining period[D]. Xuzhou:China University of Mining and Technology,2020.
[47] 崔林柱. 马兰矿瓦斯高抽巷合理布置及抽采效果分析[J]. 能源与环保,2017,39(6):132–136. CUI Linzhu. Analysis on reasonable location and extraction effect of high-level gas drainage roadway in Malan Mine. [J] China Energy and Environmental Protection,2017,39(6):132–136.
[48] 钱雷杰. 寺家庄煤矿顶板高抽巷层位优化研究[D]. 徐州:中国矿业大学,2020. QIAN Leijie. Study on Optimizing Strata Level of High Drainage Roadway in Sijiazhuang Coal Mine. [D]. Xuzhou:China University of Mining and Technology,2020.
-
期刊类型引用(3)
1. 张百颂. 高突矿井下行揭煤钻孔施工工艺及瓦斯抽采效果研究与应用. 煤炭与化工. 2025(05): 118-123 . 百度学术
2. 兰安畅,袁欣鹏,付智博. 矿井瓦斯智能化抽采发展现状. 科技和产业. 2024(18): 240-245 . 百度学术
3. 姬静伟. 煤层瓦斯抽采有效半径分析. 山东煤炭科技. 2024(12): 60-65 . 百度学术
其他类型引用(1)