高级检索

矿井火灾智能监测预警技术近20年研究进展及展望

邓军, 李鑫, 王凯, 王伟峰, 闫军, 汤宗情, 康付如, 任帅京

邓 军,李 鑫,王 凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,52(1):154−177. DOI: 10.12438/cst.2023-2016
引用本文: 邓 军,李 鑫,王 凯,等. 矿井火灾智能监测预警技术近20年研究进展及展望[J]. 煤炭科学技术,2024,52(1):154−177. DOI: 10.12438/cst.2023-2016
DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,52(1):154−177. DOI: 10.12438/cst.2023-2016
Citation: DENG Jun,LI Xin,WANG Kai,et al. Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years[J]. Coal Science and Technology,2024,52(1):154−177. DOI: 10.12438/cst.2023-2016

矿井火灾智能监测预警技术近20年研究进展及展望

基金项目: 

国家自然科学基金资助项目(52074215, 52374232, 51974234);新疆自治区重点研发计划资助项目(2022B03025,2022B03031);陕西省自然科学基础研究计划—杰出青年科学基金资助项目(2021JC-48)

详细信息
    作者简介:

    邓军: (1970—),男,四川大竹人,教授,博士生导师。E-mail:dengj518@xust.edu.cn

  • 中图分类号: TD752

Research progress and prospect of mine fire intelligent monitoring and early warning technology in recent 20 years

Funds: 

National Natural Science Foundation of China (52074215, 52374232, 51974234); Key Research and Development Plan Funding Projects of Xinjiang Uygur Autonomous Region (2022B03025, 2022B03031); Basic Research Program of Natural Science of Shaanxi Province - Outstanding Young Scientist Fund Project (2021JC-48)

  • 摘要:

    为加强矿井火灾智能监测预警系统建设,提出了矿井火灾智能监测预警技术研究思路,从矿井火灾智能感知技术及装备、预测技术及模型、智能预警系统及平台3方面综述了矿井火灾智能监测预警技术研究进展。首先,总结了内外因火灾信息监测技术及装备,归纳了基于图像视频识别的识别流程,阐述了多源信息融合在火灾监测过程中的应用情况。其次,介绍了矿井火灾的预测技术及模型,包括支持向量机、人工神经网络、随机森林算法等机器学习算法。然后,阐述了矿井火灾预警系统及平台:在总结矿井煤自燃和外因火灾分级预警技术的基础上,介绍了矿井火灾预警系统平台的感知层、网络层、服务融合层以及应用层方面的进展内容;归纳了预警系统各层的内涵及应用框架;搭建了矿井火灾智能监测预警系统。最后,展望了我国矿井火灾智能监测预警技术的未来发展趋势,具体包括:在矿井火灾信息智能感知技术方面,提出加强传感技术及装备研发;在矿井火灾智能预测技术方面,提出加强隐蔽火源的位置探寻方法研究,构建火灾灾害透明化模型;在矿井火灾智能预警系统建设方面,提出将大数据融入智能判识,查明矿井火灾风险源及隐蔽火源位置的预报,实现特殊条件下煤自燃的预警。在矿井火灾智能判识与防控技术联动方面,提出利用大型语言模型在智能判识的基础上实现对矿井火灾的自适应防控。

    Abstract:

    In order to strengthen the construction of mine fire intelligent monitoring and early warning system, the research idea of mine fire intelligent monitoring and early warning technology, and summarizes the research progress of mine fire intelligent monitoring and early warning technology is put forward. The research progress from three aspects of mine fire intelligent perception technology and equipment, prediction technology and modeling, and intelligent early warning system and platform is summarized. First, the internal and external cause fire information monitoring technology and equipment are summarized, the recognition process based on image-video recognition is summarized, and the content of multi-source information fusion and its application in the fire monitoring process are described. Secondly, the prediction techniques and models for mine fires are introduced, including machine learning algorithms such as support vector machine, artificial neural network, and random forest algorithms. Then, the mine fire early warning system and platform are elaborated. On the basis of summarizing the graded early warning technology for spontaneous coal combustion and exogenous fires in mines, the progress of the mine fire early warning system platform in terms of perception layer, network layer, service fusion layer and application layer is introduced. The connotation of each layer of the early warning system and the application framework are summarized, and the intelligent monitoring and early warning system for fires in mines is constructed. Finally, the future development trend of mine fire intelligent monitoring and early warning technology in China is outlooked including following aspects. In terms of intelligent perception technology of mine fire information, it is proposed to strengthen the research and development of sensing technology and equipment. In terms of intelligent prediction technology for mine fires, it is proposed to strengthen the research on the location exploration method of hidden fire sources and construct a transparent model of fire disasters. In terms of the construction of an intelligent early warning system for mine fires, it is proposed to integrate big data into intelligent judgment, identify the risk sources of mine fire and forecast the sources’ location of hidden fire, and realize the early warning of spontaneous coal combustion under special conditions. In terms of the linkage between the intelligent judgment and prevention and control technology for mine fires, it is proposed to utilize large-scale linguistic models to realize the self-adaptive prevention and control of mine fires on the basis of intelligent judgment.

  • “双碳”目标下[1],煤炭依旧为我国主体能源,为响应国家生态文明建设和实现高质量发展,加快推进绿色智能煤矿建设尤为重要[2-3]。煤炭开采环境复杂、条件恶劣,大量挖掘运输设备相互交叉运行在矿场中,操作人员工作强度大、危险系数高,安全问题难以保障[4]。因此,实现开采机械自动化、无人驾驶矿车智能化在煤矿开采中的应用是建设智能矿山的首要举措[5-6]。同时定位与地图构建是实现采矿设备自动化和采矿环境数字化的一种关键技术,该技术能够让机器人在未知的环境中,完成定位、建图和路径规划[7]

    早期的SLAM使用单一的激光雷达进行定位,在非结构化或复杂恶劣的环境下运行时会造成点云地图稀疏的问题。如REN[8]等在连续帧之间、连续关键帧之间和回环检测帧之间使用GICP[9]配准方法并使用了随机抽样一致性(Random Sample Consensus,RANSAC)对煤矿巷道点云进行了分割,并将分割得到的巷道平面作为了观测约束,实现了在结构化的煤矿巷道环境低漂移定位与建图。惯性测量单元能够不受环境影响,实现高频高精度位姿估计,但其在长时间工作状态下会导致自身误差累积无法精确估计,因此将LiDAR和IMU进行融合能够实现在复杂恶劣环境下长时间高精度定位[10]。目前,国内外学者在LiDAR/IMU融合方面已经进行了大量研究,主要分为松耦合和紧耦合2大类[11]。对LiDAR和IMU的测量数据分别处理后进行加权融合确定运动状态的方法被称为松耦合,如ZHANG等[12]提出了激光里程计与建图(LiDAR Odometry and Mapping,LOAM),该算法使用IMU计算的姿态作为LiDAR扫描配准的初始值,而未将其作为全局优化的约束条件。后续对松耦合系统的研究大多延续了LOAM算法框架,如SHAN 等[13]在LOAM算法的基础上增加了地面优化,对具有相同类别的特征点进行匹配,提高了融合计算效率,使得特征匹配更稳定。XUE等[14]在LeGO-LOAM基础上通过整合扫描上下文回环算法降低了点云维数,提高了在煤矿井下模拟场景下的实时性和鲁棒性。

    松耦合算法仅停留在数据结果层面分析,无法解决退化场景问题,为此,紧耦合算法使用图优化或者滤波的方式将LiDAR与IMU观测数据融合,充分考虑了两者间的内在约束,系统的鲁棒性和准确性得到提升。YE等提出的LIO-Mapping[15]使用VINS-Mono[16]中的优化过程来最小化IMU残差和LiDAR测量误差,并以一种旋转约束的方法来细化最终的地图,但由于该约束的计算复杂性,系统难以实时运行。SHAN等[17]提出了基于图优化的LIO-SAM使用划窗的方式来完成帧到局部子图的扫描配准,关键帧的选择以及对旧帧的边缘化有效降低了计算复杂性,提高了系统运行速度。QIN等基于滤波的LINS[18]提出了一种以机器人为中心,以误差状态进行迭代卡尔曼滤波的融合算法。YANG等[19]利用扰动模型对煤矿长巷道退化环境进行了检测和补偿,IMU预积分用于补偿旋转状态退化,LiDAR与IMU融合产生的新姿态用于补偿平移状态退化,提高了煤矿巷道退化场景的鲁棒性。XU等在FAST-LIO[20]中提出了一个新的计算卡尔曼增益公式,显著提高了计算效率。在此基础之上的FAST-LIO2[21]提出了一种新的数据结构ikd-tree[22],能够高效动态地对数据结构进行划分,实现增量更新地图,极大地提高了地图管理效率。

    尽管当前SLAM解决方案众多,但是在露天煤矿环境下使用时的表现却不尽如人意。该环境存在大量斜坡、碎石以及开采后产生的不规则单侧石壁,算法会随运行距离增长产生累计漂移问题,而且大多数SLAM算法需要提取边缘和平面等几何特征进行配准,均采用LOAM框架对海量点云进行多次降采样,导致配准结果不准确,影响定位精度以及建图效果。另外,在这样的环境下会出现分段式的相似环境,当无法检测到新的特征时LiDAR会出现退化现象,一旦配准失败且经过IMU积分发散,SLAM的定位性能将迅速下降,导致建图失败。综上所述,SLAM如何在露天煤矿环境下保持系统的鲁棒性和准确性仍是一大难题。为此,提出了一种基于滤波与图优化相结合的紧耦合SLAM算法,前端使用迭代扩展卡尔曼滤波(Iterater Extended Kalman Filter,IEKF)来实现激光雷达与IMU数据的融合,后端分别设计了雷达相对位姿因子和回环检测因子来完成全局优化,增强了在露天煤矿环境下对颠簸不平路况的鲁棒性,实现了复杂环境下精确的定位建图,为煤矿设备智能化提供了一种关键技术支撑。

    所提出的算法主要由前端迭代扩展卡尔曼滤波和后端因子图优化两部分组成。该算法使用LiDAR和IMU两种传感器作为数据输入信息源。前端使用紧耦合的迭代扩展卡尔曼滤波器将LiDAR特征点与IMU数据相融合,使用后向传播来补偿LiDAR运动失真,经过运动补偿后与该时刻的特征点来构造残差,完成状态更新。后端分别设计了雷达相对位姿因子和回环检测因子,相对位姿因子作用于全局提供新的关位姿与局部子图内关键帧位姿之间的约束,并对当前帧与局部子图进行匹配;回环检测因子同样作用于全局,检测是否与历史位姿重合并对相邻关键帧进行调整来,完成全局优化。最后输出优化后的机器人轨迹,位姿以及全局点云地图,系统结构如图1所示。

    图  1  系统结构
    Figure  1.  System framework

    使用了文献[23]中定义封装了两个算子⊞和⊟,⊞:$\mathcal{S} \times {\mathbb{R}^n} \to \mathcal{S}$及其逆⊟:$\mathcal{S} \times \mathcal{S} \to {\mathbb{R}^n}$,其中$\mathcal{S}$为维数为n的流形($\mathcal{S} = SO(3)$)。IMU坐标系记为${I}$,一般假设IMU与LiDAR以外参$^I{{\boldsymbol{T}}_L} = {(^I}{{\boldsymbol{R}}_L}{,^I}{{\boldsymbol{p}}_L})$刚性连接在一起,则IMU运动学模型如下:

    $$ \begin{array}{l}{}^{G}{{\boldsymbol{p}}}_{I}=^{G}{{\boldsymbol{v}}}_{I}{,}^{G}{\dot{{\boldsymbol{v}}}}_{I}=^{G}{{\boldsymbol{R}}}_{I}\left({{\boldsymbol{a}}}_{m}-{{\boldsymbol{b}}}_{a}-{{\boldsymbol{n}}}_{a}\right)+^{G}{\boldsymbol{g}}{\text{,}}^{G}\dot{{\boldsymbol{g}}}=0\\ {}^{G}{\dot{{\boldsymbol{R}}}}_{I}=^{G}{{\boldsymbol{R}}}_{I}{\lfloor {{\boldsymbol{\omega}} }_{m}-{{\boldsymbol{b}}}_{\omega }-{{\boldsymbol{n}}}_{\omega }\rfloor }_{\wedge }\text{,}{\dot{{\boldsymbol{b}}}}_{a}={{\boldsymbol{n}}}_{ba},{\dot{{\boldsymbol{b}}}}_{\omega }={n}_{{\boldsymbol{b}}\omega }\end{array} $$ (1)

    其中,$ ^G{{\boldsymbol{p}}_I} $和$ ^G{{\boldsymbol{R}}_I} $分别为IMU在机器人坐标系(记为$ G $)中的位置和姿态;$ ^G{\boldsymbol{g}} $为未知重力向量;$ {{\boldsymbol{a}}_m} $和$ {{\boldsymbol{\omega }}_m} $为IMU测得的加速度与角速度;$ {{\boldsymbol{n}}_{\boldsymbol{a}}} $和$ {{\boldsymbol{n}}_{\boldsymbol{\omega }}} $为IMU测量值的白噪声;$ {{\boldsymbol{b}}_{\boldsymbol{a}}} $和$ {{\boldsymbol{b}}_{\boldsymbol{\omega }}} $建模为高斯噪声$ {{\boldsymbol{n}}_{{\boldsymbol{ba}}}} $和$ {{\boldsymbol{n}}_{{\boldsymbol{b\omega }}}} $的一阶马尔科夫过程,符号${\left\lfloor \alpha \right\rfloor _ \wedge }$为向量${\boldsymbol{\alpha }}\in {\mathbb{R}^3}$的斜对称矩阵。离散化上述模型可以得到:

    $$ {{\boldsymbol{x}}_{i + 1}} = {{\boldsymbol{x}}_i} \boxplus \left[ {\Delta t{\boldsymbol{f}}({{\boldsymbol{x}}_i},{{\boldsymbol{u}}_i},{{\boldsymbol{w}}_i})} \right] $$ (2)

    其中,$\Delta t$为IMU采样时间间隔;${\boldsymbol{f}}$为函数;${\boldsymbol{x}}$为状态;${\boldsymbol{u}}$为输入;${\boldsymbol{w}}$为噪声;定义如下:

    $$ \boldsymbol{f}\left(\boldsymbol{x}_i, \boldsymbol{u}_i, \boldsymbol{w}_i\right)=\left[\begin{array}{c} \boldsymbol{\omega}_{m_i}-\boldsymbol{b}_{\boldsymbol{\omega}_i}-\boldsymbol{n}_{\boldsymbol{\omega}_i} \\ { }^G \boldsymbol{v}_{I_i} \\ \boldsymbol{R}_{I_i}\left(\boldsymbol{a}_{m_i}-\boldsymbol{b}_{\boldsymbol{a}_i}-\boldsymbol{n}_{\boldsymbol{a}_i}\right)+{ }^G \boldsymbol{g}_i \\ \boldsymbol{n}_{\boldsymbol{b \omega}_i} \\ \boldsymbol{n}_{\boldsymbol{b a}_i} \\ \boldsymbol{0}_{3 \times 1} \end{array}\right] $$ (3)
    $$ \begin{aligned} & \boldsymbol{x} \doteq\left[\begin{array}{llllll} { }^G \boldsymbol{R}_{\mathrm{I}}^{\mathrm{T}} & { }^G \boldsymbol{p}_{\mathrm{I}}^{\mathrm{T}} & { }^G \boldsymbol{v}_{\mathrm{I}}^{\mathrm{T}} & \boldsymbol{b}_{\boldsymbol{\omega}}^{\mathrm{T}} & \boldsymbol{b}_{\boldsymbol{a}}^{\mathrm{T}} & { }^G \boldsymbol{g}^{\mathrm{T}} \end{array}\right]^{\mathrm{T}} \in \mathcal{S} \\ & \boldsymbol{u} \doteq\left[\begin{array}{llll} \boldsymbol{\omega}_{{m}}^{\mathrm{T}} & \boldsymbol{a}_{{m}}^{\mathrm{T}} \end{array}\right]^{\mathrm{T}} \\ & \boldsymbol{w} \doteq\left[\begin{array}{llll} \boldsymbol{n}_{\boldsymbol{\omega}}^{\mathrm{T}} & \boldsymbol{n}_{\boldsymbol{a}}^{\mathrm{T}} & \boldsymbol{n}_{\boldsymbol{b \omega}}^{\mathrm{T}} & \boldsymbol{n}_{{ba}}^{\mathrm{T}} \end{array}\right]^{\mathrm{T}} \end{aligned} $$ (4)

    使用IEKF来估计式(2)中的状态。假设LiDAR在$t_{k{-1}}$时刻的扫描最优状态估计值是${{\boldsymbol{\bar x}}_{k - 1}}$,则系统的随机误差状态向量为

    $$ {{\boldsymbol{\tilde x}}_{k - 1}} \doteq {{\boldsymbol{x}}_{k - 1}} \boxminus {{\boldsymbol{\bar x}}_{k - 1}} = {\left[ {\begin{array}{*{20}{l}} {\delta {{\boldsymbol{\theta }}^{\mathrm{T}}}}&{^G{\boldsymbol{\tilde p}}_{\mathrm{I}}^{\mathrm{T}}}&{{}^G{\boldsymbol{\tilde v}}_{\mathrm{I}}^{\mathrm{T}}}&{{\boldsymbol{\tilde b}}_{\boldsymbol{\omega }}^{\mathrm{T}}}&{{\boldsymbol{\tilde b}}_{\boldsymbol{a}}^{\mathrm{T}}}&{^G{{{\boldsymbol{\tilde g}}}^{\mathrm{T}}}} \end{array}} \right]^{\mathrm{T}}} $$ (5)

    其中,$ \delta {\boldsymbol{\theta }} = {\text{log}}{(^G}\overline {\boldsymbol{R}} _I^{TG}{{\boldsymbol{R}}_I}) $为姿态误差,其他项为标准加性误差[24],姿态误差$ \delta {\boldsymbol{\theta }} $的定义直观地描述了真实姿态与估计姿态之间的偏差,使得姿态不确定性可以简洁的使用3$ \times $3的协方差矩阵$\mathbb{E}[ \delta \theta \delta {\theta ^{\mathrm{T}}}]$表示。

    IMU测量时,按照式(2)将过程噪声设置为零进行传播得到下式:

    $$ {\widehat{{\boldsymbol{x}}}}_{i+1}={\widehat{{\boldsymbol{x}}}}_{i}\boxplus\left(\Delta t{\boldsymbol{f}}\left({\widehat{{\boldsymbol{x}}}}_{i},{{\boldsymbol{u}}}_{i},0\right)\right)\text{,}{\widehat{{\boldsymbol{x}}}}_{0}={\overline{{\boldsymbol{x}}}}_{k-1} $$ (6)

    传播协方差以迭代误差动态模型来处理,定义如下[19]

    $$ \begin{split} {{{\boldsymbol{\tilde x}}}_{i + 1}} & ={{\boldsymbol{x}}_{i + 1}} \boxminus {{{\boldsymbol{\hat x}}}_{i + 1}} \\ & {\text{ }} = \left( {{{\boldsymbol{x}}_i} \boxplus \Delta t{\boldsymbol{f}}\left( {{{\boldsymbol{x}}_i},{{\boldsymbol{u}}_i},{{\boldsymbol{w}}_i}} \right)} \right) \boxminus \left( {{{{\boldsymbol{\hat x}}}_i} \boxplus \Delta t{\boldsymbol{f}}\left( {{{{\boldsymbol{\hat x}}}_i},{{\boldsymbol{u}}_i},{\boldsymbol{0}}} \right)} \right) \\ & {\text{ }} \simeq {{\boldsymbol{F}}_{{\boldsymbol{\tilde x}}}}{{{\boldsymbol{\tilde x}}}_i} + {{\boldsymbol{F}}_{\boldsymbol{w}}}{{\boldsymbol{w}}_i} \\ \end{split} $$ (7)

    其中,$ {{\boldsymbol{F}}_{{\boldsymbol{\tilde x}}}} $和$ {{\boldsymbol{F}}_{\boldsymbol{w}}} $分别为$ {{\boldsymbol{\tilde x}}_i} $和$ {{\boldsymbol{w}}_i} $的雅克比矩阵,定义如下:

    $${ {{\boldsymbol{F}}_{\widetilde {\boldsymbol{x}}}} = \left[ {\begin{array}{*{20}{c}} {{Exp} \left( { - {{{{\hat {\boldsymbol{\omega}} }}}_i}\Delta t} \right)} & {\boldsymbol{0}} & {\boldsymbol{0}} & { - {\boldsymbol{A}}{{\left( {{{{{\hat {\boldsymbol{\omega}} }}}_i}\Delta t} \right)}^{\rm{T}}}\Delta t} & 0 & 0 \\ 0 & {{\text{ }}{\boldsymbol{I}}} & {{\boldsymbol{I}}{\text{ }}\Delta t} & 0 & 0 & 0 \\ {{ - ^G}{{{{\hat {\boldsymbol{R}}}}}_{{I_i}}}{{\left\lfloor {{{{{\hat {\boldsymbol{a}}}}}_i}} \right\rfloor }_ \wedge }\Delta t} & 0 & {\boldsymbol{I}} & 0 & {{ - ^G}{{{{\hat {\boldsymbol{R}}}}}_{{I_i}}}\Delta t} & {{\boldsymbol{I}}\Delta t} \\ 0 & 0 & 0 & {\boldsymbol{I}} & 0 & 0 \\ 0 & 0 & 0 & 0 & {\boldsymbol{I}} & 0 \\ 0 & 0 & 0 & 0 & 0 & {\boldsymbol{I}} \end{array}} \right] }$$ (8)
    $$ {{\boldsymbol{F}}_{\boldsymbol{w}}} = \left[ {\begin{array}{*{20}{c}} { - {\boldsymbol{A}}{{\left( {{{{{\hat {\boldsymbol{\omega}} }}}_i}\Delta t} \right)}^{\rm{T}}}\Delta t}&0&0&0 \\ 0&0&0&0 \\ 0&{{ - ^G}{{{{\hat {\boldsymbol{R}}}}}_{{I_i}}}\Delta t}&0&0 \\ 0&0&{{\boldsymbol{I}}\Delta t}&0 \\ 0&0&0&{{\boldsymbol{I}}\Delta t} \\ 0&0&0&0 \end{array}} \right] $$ (9)

    其中,${\hat \omega _i} = {\omega _{{m_i}}} - {{\boldsymbol{\hat b}}_{{{\boldsymbol{\omega }}_i}}}$,${{\boldsymbol{\hat a}}_i} = {{\boldsymbol{a}}_{{m_i}}} - {{\boldsymbol{\hat b}}_{{{\boldsymbol{a}}_i}}}$

    传播一直进行到${{{t}}_{{k}}}$这一帧结束,传播状态以及协方差分别记为$ {{\boldsymbol{\hat x}}_k} $和${{\boldsymbol{\hat P}}_k}$,将白噪声$ {\boldsymbol{w}} $的协方差定义为$ {\boldsymbol{Q}} $,则传播协方差${{\boldsymbol{\hat P}}_i}$可以通过下式计算得出:

    $$ {\widehat{{\boldsymbol{P}}}}_{i+1}={{\boldsymbol{F}}}_{\tilde{x}}{\widehat{{\boldsymbol{P}}}}_{i}{{\boldsymbol{F}}}_{\tilde{x}}^{{\mathrm{T}}}+{{\boldsymbol{F}}}_{w}{\boldsymbol{Q}}{{\boldsymbol{F}}}_{w}^{{\mathrm{T}}}\text{,}{\widehat{{\boldsymbol{P}}}}_{0}={\overline{{\boldsymbol{P}}}}_{k-1} $$ (10)

    当点云累积时间间隔达到${t_k}$时,将新产生的特征点集与式(9)中的传播状态和协方差进行融合来产生最优的状态。对于采集一帧点云时间内产生的时间偏差所造成的运动畸变,可以用高于IMU测量值的后向传播进行补偿。后向传播可以在采样时间$ {\rho _j} $以及扫描结束时间${t_k}$之间,产生一个相对位姿$ ^{{I_k}}{\mathop {\boldsymbol{T}}\limits^ \vee _{{I_j}}} = {(^{{I_k}}}{\mathop {\boldsymbol{R}}\limits^ \vee _{{I_j}}}{,^{{I_k}}}{\mathop {\boldsymbol{p}}\limits^ \vee _{{I_j}}}) $。该相对位姿可以将局部测量${}^{{L_j}}{{\boldsymbol{p}}_{{f_j}}}$投影到扫描结束时的测量位置:

    $$ { }^{L_k} \boldsymbol{p}_{f_j}={ }^I \boldsymbol{T}_L^{-1 I_k} \stackrel{\rightharpoonup}{\boldsymbol{T}}_{I_j}{ }^I \boldsymbol{T}_L^{L_j} \boldsymbol{p}_{f_j} $$ (11)

    其中,$ {}^I{\boldsymbol{T}}_L^{} $为LiDAR和IMU之间外参,可通过标定获得,特征点集$ ^{{L_k}}{{\boldsymbol{p}}_{{f_j}}} $可以用来构造残差,将残差定义为特征点全局点云坐标${}^G{\boldsymbol{\hat p}}_{{f_j}}^\kappa $与地图中最近的平面点或者边缘点的距离:

    $$ {\boldsymbol{z}}_j^\kappa = {{\boldsymbol{G}}_j}({}^{{G}}\hat p_{{f_j}}^\kappa - {}^G{{\boldsymbol{q}}_j}) $$ (12)

    $ \boldsymbol{x}_{k} $先验分布由前向传播得到:

    $$ {{\boldsymbol{x}}_k} \boxminus {{\boldsymbol{\hat x}}_k} = ({\boldsymbol{\hat x}}_k^\kappa \boxplus {\boldsymbol{x}}_k^\kappa ) \boxminus {{\boldsymbol{x}}_k} = {\boldsymbol{\hat x}}_k^\kappa \boxminus {{\boldsymbol{x}}_k} + {{\boldsymbol{J}}^\kappa }{\boldsymbol{\tilde x}}_k^\kappa $$ (13)
    $$ {\boldsymbol{\hat x}}_k^{\kappa + 1} = {\boldsymbol{\hat x}}_k^\kappa \boxplus \left[ { - {\boldsymbol{Kz}}_k^\kappa - ({\boldsymbol{I}} - {\boldsymbol{KH}}){{({{\boldsymbol{J}}^\kappa })}^{ - 1}}({\boldsymbol{\hat x}}_k^\kappa \boxminus {{{\boldsymbol{\hat x}}}_k})} \right] $$ (14)

    利用式(13)更新后的估计值${\boldsymbol{\hat x}}_k^{\kappa + 1}$来计算残差,并重复该过程,直到$ \Vert {\widehat{{\boldsymbol{x}}}}_{k}^{\kappa +1}\boxminus {\widehat{{\boldsymbol{x}}}}_{k}^{\kappa }\Vert < \varepsilon $,收敛后最优估计状态和协方差为:

    $$ {{\boldsymbol{\bar x}}_k} = {\boldsymbol{\hat x}}_k^{\kappa + 1},{\overline {\boldsymbol{P}} _k} = ({\boldsymbol{I}} - {\boldsymbol{KH}}){\boldsymbol{P}} $$ (15)
    $$ {\boldsymbol{K}} = {\left( {{{\boldsymbol{H}}^{\rm{T}}}{{\boldsymbol{R}}^{ - 1}}{\boldsymbol{H}} + {{\boldsymbol{P}}^{ - 1}}} \right)^{ - 1}}{{\boldsymbol{H}}^{\rm{T}}}{{\boldsymbol{R}}^{ - 1}} $$ (16)

    其中,${\boldsymbol{K}}$为卡尔曼增益,随着状态更新,每个特征点($ { }^{5} \boldsymbol{P}_{f j} $)将会投影到全局地图中,实现地图更新。

    理论上前端的状态更新后已经可以获得完整的激光雷达惯性里程计,但在实际试验过程中,上述得到的定位与建图结果随着系统运行会产生偏移,并且这种偏移是不可逆的。这个问题在露天煤矿环境下显得尤为突出,图优化的方式可以非常简洁方便的描述各个误差项之间的关联,因此本文后端使用因子图来进行全局位姿图优化,通过对残差模型进行分析,最终目的就是最小化一个残差项。构建了雷达相对位姿和回环检测两个因子来实现全局位姿优化。

    1)雷达相对位姿因子。在前端激光雷达惯性里程计中采用了帧到子图的扫描配准方式,并且通过滑动窗口的方式来创建固定关键帧数量的子图。机械式雷达的运行频率一般为10 Hz,相邻帧之间变化量极小但却需要消耗海量的计算资源,将每一帧都添加到因子图中进行优化显然是低效的,因此本文采用了选取关键帧的策略。关键帧的选取主要遵循两个阈值指标进行确立:①最小平移阈值d当系统接收到的当前帧与上一帧的最小平移距离超过d时选取当前帧为关键帧,这样可以避免设备移动缓慢甚至暂停时产生大量冗余激光帧。②最小旋转角$\alpha $,当接受到的当前帧与上一帧的姿态旋转角度变化值大于$\alpha $时选取该帧为关键帧,由于机械雷达扫描覆盖范围较大,该阈值的设定可避免设备在颠簸路面的微量转动提取到太多的激光点云数据。满足上述任一指标即可确立当前帧为关键帧,利用关键帧来维护一个固定滑窗,即局部子图。接着对新到来的关键帧进行特征提取,利用该帧以及局部子图来构建以下代价函数求解位姿变换关系$ \overline{\boldsymbol{T}}_{k+1} $:

    $$ f{\text{(}}{{\boldsymbol{\bar T}}_{k + 1}}{\text{)}} = {\boldsymbol{d}},{\boldsymbol{d}} = \left[ {\begin{array}{*{20}{c}} {{d_{\rm{e}}}} \\ {{d_{\rm{p}}}} \end{array}} \right] $$ (17)

    ${d_{\rm{e}}}$和${d_{\rm{p}}}$分别为新一帧提取到的边缘特征和平面特征与其在局部子图中相邻帧提取到对应特征之间的距离,以此构建相邻位姿间的优化目标:

    $$ {\phi _L}({\boldsymbol{x}}) = \frac{1}{2}\left\| {{r_L}({{\boldsymbol{x}}_i},{{\boldsymbol{x}}_j})} \right\|_\Sigma ^2 $$ (18)

    其中,${\boldsymbol{x}}$为待优化量;${{\boldsymbol{x}}_i}$和${{\boldsymbol{x}}_j}$分别为第$ \hat{t} $帧和相邻第$ j $帧对应运因子动状态。

    2)回环检测。SLAM系统运行时,各个传感器误差会不断积累,这一误差难以消除并且会逐渐增大,导致定位结果漂移。回环检测因子的使用对于纠正漂移误差以及构建全局一致的地图具有重要作用[25]。此外,在露天煤矿环境下往来矿用卡车基本会走固定路线进行运输,重复运输的路线使得检测到回环的几率大幅增加,因此本文将回环检测因子加入因子图,与雷达相对位姿因子共同进行对全局位姿的优化。

    当新的关键帧确立后,首先设定最小距离阈值,对因子图内的全部历史关键帧进行搜索,找到与新关键帧在欧氏距离上满足最小阈值的关键帧,设其为待匹配帧。使用GICP对新帧与对应待匹配帧进行配准,通过式(19)计算出最近点均方根的最小距离获得置信分数,同时与设定的最小距离阈值进行比较,确认该帧是否为回环关键帧,确定后可利用式(20)计算出该位姿的相对变换并添加到因子图中。该步骤需要严格设置最小距离阈值,一旦回环检测匹配到错误的关键帧就会导致地图崩溃。

    $$ {\rm{score}} = \frac{1}{N}\sum\limits_{k = 1}^N {\sqrt {\Delta {x^2} + \Delta {y^2} + \Delta {{\textit{z}}^2}} } $$ (19)
    $$ \Delta {{\boldsymbol{T}}_{k,k + 1}} = {\boldsymbol{T}}_k^{ - 1}{{\boldsymbol{T}}_{k + 1}} $$ (20)

    为验证文中算法的有效性以及鲁棒性,我们分别在公共开源数据集以及露天煤矿实测数据集上进行了试验。开源数据集选择了M2DGR[26]:一个带有全套传感器的地面机器人对上海交通大学校园内不同场景采集的大规模数据集,所有传感器都经过良好的外部校准和时间同步。露天煤矿实测数据集使用的数据采集设备如图2所示,该设备主要搭载传感器为速腾聚创RS-LiDAR-16型激光雷达,10 Hz工作模式下水平分辨率为0.2°,垂直分辨率为2°;超核电子CH110型9轴IMU,设置采样频率为400 Hz;北斗星通C200卫星接收机;机载计算机为NVIDIA Jetson AGX Xavier,8核ARM处理器,主频2.26 GHz,内存32 G。提出的SLAM算法均使用C++实现,运行于Ubuntu20.04,ROS版本为noetic。

    图  2  数据采集设备
    Figure  2.  Data collection equipment

    使用开源数据集对目前主流激光SLAM算法:A-LOAM、LeGO-LOAM、FAST-LIO2、LIO-SAM与本文所提算法进行了测试,通过计算最终绝对位姿误差(Absolute Position Error,APE)来计算各个算法的定位精度。所有算法均在相同配置环境下使用,运行设备为Intel(R) i9-10850K 3.60 GHz。分别选取了3个不同场景下采集的数据street_08、door_02和gate_02序列进行试验,使用EVO[27]作为最终结果评估工具。其中street08序列为户外环境,采集过程中存在大量连续转弯,图3所示为各个算法在该序列上的定位轨迹对比结果。

    图  3  street_08序列各算法轨迹对比
    Figure  3.  Trajectory comparison of each algorithm for the street_08 sequence

    图3中可以看出A-LOAM、LeGO-LOAM表现较差,运行一段时间后开始出现明显漂移,LIO-SAM同样存在该问题,但绕行一周后成功检测到了回环,纠正了累计漂移,仍取得较好的结果,FAST-LIO2对新的数据结构的应用可以在不提取特征的情况下可以快速直接地将原始点配准到地图上,在短距离结构化的环境下,精度较高。算法所设计的相对位姿因子有效抑制了IMU累计误差,同时后期检测到了回环,表现良好。各算法在所选序列试验结果的APE见表1,其中加粗项表示该项测试中误差项最小的结果,对应箱型图如图4所示。

    表  1  开源数据集APE误差
    Table  1.  Open source dataset APE error
    数据集RMSE/m
    A-LOAMLeGO-LOAMFAST-LIO2LIO-SAMOURS
    door_020.18612.07240.28010.18490.1855
    gate_020.33050.31710.32040.32640.3167
    street_083.33761.13270.19820.17080.1179
    下载: 导出CSV 
    | 显示表格
    图  4  开源数据集APE误差数据集箱型图
    Figure  4.  Open source dataset APE box plot

    为进一步验证算法的有效性以及鲁棒性,对内蒙古哈尔乌素露天煤矿进行了数据采集,实地环境如图5所示。该环境道路崎岖不平,沿途布满山石碎块,呈现分段相似性,且结构复杂无明显的几何特征。在采集的数据集中选取了两个序列进行试验分析,各算法配置均与开源数据集试验配置相同。

    图  5  露天矿山环境
    Figure  5.  Open pit mine environmental

    序列1全长2024 m,为实时观测到矿山数据误差累积情况,对序列1进行了分段切片处理,分别截取为500、10002000 m。图6分别展示了不同算法在两处不同地点的建图效果。

    图  6  序列1建图效果
    Figure  6.  Sequence 1 mapping results

    图6建图效果中能够看出LeGO-LOAM和FAST-LIO2存在明显的漂移现象,虽完成了最终建图,但是误差较大。A-LOAM与LIO-SAM无直观地漂移现象,但累计定位误差较大。本文所提出的算法完整地构建出了高精度点云地图,对碎石岩壁结构建图清晰,扫描到的矿卡轮廓直观无重影,具有较高的一致性。针对露天煤矿环境体现出了较高的鲁棒性。

    序列2全长2 120 m,各算法运行出的定位轨迹如图7所示。A-LOAM和LeGO-LOAM属于单一激光雷达建图算法,缺少IMU的辅助出现了较大的累计误差,尤其是轻量化LiDAR里程计LeGO-LOAM严重依赖地面特征提取,在露天煤矿这样的环境下,大量斜坡的存在导致该算法严重失效,状态估计出现了较大误差。FAST-LIO2默认不使用特征提取的方法,降采样之后直接将原始点云配准到地图上来体现全局一致性,但是在碎石岩壁与颠簸道路环境中,原始点云经过降采样后呈现高度一致性,导致几处相似场景出现了较大的漂移现象。

    图  7  序列2轨迹对比
    Figure  7.  Sequence 2 trajectory comparison result

    为避免这些问题,提出的算法将激光雷达帧间配准结果作为约束因子在后端与回环因子进行联合优化,进一步提升了SLAM系统的鲁棒性,同时提高了定位建图精度。各算法在所选序列试验结果的APE见表2,其中加粗项表示该项测试中误差项最小的结果,其对应箱型图如图8所示。

    表  2  露天煤矿数据集APE误差
    Table  2.  open pit coal mine dataset APE error
    数据集RMSE/m
    A-LOAMLeGO-LOAMFAST-LIO2LIO-SAMOURS
    序列1-500 m1.900112.772312.86212.70050.8394
    序列1-1000 m7.395612.772320.64263.39461.4519
    序列1-2000 m10.130131.382624.55314.19403.1644
    序列2-2120 m6.921151.463010.13407.12045.4720
    下载: 导出CSV 
    | 显示表格
    图  8  露天煤矿数据集APE误差箱线图
    Figure  8.  Open pit coal mine dataset APE box plot

    1)提出了一种针对露天煤矿复杂环境下具有高精度高鲁棒性的LiDAR/IMU紧耦合SLAM算法,前端使用紧耦合的迭代扩展卡尔曼将LiDAR特征点与IMU数据融合,后端使用因子图来接收关键帧位姿状态,将激光雷达帧间配准结果作为约束因子并与回环检测因子共同完成全局优化。

    2)利用该算法在开源数据集M2DGR的3个不同场景和露天煤矿实地环境进行了试验测试,结果表明,算法在开源数据集的城市化环境下精度表现与当前的SOAT激光SLAM算法保持一致,在长达两千多米的露天煤矿实地环境下所提算法较FAST-LIO2、LIO-SAM紧耦合算法在定位精度上分别提高了46.00%和23.15%,提高了复杂环境下的定位精度与鲁棒性。

  • 图  1   近70年中国每百万吨煤炭总产量、死亡人数和死亡率[9]

    Figure  1.   Total production, deaths and mortality rate per million tons of coal in China in the last 70 years[9]

    图  2   矿井火灾智能监测预警系统功能

    Figure  2.   Monitoring and early warning system functions

    图  3   采空区预埋束管位置示意

    Figure  3.   Schematic of location of embedded beam tube in goaf area

    图  4   光纤传感测量系统[23]

    Figure  4.   Optical fiber sensing measurement system[23]

    图  5   工作面温度监测部署示意

    Figure  5.   Schematic of working face temperature monitoring deployment

    图  6   FBG结构及波长选择性

    Figure  6.   FBG structure and wavelength selectivity

    图  7   准分布式光纤传感技术

    Figure  7.   Quasi-distributed fiber optic sensing technology

    图  8   光纤中的3种散射

    Figure  8.   Three types of scattering in optical fibers

    图  9   红外热成像仪探测原理示意[52]

    Figure  9.   Schematic of infrared thermal imaging camera detection principle [52]

    图  10   烟火识别流程[55]

    Figure  10.   Pyrotechnic recognition process[55]

    图  11   图像和传感信息加权融合判识流程[62]

    Figure  11.   Weighted fusion identification process of image and sensor information[62]

    图  12   煤自燃倾向性预测的神经网络框架[86]

    Figure  12.   Neural network framework for prediction of coal spontaneous combustion propensity[86]

    图  13   4种模型预测结果散点图[91]

    Figure  13.   Scatterplot of predicted results of 4 models[91]

    图  14   模型预测研究流程[95]

    Figure  14.   Model prediction study flowchart[95]

    图  15   基于RF算法的煤自燃温度预测模型构建流程[97]

    Figure  15.   Process of constructing coal spontaneous combustion temperature prediction model based on RF algorithm[97]

    图  16   RF算法流程[97]

    Figure  16.   RF algorithm flow[97]

    图  17   煤自然发火指标气体阈值曲线[115]

    Figure  17.   Coal natural flare indicator gas threshold curves[115]

    图  18   基于边缘智能的煤矿外因火灾检测模型[62]

    Figure  18.   An edge intelligence-based model for exogenous fire detection in coal mines[62]

    图  19   基于双目视觉的矿井外因火灾感知与火源定位方法流程[56]

    Figure  19.   Flow of mine external fire sensing and fire source positioning methods based on binocular vision[56]

    图  20   输送带燃烧的3个阶段[132]

    Figure  20.   Three stages of conveyor belt combustion[132]

    图  21   样品在20~900 ℃的TG和DTG曲线[133]

    Figure  21.   TG and DTG curves of duct tape samples[133]

    图  22   基于物联网的火灾监测预警系统3层结构

    Figure  22.   Three-layer structure of IoT-based fire monitoring and early warning system

    图  23   基于云计算的煤矿安全监控系统框架[140]

    Figure  23.   Framework of coal mine safety monitoring system based on cloud computing[140]

    表  1   近5年部分矿井火灾发生事故统计

    Table  1   Statistics of some mine fire accidents in the past 5 years

    日期 地点 火灾原因 火灾结果
    2019−03−15 东升阳胜煤业有限公司 15203综采工作面上隅角堆积的瓦斯被引燃 3人被困
    2019−05−24 龙成煤综合利用有限公司 809号传送带处的煤粉自燃引发火灾 2人死亡
    6人受伤
    2019−06−03 山西保利平山煤业股份有限公司 31016运输巷掘进工作面施工瓦斯抽采钻孔过程中,因干打眼引发钻孔内着火 9人受伤,2人重伤
    2019−11−19 山东能源肥城矿业梁宝寺煤矿 3306掘进工作面发生火灾 11人被困
    2019−11−22 华宁县华盖山煤矿 掘进工作面违规采用气焊切割,乙炔泄漏并着火燃烧 8人受伤
    2019−12−12 云南恩洪煤矿 工作面采空区发生火灾 8人受伤
    2020−07−20 湖南高峰煤业团结煤矿 巷道式采煤造成局部瓦斯积聚,失爆的煤电钻短路产生火花,引燃瓦斯 1人死亡,2人重伤
    2020−09−27 重庆渝新能源松藻煤矿 输送带与煤混合燃烧产生一氧化碳超限 16人死亡,42人受伤
    2020−12−04 重庆吊水洞煤业公司 违规使用氧气/液化石油气切割,高温熔渣引燃吸水井内沉积油垢 23人死亡,1人重伤
    2021−01−19 贵州大方瑞丰煤矿 穿孔误穿采空区导致一氧化碳超限 3人死亡,1人受伤
    2022−02−07 宁夏煤业枣泉煤矿 采煤机割煤引发煤尘爆燃 1人死亡,8人受伤
    下载: 导出CSV

    表  2   煤自然发火分级预警体系[93]

    Table  2   Early warning system for the classification of natural coal fires[93]

    阶段 预警等级 温度范围/℃ 判定临界值
    潜伏阶段 预警
    初值
    $ {T}_{0} < 30 $ $ {R}_{0}=\left\{\begin{array}{l}\varphi \left({{\mathrm{O}}}_{2}\right) > 18\%\cap \\ \varphi \left({\mathrm{CO}}\right) > 0.005\%\end{array}\right\}\cup $
    $ \left\{ \left(\begin{array}{l}\varphi({{\mathrm{O}}}_{2})\in \left(15\%,18\%\right)\cap \\ \varphi \left({\mathrm{CO}}\right) > 0.01\%\end{array}\right)\right\}\cup $
    $ \left\{ \left(\begin{array}{l}\varphi({{\mathrm{O}}}_{2})\in \left(12\%,15\%\right)\cap \\ \varphi \left({\mathrm{CO}}\right) > 0.015\%\end{array}\right)\right\}\cup $
    $ \left\{\begin{array}{l}\varphi \left({{\mathrm{O}}}_{2}\right) < 12\%\cap \\ \varphi \left({\mathrm{CO}}\right) > 0.02\%\end{array}\right\} $
    复合阶段 灰色 $ {T}_{1}\in \left(\mathrm{30,50}\right) $ $ {R}_{1}={R}_{0}\cap \left\{\dfrac{100\varphi \left({\mathrm{CO}}\right)}{\varphi \left({{\mathrm{O}}}_{2}\right)} > 0.2~0.3\right\} $
    自热阶段 蓝色 $ {T}_{2}\in \left(\mathrm{50,70}\right) $ $ {R}_{2}={R}_{1}\cap \left\{\dfrac{100\varphi \left({\mathrm{CO}}\right)}{\varphi \left({{\mathrm{O}}}_{2}\right)} > 0.4~0.5\right\} $
    临界阶段 黄色 $ {T}_{3}\in \left(\mathrm{70,100}\right) $ $ {R}_{3}={R}_{2}\cap \left\{\dfrac{100\varphi \left({\mathrm{CO}}\right)}{\varphi \left({{\mathrm{O}}}_{2}\right)} > 0.6~0.8\right\} $
    热解阶段 橙色 $ {T}_{4}\in \left(\mathrm{100,150}\right) $ $ {R}_{4}={R}_{3}\cap \left\{\varphi \left({{\mathrm{C}}}_{2}{{\mathrm{H}}}_{4}\right) > 0\right\} $
    裂变阶段 红色 $ {T}_{5}\in \left(\mathrm{150,210}\right) $ $ {R}_{5}={R}_{4}\cap \left\{k=\dfrac{\varphi \left({{\mathrm{C}}}_{2}{{\mathrm{H}}}_{4}\right)}{{\varphi \left({{\mathrm{C}}}_{2}{{\mathrm{H}}}_{6}\right)}_{\max}}\right\} $
    燃烧阶段 黑色 $ {T}_{6} > 210 $ $ {R}_{6}={R}_{5}\cap \left\{\mathrm{明}\mathrm{火}\mathrm{、}\mathrm{明}\mathrm{烟}\mathrm{及}\mathrm{其}\mathrm{他}\mathrm{现}\mathrm{象}\right\} $
    下载: 导出CSV

    表  3   煤自燃分级防控[120]

    Table  3   Coal spontaneous combustion graded prevention and control[120]

    自燃阶段 预警级别 温度范围/℃ 气体指标阈值 采取措施
    复合阶段 灰色 T∈[30,50) $ {R}_{1}={R}_{0}\cap \left\{100\times{\mathrm{ CO}}/\Delta {{\mathrm{O}}}_{2}\in \left(\mathrm{0.2,0.3}\right)\right\} $ 监测警报
    自加热阶段 蓝色 T∈[50,70) $ {R}_{2}={R}_{0}\cap \left\{100\times {\mathrm{CO}}/\Delta {{\mathrm{O}}}_{2}\in \left(\mathrm{0.3,0.5}\right)\right\} $ 注氮隔氧降温
    活化阶段 黄色 T∈[70,110) $ {R}_{3}={R}_{0}\cap \left\{100\times {\mathrm{CO}}/\Delta {{\mathrm{O}}}_{2} > 0.5\right\}\bigcap \left\{{{\mathrm{C}}}_{2}{{\mathrm{H}}}_{4} > 0\right\} $
    热分解阶段 橙色 T∈[110,150) $ {R}_{4}={R}_{3}\bigcap \left\{{{\mathrm{C}}}_{2}{{\mathrm{H}}}_{4} > 0\right\}\cap {\left({{\mathrm{C}}}_{2}{{\mathrm{H}}}_{4}/{{\mathrm{C}}}_{2}{{\mathrm{H}}}_{6}\right)}_{\min} $ 降温隔氧降温
    裂变阶段 红色 T∈[150,250) $ {R}_{5}={R}_{4}\bigcap {\left({\mathrm{CO}}/{\mathrm{C}}{{\mathrm{O}}}_{2}\right)}_{\max} $ 综合协同灭火
    燃烧阶段 黑色 T∈[250,400) $ {R}_{6}={R}_{5}\bigcap \left\{{\left({{\mathrm{C}}}_{2}{{\mathrm{H}}}_{4}/{{\mathrm{C}}}_{2}{{\mathrm{H}}}_{6}\right)}_{\max}\right\} $
    下载: 导出CSV

    表  4   浸水煤低温氧化分段特性

    Table  4   Characteristics of low-temperature oxidizing segments of water-soaked coal

    阶段 温度/℃ 指标
    吸氧蓄热阶段 30~100 $ \dfrac{\varphi \left(\mathrm{C}\mathrm{O}\right)}{\varphi \left(\mathrm{C}\mathrm{O}_2\right)}\leqslant 0.1 或$$ \dfrac{\varphi \left(\mathrm{O}_2\right)}{ \varphi (\mathrm{C}\mathrm{O}_2)- \varphi(\mathrm{C}\mathrm{O})}\geqslant 0.02 $
    自热氧化阶段 100~140 $ 0.8\leqslant \dfrac{\varphi \left({\mathrm{C}}_{2}{\mathrm{H}}_{4}\right)}{\varphi \left({\mathrm{C}}_{2}{\mathrm{H}}_{6}\right)}\leqslant 1.10 $
    加速氧化阶段 140~230 $ \dfrac{\varphi \left(\mathrm{C}\mathrm{O}\right)}{\varphi \left(\mathrm{C}\mathrm{O}_2\right)}\geqslant 0.5 或$$ \dfrac{\varphi \left({\mathrm{O}}_{2}\right)}{\varphi (\mathrm{C}{\mathrm{O}}_{2})-\varphi(\mathrm{C}\mathrm{O})}\leqslant 0.005 $
    下载: 导出CSV

    表  5   电缆火灾分级防控

    Table  5   Cable fire hierarchy prevention and control

    阶段现象
    极早期电缆线芯导体发热,热量聚集
    前期阴燃
    早期明火
    中期电缆群燃烧
    晚期电缆烧尽
    下载: 导出CSV

    表  6   输送带火灾分级防控

    Table  6   Tape fire hierarchy prevention and control

    阶段 现象 指标
    正常阶段 $ 1.5\;{t}_{{\mathrm{p}}}\geqslant {t}_{{\mathrm{c}}} $
    初始阶段 出现发热现象 $ 3.4\;{\rm{^\circ C}}\geqslant {t}_{{\mathrm{c}}}\geqslant 1.5\;{t}_{{\mathrm{p}}} $
    发展阶段 出现烟雾伴有焦糊味 $ {t}_{{\mathrm{R}}}\geqslant {t}_{{\mathrm{c}}}\geqslant 3.4\;{\rm{^\circ C}} $
    燃烧阶段 出现明火,烟雾并伴有气体异常、
    断电、断带、设备停转等现象
    $ {t}_{{\mathrm{c}}} > {t}_{{\mathrm{R}}} $
    下载: 导出CSV
  • [1] 王双明,申艳军,宋世杰,等. “双碳”目标下煤炭能源地位变化与绿色低碳开发[J]. 煤炭学报,2023,48(7):2599−2612.

    WANG Shuangming,SHEN Yanjun,SONG Shijie,et al. Change of coal energy status and green and low-carbon development under the “dual carbon” goal[J]. Journal of China Coal Society,2023,48(7):2599−2612.

    [2] 国家统计局. 中华人民共和国2022年国民经济和社会发展统计公报 [EB/OL]. [2023−02−28]. https://www.stats.gov.cn/sj/zxfb/202302/t20230228_1919011.html.
    [3] 王德明. 矿井火灾学 [M]. 徐州:中国矿业工学出版社,2008:1−30.
    [4] 丁 震,李浩荡,张庆华. 煤矿灾害智能预警架构及关键技术研究[J]. 工矿自动化,2023,49(4):15−22.

    DING Zhen,LI Haodang,ZHANG Qinghua. Research on intelligent hazard early warning architecture and key technologies for coal mine[J]. Journal of Mine Automation,2023,49(4):15−22.

    [5] 邓 军. 煤田火灾防治理论与技术 [M]. 徐州:中国矿业大学出版社,2014:1−26.
    [6] 白光星,陈炜乐,孙 勇,等. 煤矿带式输送机运输火灾风险智能监测与早期预警技术研究进展[J]. 煤矿安全,2022,53(9):47−54.

    BAI Guangxing,CHEN Weile,SUN Yong,et al. Research progress on intelligent monitoring and early warning technologyof fire risk in coal mine belt conveyor transportation[J]. Safety in Coal Mines,2022,53(9):47−54.

    [7]

    MOHAMMAD Ali Moridi,MOSTAFA Sharifzadeh,YOUHEI Kawamura,et al. Development of wireless sensor networks for underground communication and monitoring systems (the cases of underground mine environments) [J]. Tunnelling and Underground Space Technology,2018,73:127−138.

    [8]

    MUDULI Lalatendu,MISLIRA Devi Prasad,JANA Prisanta K. Application of wireless sensor network for environmental monitoring in underground coal mines:a systematic review[J]. Journal of Network and Computer Applications,2018,106:48−67. doi: 10.1016/j.jnca.2017.12.022

    [9]

    WU Bing,WANG Jingxin,ZHONG Mingyu,et al. Multidimensional analysis of coal mine safety accidents in China-70 years review [J] Mining Metallurgy & Exploration,2023,40(1):253−262.

    [10] 中华人民共和国中央人民政府. 关于印发《关于加快煤矿智能化发展的指导意见》的通知 [EB/OL]. [2020-02-25]. https://www.gov.cn/zhengce/zhengceku/2020-03/05/content_5487081.htm.
    [11] 王国法. 《煤矿智能化建设指南(2021年版)》解读——从编写组视角进行解读[J]. 智能矿山,2021,2(4):2−9.

    WANG Guofa. Interpretation of the coal mine intelligent construction guidelines (2021 Edition) - from the perspective of the writing group[J]. Journal of Intelligent Mine,2021,2(4):2−9.

    [12]

    LU Peizhong,HUANG Yuxuan,JIN Peng,et al. Optimization of a marker gas for analyzing and predicting the spontaneous combustion period of coking coal [J]. Energies,2023,16(23):7802.

    [13] 邓 军,白祖锦,肖 旸,等. 煤自燃指标体系试验研究[J]. 安全与环境学报,2018,18(5):1756−1761.

    DENG Jun,BAI Zujin,XIAO Yang,et al. Experimental investigation and examination for the indexical system of the coal spontaneous combustion[J]. Journal of Safety and Environment,2018,18(5):1756−1761.

    [14]

    WANG Beifang,LYU Yuanhao,LIU Chunbao. Research on fire early warning index system of coal mine goaf based on multi-parameter fusion [J]. Research Square,2024,14(1):485.

    [15] 易 欣,葛 龙,张少航,等. 基于指标气体法对水浸煤的氧化特性研究[J]. 煤炭科学技术,2023,51(3):130−136.

    YI Xin,GE Long,ZHANG Shaohang,et al. Research on oxidation characteristics of aqueous coal based on index gas method[J]. Coal Science and Technology,2023,51(3):130−136.

    [16] 张军杰. 煤矿束管监测系统的现状与发展趋势[J]. 煤矿安全,2019,50(12):89−92.

    ZHANG Junjie. Current situation and development trend of coal mine beam tube monitoring system[J]. Safety in Coal Mines,2019,50(12):89−92.

    [17] 梁运涛,田富超,冯文彬,等. 我国煤矿气体检测技术研究进展[J]. 煤炭学报,2021,46(6):1701−1714.

    LIANG Yuntao,TIAN Fuchao,FENG Wenbin,et al. Research progress of coal mine gas detection technology in China[J]. Journal of China Coal Society,2021,46(6):1701−1714.

    [18]

    KONG Biao,WANG Enyuan,LI Zenghua,et al. Time-varying characteristics of electromagnetic radiation during the coal-heating process [J]. International Journal of Heat and Mass Transfer,2017,108:434−442.

    [19] 王 栋,陆 伟,李金亮,等. 煤矿输气与控制共用管线的高正压束管监测系统研究 [J]. 煤炭科学技术,2019,47(12):141−144.

    WANG Dong,LU Wei,LI Jinliang,et al. Study on high positive pressure beam tube monitoring system of sharing pipeline for gastransmission and pump control [J]. Coal Science and Technology 2019,47(12):141−144.

    [20] 赵晓夏. 正压束管监测系统输气关键部件的研发[J]. 煤矿安全,2020,51(7):92−95.

    ZHAO Xiaoxia. Research and development of key components of positive pressure beam tube monitoring system[J]. Safety in Coal Mines,2020,51(7):92−95.

    [21] 姜 龙. 基于TDLAS的煤矿井下激光型束管监测系统设计 [D]. 济南:山东大学,2018.

    JIANG Long. Design of laser beam tube monitoring system in coal mine based on TDLAS [D]. Jinan:Shandong University,2018.

    [22] 陈晓坤. 煤自燃多源信息融合预警研究 [D]. 西安:西安科技大学,2013.

    CHEN Xiaokun. Study on early warning method for coal spontaneous combustion based on multi-information fusion [D]. Xi’an :Xi’an University of Science and Technology,2013.

    [23]

    CAI Yin,ZHANG Bingbing,WANG Jingyuan,et al. Research on a bimetallic-sensitized FBG temperature sensor [J]. Review of Scientific Instruments,2023,94(3):035010.

    [24] 程永新. 煤矿带式输送机火灾光纤传感检测技术研究 [J]. 煤炭科学技术,2019,47(2):131−135.

    CHENG Yongxin. Technology research on optical fiber sensing detection for belt conveyor fire in coal mine [J]. Coal Science and Technology,2019,472):131−135.

    [25]

    GUO Junyi,SUN Mengya,FANG Jinhui,et al. High-sensitivity seawater salinity sensing with cladding etched fiber bragg grating technology [J]. Ieee Sensors Journal,2023,23(13):14182−14192.

    [26]

    LIU Qinpeng,WANG Danyang,WANG Chunfang,et al. Ultrasensitive temperature sensor based on optic fiber Fabry-Perot interferometer with Vernier effect [J]. Optics Communications,2023,541:129567.

    [27]

    YANG Yu,NIU Yanxiong,WANG Botao,et al. The research on improving the spatial resolution of radiant optical fiber temperature sensor [J]. Measurement Science and Technology,2023,34(3):035111.

    [28]

    RODOLFO A. CARRILLO-BETANCOURT,A. DARIO Lopez-Camero,JUAN Hernandez-Cordero. Luminescent polymer composites for optical fiber sensors [J]. Polymers,2023,15(3):505.

    [29] 袁俊杰,刘喜银,张萌颖,等. 干涉型光纤传感器相位生成载波技术研究进展[J]. 激光杂志,2023,44(9):1−10.

    YUAN Junjie,LIU Xiyin,ZHANG Mengying,et al. Research progress of phase generation carrier technology for interferometric fiber optic sensor[J]. Laser Journal,2023,44(9):1−10.

    [30]

    SEKINE Masashi,FURUYA Masahiro,FURUYA Masahiro. Development of measurement method for temperature and velocity field with optical fiber sensor [J]. Sensors,2023,23(3):1627.

    [31]

    ZHANG Xuebing,ZHENG Zhizhou,WANG Li,et al. A Quasi-Distributed optic fiber sensing approach for interlayer performance analysis of ballastless track-type II plate [J]. Optics & Laser Technology,2024,170:110237.

    [32] 王 宁,朱 永,张 洁. 高温高压环境下光纤法布里-珀罗传感技术研究现状 [J]. 激光与光电子学进展,2023,60(11):70−82.

    WANG Ning,ZHU Yong,ZHANG Jie. Fiber-optic fabry-perot sensing technology in high-temperature environments:a review,2023,60(11):70−82.

    [33]

    GUI Xin,LI Zhengying,FU Xuelei,et al. Distributed optical fiber sensing and applications based on large-scale fiber bragg grating array:review [J]. Journal of Lightwave Technology,2023,41(13):4187-4200.

    [34]

    ZHANG Chao,BAO Yan,CUI Tao,et al. Polarization independent phase-OFDR in rayleigh-based distributed sensing [J]. Journal of Lightwave Technology,2023,41(8):2518-2525.

    [35]

    EKECHUKWU Gerald,SHARMA Jyotsna. Degradation analysis of single-mode and multimode fibers in a full-scale wellbore and its impact on DAS and DTS measurements [J]. Ieee Sensors Journal,2023,23(9):9287-9300.

    [36]

    ZHANG Fengjie,HAN Dongyang,QIN Yueping,et al. Optimization of the monitoring of coal spontaneous combustion degree using a distributed fiber optic temperature measurement system:field application and evaluation [J]. Fire-Switzerland,2023,6(11):410.

    [37] 张辛亥,刘 强,郑学召,等. 基于ZigBee的采空区无线自组网测温系统分析[J]. 煤炭工程,2012(9):122−124. doi: 10.3969/j.issn.1671-0959.2012.09.044

    ZHANG Xinhai,LIU Qiang,ZHENG Xuezhao,et al. Analysis of ZigBee-based wireless self-organized network temperature measurement system in mining area[J]. Coal Engineering,2012(9):122−124. doi: 10.3969/j.issn.1671-0959.2012.09.044

    [38] 文 虎,吴 慷,马 砺,等. 分布式光纤测温系统在采空区煤自燃监测中的应用 [J]. 煤矿安全,2014,45(5):100−102,105.

    WEN Hu,WU Kang,MA Li,et al. Application of distributed optical fiber temperature measurement system in monitorino goaf coal spontaneous combustion [J]. Safety in Coal Mines,2014,45(5):100−102,105.

    [39]

    LIU Zhaojun,TIAN Bian,JIANG Zhuangde,et al. Flexible temperature sensor with high sensitivity ranging from liquid nitrogen temperature to 1200 °C [J]. International Journal of Extreme Manufacturing,2022,5(1):015601.

    [40] 魏元焜. 基于压缩感知理论的声学层析成像温度场重建研究 [D]. 沈阳:沈阳工业大学,2023.

    WEI Yuankun. Research on temperature field reconstruction of acoustictomography based on compressed sensing theory [D]. Shenyang: ShenYang University of Technology,2023.

    [41]

    TANG Chenggang,WANG Yuqiang,LI Yuning,et al. A review of graphene-based temperature sensors [J]. Microelectronic Engineering,2023,278:112015.

    [42] 杨 飞. 高庄煤矿近距离煤层开采采空区遗煤自燃防控技术研究 [D]. 济南:山东科技大学,2018.

    YANG Fei. Study on prevention and control technology of sspontaneous combustion of coal in goaf of short diatance seam mining in Gao Zhuang Mine [D]. Jinan:Shandong University of Science and Technology,2018.

    [43]

    TANG Qianying,ZHONG Fang,LI Qing,et al. Infrared photodetection from 2D/3D van der waals heterostructures [J]. Nanomaterials,2023,13(7):1169.

    [44] 孙继平,孙雁宇,范伟强. 基于可见光和红外图像的矿井外因火灾识别方法[J]. 工矿自动化,2019,45(5):1−5,21.

    SUN Jiping,SUN Yanyu,FAN Weiqiang. Recognition of exogenous fires in mines based on visible and infrared images[J]. Industry and Mine Automation,2019,45(5):1−5,21.

    [45] 赵勇毅,常建华,沈 婉,等. 矿井内CH4与CO2双组分NDIR传感器的设计与实现[J]. 红外技术,2019,41(8):778−785.

    ZHAO Yongyi,CHANG Jianhua,SHEN Wan,et al. NDIR sensor for CH,and CO,gas concentration detection in mines[J]. Infrared Technology,2019,41(8):778−785.

    [46] 王伟峰,邓 军,侯媛彬,等. 基于PSO-SVM的矿用CO传感器非线性补偿方法研究[J]. 仪表技术与传感器,2017(9):5−7,51. doi: 10.3969/j.issn.1002-1841.2017.09.002

    WANG Weifeng,DENG Jun,HOU Yuanbin,et al. Study on nonlinear compensation method of mine carbon monoxide sensor based on PSO-SVM[J]. Instrument Technique and Sensor,2017(9):5−7,51. doi: 10.3969/j.issn.1002-1841.2017.09.002

    [47] 孙瑞彩,龙秉政. 基于SolidWorks Flow Simulation的矿用烟雾传感器气室结构流体仿真分析[J]. 煤矿机械,2023,44(10):92−94.

    SUN Ruicai,LONG Bingzheng. Fluid simulation analysis of gas chamber structure of mine smoke sensor based on solid works flow simulation[J]. Coal Mine Machinery,2023,44(10):92−94.

    [48] 马 砺,范新丽,张晓龙,等. 矿用CH4-CO2红外传感器温度补偿算法模型研究[J]. 激光与红外,2020,50(12):1456−1462. doi: 10.3969/j.issn.1001-5078.2020.12.006

    MA Li,FAN Xinli,ZHANG Xiaolong,et al. Study on temperature compensation algorithm model of mine CH4-CO2 infraredsensor[J]. Laser & Infrared,2020,50(12):1456−1462. doi: 10.3969/j.issn.1001-5078.2020.12.006

    [49]

    GONG Weihua,HU Jie,WANG Zhaowei,et al. Recent advances in laser gas sensors for applications to safety monitoring in intelligent coal mines [J]. Frontiers in Physics,2022,10:1058475.

    [50]

    WANG Xuwei,HU Xiangming,LIANG Yuntao,et al. Early Warning of coal spontaneous combustion:a study of CO response mechanism based on PANI/Ti3AlC2 composite gas sensing film [J]. Chemistry Select,2022,7(26):e202201563.

    [51] 张子良. 基于AHP多特征融合的矿用烟雾传感器设计[J]. 煤矿机械,2023,44(6):6−10.

    ZHANG Ziliang. Design of mine smoke sensor based on AHP multi feature fusion[J]. Coal Mine Machinery,2023,44(6):6−10.

    [52] 王晓强,米万升,杨永辰.基于非接触模式的采空区遗煤自燃预测红外有效探测距离研究[J/OL].红外技术:1-8[2023-12-20].http://kns.cnki.net/kcms/detail/53.1053.TN.20231206.1117.002.html.

    WANG Xiaoqiang, MI Wansheng, YANG Yongchen. Research on infrared effective detection distance for predicting spontaneous combustion of goaf residual coal based on non-contact mode [J/OL]. Infrared Technology:1−8[2023-12-20]. https://link.cnki.net/urlid/53.1053.TN.20231206.1117.002.

    [53] 范伟强. 矿井外因火灾双光谱图像监测方法研究 [D]. 徐州:中国矿业大学,2022.

    FAN Weiqiang. Research on dual-spectrum image monitoring method for mine external fire [D]. Xuzhou:China University of Mining and Technology,2022.

    [54] 李光宇,李守军,缪燕子. 基于机器视觉和灰色模型的矿井外因火灾辨识与定位方法[J]. 矿业安全与环保,2023,50(2):82−87.

    LI Guangyu,LI Shoujun,MIAO Yanzi. ldentification and positioning method of mine external fire based on machine vision and grey model[J]. Mining Safety & Environmental Protection,2023,50(2):82−87.

    [55] 刘孝军,王 飞. 基于AI的煤矿视频智能分析技术[J]. 煤炭科学技术,2022,50(S2):260−264.

    LIU Xiaojun,WANG Fei. Application of video intelligent analysis technology in coal mine based oncomputer vision[J]. Coal Science and Technology,2022,50(S2):260−264.

    [56] 孙继平,李小伟,徐 旭,等. 矿井电火花及热动力灾害紫外图像感知方法研究[J]. 工矿自动化,2022,48(4):1−4,95.

    SUN Jiping,LI Xiaowei,XU Xu,et al. Research on ultraviolet image perception method of mine electric spark and thermal power disaster[J]. Industry and Mine Automation,2022,48(4):1−4,95.

    [57] 范伟强,李晓宇,刘 毅,等. 基于可见光视觉特征融合的矿井外因火灾监测方法[J]. 矿业科学学报,2023,8(4):529−537.

    FAN Weiqiang,LI Xiaoyu,LIU Yi,et al. Mine external fire monitoring method using the fusion of visible visual features[J]. Journal of Mining Science and Technology,2023,8(4):529−537.

    [58] 孙继平,崔佳伟. 矿井外因火灾感知方法 [J]. 工矿自动化,2021,47(4):1−5,38.

    SUN Jiping,CUl Jiawei. Mine external fire sensing method [J]. Industry and Mine Automation,2021,47(4):1−5,38.

    [59] 刘晓琴. 基于视频图像的矿井火灾火焰识别方法研究 [D]. 西安:西安建筑科技大学,2023.

    LIU Xiaoqin. Research on mine fire flame recognition method based onvideo image [D]. Xi’an:Xi’an University of Architecture and Technology,2023.

    [60] 袁 洁,袁 伟,贾 阳,等. 一种基于纹理特征的主动红外烟雾识别方法[J]. 安全与环境学报,2016,16(2):86−89.

    YUAN Jie,YUAN Wei,JIA Yang,et al. Renovated identifying method of the active infrared smoke based on the texture feature analysis[J]. Journal of Safety and Environment,2016,16(2):86−89.

    [61] 单亚锋,马艳娟,付 华,等. 分布式光纤测温系统在煤矿火灾监测中的应用[J]. 传感技术学报,2014,27(5):704−708. doi: 10.3969/j.issn.1004-1699.2014.05.025

    SHAN Yafeng,MA Yanjuan,FU Hua,et al. Application of distributed optical fiber temperature measurement system in coal mine fire monitoring system[J]. Chinese Journal of Sensors and Actuators,2014,27(5):704−708. doi: 10.3969/j.issn.1004-1699.2014.05.025

    [62] 赵 端,李 涛,董彦强,等. 基于边缘智能的煤矿外因火灾感知方法[J]. 工矿自动化,2022,48(12):108−115.

    ZHAO Duan,LI Tao,DONG Yanqiang,et al. Coal mine external fire detection method based on edge intelligence[J]. Industry and Mine Automation,2022,48(12):108−115.

    [63]

    QIU Xuanbing,LI Jie,WEI Yongbo,et al. Study on the oxidation and release of gases in spontaneous coal combustion using a dual-species sensor employing laser absorption spectroscopy [J]. Infrared Physics & Technology,2019,102:103042.

    [64] 王伟峰,张宝宝,王志强,等. 基于YOLOv5的矿井火灾视频图像智能识别方法[J]. 工矿自动化,2021,47(9):53−57.

    WANG Weifeng,ZHANG Baobao,WANG Zhiqiang,et al. Intelligent identification method of mine fire video images based on YOLOv5[J]. Industry and Mine Automation,2021,47(9):53−57.

    [65]

    WANG Zilong,ZHANG Tianhang,HUANG Xinyan. Predicting real-time fire heat release rate by flame images and deep learning [J]. Proceedings of the Combustion Institute,2023,39(3):4115−4123.

    [66]

    LI Sen,YUN Junying,FENG Chunyong,et al. An indoor autonomous inspection and firefighting robot based on SLAM and flame image recognition [J]. Fire-Switzerland,2023,6(3):93.

    [67] 李 涛. 矿井火灾边缘智能检测系统设计与研究 [D]. 徐州:中国矿业大学,2023.

    LI Tao. Design and research of mine fire edge intelligent detection system [D]. Xuzhou:China University of Mining and Technology,2023.

    [68] 朱红青,杨成轶,秦晓峰,等. 瞬变电磁法——整合矿井火区探测的有效方法[J]. 科技导报,2014,32(25):2.

    ZHU Hongqing,YANG Chengyi,QIN Xiaofeng,et al. Integrated coal mine fire district detecting method based on transient electromagnetic method[J]. Science & Technology Review,2014,32(25):2.

    [69]

    CHEN Youying,SHEN Yixin,XIAO Shiyun,et al. A detailed magnetic characterization of combustion products from various metamorphic grade coals [J]. Journal of Applied Geophysics,2023,217:105168.

    [70] 张辛亥,王 辉,郭 戎,等. 松散煤岩中放射性氡多角度扩散试验装置研制及应用[J]. 安全与环境学报,2016,16(6):80−84.

    ZHANG Xinhai,WANG Hui,GUO Rong,et al. Development and application of multiangle diffusion test device for radioactive radon in loose coal rock[J]. Journal of Safety and Environment,2016,16(6):80−84.

    [71] 周 斌,周文强,董智宇,等. 氧化升温过程中煤岩介质体氡析出特性实验研究[J]. 煤炭学报,2020,45(S2):859−866.

    ZHOU Bin,ZHOU Wenqiang,DONG Zhiyu,et al. Experimental study on radon exhalation characteristics of coal and rock duringoxidation and heating[J]. Journal of China Coal Society,2020,45(S2):859−866.

    [72] 刘思鑫,李洪先,王国芝,等. 基于SF6示踪试验的孤岛面采空区漏风规律研究 [J]. 煤炭技术,2021,40(12):166−170.

    LIU Sixin,LI Hongxian,WANG Guozhi,et al. Study on leakage law of lsolated lsland surface mining area based on SF6 tracer test [J]. Coal Technology 2021,40(12):166−170.

    [73] 叶庆树,戴广龙,李 鹏,等. 基于双示踪技术浅埋煤层采空区地表漏风规律研究[J]. 煤炭工程,2020,52(7):83−87.

    YE Qingshu,DAl Guanglong,LI Peng,et al. Air leakage law of surface above shallow coal seam goaf based on dual-element tracing[J]. Coal Engineering,2020,52(7):83−87.

    [74] 牟 义. 神府矿区隐蔽采空区相关致灾因素分析及勘查技术[J]. 地球物理学进展,2020,35(3):1017−1024. doi: 10.6038/pg2020DD0268

    MU Yi. Analysis of disaster-causing factors and exploration techniques in concealed minedareas in Shenfu mining area[J]. Progress in Geophysics,2020,35(3):1017−1024. doi: 10.6038/pg2020DD0268

    [75]

    GUO Jun,SHANG Haoyu,CAI Guobin,et al. Early detection of coal spontaneous combustion by complex acoustic waves in a concealed fire source [J]. Acs Omega,2023,8(19):16519−16531.

    [76]

    YIN Jueli,SHI Linchao,LIU Zhen,et al. Study on the variation laws and fractal characteristics of acoustic emission during coal spontaneous combustion [J]. Processes,2023,11(3):786.

    [77] 陈 欢,杨永亮. 煤自燃预测技术研究现状[J]. 煤矿安全,2013,44(9):1−26.

    CHEN Huan,YANG Yongliang. Research status of predicting coal spontaneous combustion[J]. Safety in Coal Mines,2013,44(9):1−26.

    [78]

    LIANG Yuntao,SONG Shuanglin,GUO Baolong,et al. Study on the coupling characteristics of infrasound-temperature-gas in the process of coal spontaneous combustion and a new early warning method [J]. Combustion Science and Technology,2023:1−21.

    [79] 段锁林,杨 可,毛 丹,等. 基于模糊证据理论算法在火灾检测中的应用[J]. 计算机工程与应用,2017,53(5):231−235. doi: 10.3778/j.issn.1002-8331.1507-0231

    DUAN Suolin,YANG Ke,MAO Dan,et al. Fuzzy evidence theory-based algorithm in application of fire detection[J]. Computer Engineering and Applications,2017,53(5):231−235. doi: 10.3778/j.issn.1002-8331.1507-0231

    [80]

    ZHAI Xiaowei,HAO Le,MA Teng,et al. Non-linear soft sensing method for temperature of coal spontaneous combustion [J] Process Safety and Environmental Protection,2023,170:1023−1031.

    [81] 董 寅. 基于BP神经网络的DS证据理论模型在火灾探测中的应用研究 [D]. 杭州:浙江工业大学,2017.

    DONG Yin. The research on application of ds evidence theory model based on BP neuarl in fire detection [D]. Hangzhou:Zhejiang University of Technology,2017.

    [82] 项平川. 基于LSTM与多传感器信息融合的火灾检测研究 [D]. 桂林:桂林电子科技大学,2023.

    XIANG Pingchuan. Research on fire detection based on LSTM and multi-sensor information fusion[D]. Guilin:Guilin University of Electronic Science and Technology,2023.

    [83] 李正周,方朝阳,顾园山,等. 基于无 线多传感器信息融合的火灾检测系统[J]. 数据采集与处理,2014,29(5):694−698. doi: 10.3969/j.issn.1004-9037.2014.05.005

    LI Zhengzhou,FANG Chaoyang,GU Yuanshan,et al. Fire detection system based on wireless multi-sensor lnformation fusion[J]. Journal of Data Acquisition & Processing,2014,29(5):694−698. doi: 10.3969/j.issn.1004-9037.2014.05.005

    [84] 陈婷婷,赵世忠. 多传感器信息融合模糊控制模型设计[J]. 传感技术学报,2023,36(6):911−915. doi: 10.3969/j.issn.1004-1699.2023.06.009

    CHEN Tingting,ZHAO Shizhong. Design of multi-sensor information fusion fuzzy control model[J]. Chinese Journal of Sensors and Actuators,2023,36(6):911−915. doi: 10.3969/j.issn.1004-1699.2023.06.009

    [85] 邓 军. 徐精彩,阮国强,等. 国内外煤炭自然发火预测预报技术综述[J]. 西安矿业学院学报,1999(4):293−297,337.

    DENG Jun,XU Jingcai,RUAN Guoqiang,et al. Review of the prediction and forecasting technioues of coal self heating both at home and abroad[J]. Journal of Xi'an University of Science and Technology,1999(4):293−297,337.

    [86] 王福生,张志明,董宪伟. 基于BP神经网络的煤自燃倾向性预测:以唐山矿及荆各庄矿为例[J]. 唐山学院学报,2020,33(3):16−20.

    WANG Fusheng,ZHANG Zhiming,DONG Xianwei. Forecast of coal spontaneous combustion tendency based on bp neural network:with tangshan mine and jinggezhuang mine as an example[J]. Tangshan Xueyuan Xuebao,2020,33(3):16−20.

    [87] 昝军才,魏成才,蒋可娟,等. 基于BP神经网络的煤自燃温度预测研究[J]. 煤炭工程,2019,51(10):113−117.

    ZAN Juncai,WEl Chengcai,JIANG Kejuan,et al. Prediction of coal spontaneous combustion temperature based on BP neural network[J]. Coal Engineering,2019,51(10):113−117.

    [88] 刘永立,刘晓伟,王海涛. 基于LSTM神经网络的煤矿火灾预测[J]. 黑龙江科技大学学报,2023,33(1):1−5. doi: 10.3969/j.issn.2095-7262.2023.01.001

    LIU Yongli,LIU Xiaowei,WANG Haitao. Coal mine fire prediction based on LSTM neural network[J]. Journal of Heilongjiang University of Science and Technology,2023,33(1):1−5. doi: 10.3969/j.issn.2095-7262.2023.01.001

    [89] 贾澎涛,林开义,郭风景. 基于PSO-SRU深度神经网络的煤自燃温度预测模型[J]. 工矿自动化,2022,48(4):105−113.

    JIA Pengtao,LIN Kaiyi,GUO Fengjing. A temperature prediction model for coal spontaneous combustion based on PSO-SRU deep artificial neural networks[J]. Journal of Mine Automation,2022,48(4):105−113.

    [90] 孔 彪,朱思想,胡相明,等. 基于改进鲸鱼算法优化BP神经网络的煤自燃预测研究[J]. 矿业安全与环保,2023,50(5):30−36.

    KONG Biao,ZHU Sixiang,HU Xiangming,et al. Study on prediction of coal spontaneous combustion based on MSWOA-BP[J]. Mining Safety & Environmental Protection,2023,50(5):30−36.

    [91] 邓 军,雷昌奎,曹 凯,等. 煤自燃预测的支持向量回归方法[J]. 西安科技大学学报,2018,38(2):175−180.

    DENG Jun,LEl Changkui,CAO Kai,et al. Support vector regression approach for predicting coal spontaneous combustion[J]. Journal of Xi’an University of Science and Technology,2018,38(2):175−180.

    [92] 董天文. 矿井采空区内因火灾动态预警方法研究 [D]. 沈阳:沈阳航空航天大学,2020.

    DONG Tianwen. Research on dynamic early warning method of fire in goaf [D]. Shenyang:Shenyang University of Aeronautics and Astronautics,2020.

    [93] 郭 军,王凯旋,金永飞,等. 煤自燃进程精细划分方法及其智能监测预警:煤火精准防控技术变革[J]. 煤炭学报,2023,48(S1):111−121.

    GUO Jun,WANG Kaixuan,JIN Yongfei,et al. Fine division method of coal spontaneous combustion process and its intelligent monitoring and early warning:technological change in precise prevention and control ofcoal fires[J]. Journal of China Coal Society,2023,48(S1):111−121.

    [94]

    WANG Wei,LIANG Ran,QI Yun,et al. Study on the prediction model of coal spontaneous combustion limit parameters and its application[J]. Fire-Switzerland,2023,6(10):381.

    [95]

    KAMRAN Muhammad,SHAHANI Niaz Muhammad. Decision support system for the prediction of mine fire levels in underground coal mining using machine learning approaches [J]. Mining Metallurgy & Exploration,2022,39(2):591−601.

    [96] 王媛彬,马宪民. 煤矿外因火灾早期探测方法研究[J]. 工矿自动化,2015,41(9):63−66.

    WANG Yuanbin,MA Xianmin. Research of early prediction method for exogenous fire in coal mine[J]. Industry and Mine Automation,2015,41(9):63−66.

    [97] 翟小伟,罗金雷,张羽琛,等. 基于数据填补的煤自燃温度预测模型[J]. 工矿自动化,2023,49(1):28−35,98.

    ZHAI Xiaowei,LUO Jinlei,ZHANG Yuchen,et al. Prediction model of coal spontaneous combustion temperature based on data filling[J]. Journal of Mine Automation,2023,49(1):28−35,98.

    [98] 郑学召,李梦涵,张嬿妮,等. 基于随机森林算法的煤自燃温度预测模型研究[J]. 工矿自动化,2021,47(5):58−64.

    ZHENG Xuezhao,LI Menghan,ZHANG Yanni,et al. Research on the prediction model of coal spontaneous combustion temperature based on random forest algorithm[J]. Journal of Mine Automation,2021,47(5):58−64.

    [99] 邓 军,雷昌奎,曹 凯,等. 采空区煤自燃预测的随机森林方法[J]. 煤炭学报,2018,43(10):2800−2808.

    DENG Jun,LEI Changkui,CAO Kai,et al. Random forest method for predicting coal spontaneous combustion in gob[J]. Journal of China Coal Society,2018,43(10):2800−2808.

    [100] 邓 军,张燕妮,徐通模,等. 煤自然发火期预测模型研究[J]. 煤炭学报,2004,29(5):568−571. doi: 10.3321/j.issn:0253-9993.2004.05.013

    DENG Jun,ZHANG Yanni,XU Tongmo,et al. Study on prediction model of coal spontaneous combustion stage[J]. Journal of China Coal Society,2004,29(5):568−571. doi: 10.3321/j.issn:0253-9993.2004.05.013

    [101] 张 春,题正义,李宗翔. 基于采空区漏风量的遗煤温度预测模拟分析[J]. 防灾减灾工程学报,2015,35(3):328−332,424.

    ZHANG Chun,TI Zhengyi,LI Zongxiang. Simulation analysis of residual coal temperature prediction Based on air leakage volume of goaf[J]. Journal of Disaster Prevention and Mitigation Engineering,2015,35(3):328−332,424.

    [102] 周 旭,朱 毅,张九零,等. 基于PSO-XGBoost的煤自燃程度预测研究[J]. 矿业安全与环保,2022,49(6):79−84.

    ZHOU Xu,ZHU Yi,ZHANG Jiuling,et al. Study on prediction model of coal spontaneous combustion based on PSO-XGBoost[J]. Mining Safety & Environmental Protection,2022,49(6):79−84.

    [103] 朱令起,邵静静,刘 聪,等. 指标气体与温度耦合的烟煤自燃预测模型研究 [J]. 煤矿安全,2016,47(1):44−46,50.

    ZHU Lingqi,SHAO Jingjing,LIU Cong,et al. Research on forecasting model of bituminous coal spontaneous combustion combining indicator gases and temperature [J]. Safety in Coal Mines,2016,47(1):44−46,50.

    [104] 汪 伟,贾宝山,祁 云. 改进CRITIC修正G2-TOPSIS的钻孔自燃预测模型及应用[J]. 中国安全科学学报,2019,29(11):26−31.

    WANG Wei,JIA Baoshan,QI Yun. Prediction model of spontaneous combustion risk of extraction driling based on improved CRITIC modifed G2-TOPSIS method and its application[J]. China Safety Science Journal,2019,29(11):26−31.

    [105] 郑学召,童 鑫,郭 军,等. 煤矿智能监测与预警技术研究现状与发展趋势[J]. 工矿自动化,2020,46(6):35−40.

    ZHENG Xuezhao,TONG Xin,GUO Jun,et al. Research status and development trend of intelligent monitoring and early warningtechnology in coal mine[J]. Journal of Mine Automation,2020,46(6):35−40.

    [106] 朱建国,戴广龙,唐明云,等. 水浸长焰煤自燃预测预报指标气体试验研究 [J]. 煤炭科学技术,2020,48(5):89−94.

    ZHU Jianguo,DAI Guanglong,TANG Mingyun,et al. Experimental study on spontaneous combustion prediction index gas of water immersed long flame coal [J]. Coal Science and Technology,2020,48(5):89−94.

    [107] 王福生,王建涛,顾 亮,等. 煤自燃预测预报多参数指标体系研究[J]. 中国安全生产科学技术,2018,14(6):45−51.

    WANG Fusheng,WANG Jiantao,GU Liang,et al. Study on multi-parameter index system for prediction and forecast of coal spontaneous combustion[J]. Journal of Safety Science and Technology,2018,14(6):45−51.

    [108] 贾海林,崔 博,焦振营,等. 基于TG/DSC/MS技术的煤氧复合全过程及气体产物研究[J]. 煤炭学报,2022,47(10):3704−3714.

    JIA Hailin,CUI Bo,JIAO Zhenying,et al. Study on the whole process and gas products of coal-oxygen complex reactionbased on TG/DSC/MS technology[J]. Journal of China Coal Society,2022,47(10):3704−3714.

    [109]

    KONG Biao,NIU Siyu,CAO Huimin,et al. Study on the application of coal spontaneous combustion positive pressure beam tube classification monitoring and early warning [J]. Environmental Science and Pollution Research,2023,30(30):75735−75751.

    [110]

    ZHU Hongqing,SHENG Kai,ZHANG Yilong,et al. The stage analysis and countermeasures of coal spontaneous combustion based on “five stages” division [J]. Plos One,2018,13(8):e0202724.

    [111]

    GUO Jun,QUAN Yanping,CAI Guobin,et al. Meticulous graded and early warning system of coal spontaneous combustion based on index gases and characteristic temperature [J]. Acs Omega,2023,8(7):6801−6812.

    [112] 仲晓星,王建涛,周 昆. 矿井煤自燃监测预警技术研究现状及智能化发展趋势[J]. 工矿自动化,2021,47(9):7−17.

    ZHONG Xiaoxing,WANG Jiantao,ZHOU Kun. Monitoring and early warning technology of coal spontaneous combustion in coalmines:research status and intelligent development trends[J]. Journal of Mine Automation,2021,47(9):7−17.

    [113] 疏义国,赵庆伟,郁亚楠. 易自燃煤层预测预报气体指标体系研究 [J]. 煤炭科学技术,2019,47(10):229−234.

    SHU Yiguo,ZHAO Qingwei,YU Ya’nan. Research on prediction and forecast indicators system of easy spontaneous combustion coal seam [J]. Coal Science and Technology,2019,47(10):229−234.

    [114]

    XU Xuefeng,ZHANG Fengjie. Evaluation and optimization of multi-parameter prediction index for coal spontaneous combustion combined with temperature programmed experiment [J]. Fire-Switzerland,2023,6(9):368.

    [115] 郭 军,金 彦,王 帆,等. 基于Logistic回归分析的煤自燃多级预警方法研究[J]. 中国安全生产科学技术,2022,18(2):88−93.

    GUO Jun,JIN Yan,WANG Fan,et al. Research on multilevel warning method of coal spontaneous combustion based on Logistic regression analysis[J]. Journal of Safety Science and Technology,2022,18(2):88−93.

    [116]

    WANG Kai,LI Yang,ZHAI Xiaowei,et al. A method for evaluating the coal spontaneous combustion index by the coefficient of variation and Kruskal-Wallis test:a case study [J]. Environmental Science and Pollution Research,2023,30(20):58956−58966.

    [117]

    YANG Yong,FEI Jinbiao,LUO Zhenmin,et al. Experimental study on characteristic temperature of coal spontaneous combustion [J]. Journal of Thermal Analysis and Calorimetry,2023,148(19):10011−10019.

    [118] 岳宁芳,金 彦,孙明福,等. 基于多指标气体的煤自燃进程分级预警研究[J]. 安全与环境学报,2020,20(6):2139−2146.

    YUE Ningfang,JIN Yan,SUN Mingfu,et al. Multi-staged warning system for controlling the coal spontaneous combustion based on the various index gases[J]. Journal of Safety and Environment,2020,20(6):2139−2146.

    [119] 周 旭,王认卓,代亚勋,等. 基于BO-XGBoost的煤自燃分级预警研究[J]. 煤炭工程,2022,54(8):108−114.

    ZHOU Xu,WANG Renzhuo,DAI Yaxun,et al. Classified early warning of coal spontaneous combustion based on BO-XGBoost[J]. Coal Engineering,2022,54(8):108−114.

    [120] 邓 军,杨囡囡,王彩萍,等. 采空区煤自燃“防−抑−灭”协同防灭火关键技术[J]. 煤矿安全,2022,53(9):1−8.

    DENG Jun,YANG Nannan,WANG Caiping,et al. Key technology of “preventing-suppressing-extinguishing” coordinated fire preventingand extinquishing for coal spontaneous combustion in goaf[J]. Safety in Coal Mines,2022,53(9):1−8.

    [121]

    GUO Chaowei,JIANG Shuguang,SHAO Hao,et al. Effect of secondary oxidation of pre-oxidized coal on early warning value for spontaneous combustion of coal [J]. Applied Sciences-Basel,2023,13(5):3154.

    [122]

    ZHANG Zhenya,DONG Ziwen,KONG Song,et al. Influence of long-term immersion in water at different temperatures on spontaneous combustion characteristics of coal [J]. Acs Omega,2023,8(35):31683−31697.

    [123] 李东发,臧燕杰,师吉林. 矿井火灾智能预警系统[J]. 工矿自动化,2022,48(S1):112−115,120.

    LI Dongfa,ZANG Yanjie,SHI Jilin. Intelligent mine fire early warning system[J]. Journal of Mine Automation,2022,48(S1):112−115,120.

    [124] 何勇军,易 欣,王伟峰,等. 煤矿井下电气火灾智能监控与灭火技术综述[J]. 煤矿安全,2022,53(9):55−64.

    HE Yongjun,YI Xin,WANG Weifeng,et al. Review of intelligent monitoring and extinguishing technology of electricafire in coal mine[J]. Safety in Coal Mines,2022,53(9):55−64.

    [125] 张 伟,陈 红,李陈莹,等. 高压电力电缆隧道火灾早期预警判据的实验研究[J]. 火灾科学,2021,30(4):232−241. doi: 10.3969/j.issn.1004-5309.2021.04.06

    ZHANG Wei,CHEN Hong,LI Chenying,et al. Experimental study on early warning criteria of fire in high voltage power cable tunnels[J]. Fire Safety Science,2021,30(4):232−241. doi: 10.3969/j.issn.1004-5309.2021.04.06

    [126]

    WANG Weifeng,HUO Yuhang,KANG Furu,et al. Study on hazard of smoke generated by mining cable fires [J]. Journal of Thermal Analysis and Calorimetry,2023:1−11.

    [127]

    CHEN Xiaolong,HUANG Guozhong,GAO Xuehong,et al. BN-RA:a hybrid model for risk analysis of overload-induced early cable fires [J]. Applied Sciences-Basel,2021,11(19):8922.

    [128]

    LI Chenying,CHEN Jie,PU Ziheng,et al. Research on fire prediction method of high-voltage power cable tunnel based on abnormal characteristic quantity monitoring [J]. Frontiers in Energy Research,2022,10:836588.

    [129]

    XIE Qiyuan,CHEN Hong,YUAN Yanhua. Heat blockage of air gap for inner overheating of high-voltage power cable and delay of early detection [J]. Journal of Fire Sciences,2020,38(4):363−376.

    [130]

    LIU Haonan,ZHU Guoqing,PAN Rongliang,et al. Experimental investigation of fire temperature distribution and ceiling temperature prediction in closed utility tunnel [J]. Case Studies in Thermal Engineering,2019,14:100493.

    [131] 王彦文,张旭然,高 彦,等. 三芯矿用电缆线芯温度预测及故障预警方法[J]. 煤炭学报,2023,48(3):1439−1448.

    WANG Yanwen,ZHANG Xuran,GAO Yan,et al. Prediction of core temperature and early warning of fault of three-core mining cable[J]. Journal of China Coal Society,2023,48(3):1439−1448.

    [132]

    ZHANG Duo,LIU Maoxia,WEN Hu,et al. Use of coupled TG-FTIR and Py-GC/MS to study combustion characteristics of conveyor belts in coal mines [J]. Journal of Thermal Analysis and Calorimetry,2023,148(11):4779−4789.

    [133]

    WANG Weifeng,LIU Hanfei,YANG Bo,et al. Pyrolysis characteristics and dynamics analysis of a coal mine roadway conveyor belt [J]. Journal of Thermal Analysis and Calorimetry,2023,148(11):4823−4832.

    [134] 丁伟杰,刘昱廷,李建英,等. 基于窄带物联网技术的智能火灾报警系统设计[J]. 电工技术,2023(18):19−21,120.

    DING Weijie,LIU Yuting,LI Jianying,et al. Design of intelligent fire alarm system based on narrowband internet of things technology[J]. Electric Engineering,2023(18):19−21,120.

    [135] 贺耀宜,陈晓晶,郝振宇,等. 智能矿山低代码工业物联网平台设计 [J]. 工矿自动化,2023,49(6):141−148,174.

    HE Yaoyi,CHEN Xiaojing,HAO Zhenyu,et al. Design of intelligent mine low code industrial loT platform [J]. Mining Safety & Environmental Protection,2023,49(6):141−148,174.

    [136] 张 静,聂章龙. 基于物联网的煤矿安全监测与预警平台设计[J]. 煤炭技术,2021,40(10):209−211.

    ZHANG Jing,NIE Zhanglong. Design of coal mine safety monitoring and early warning platform based on internet of things[J]. Coal Technology,2021,40(10):209−211.

    [137] 贺耀宜,刘丽静,赵立厂,等. 基于工业物联网的智能矿山基础信息采集关键技术与平台[J]. 工矿自动化,2021,47(6):17−24.

    HE Yaoyi,LIU Lijing,ZHAO Lichang,et al. Key technology and platform of intelligent mine basic information acquisition based on industrial nternet of things[J]. Mining Safety & Environmental Protection,2021,47(6):17−24.

    [138] 陈珍萍,黄友锐,唐超礼,等. 占空比机制下煤矿井下物联网感知层时间同步[J]. 煤炭学报,2015,40(1):232−238.

    CHEN Zhenping,HUANG Yourui,TANG Chaoli,et al. Underground coalmine loTs perception layer time synchronization under dutycycle mechanism[J]. Journal of China Coal Society,2015,40(1):232−238.

    [139]

    ZHAO Yifan,TIAN Shuicheng. Hazard identification and early warning system based on stochastic forest algorithm in underground coal mine [J]. Journal of Intelligent & Fuzzy Systems,2021,41(1):1193−1202.

    [140] 降 华. 基于云计算的煤炭自燃安全监测系统设计[J]. 煤炭技术,2023,42(8):154−158.

    JIANG Hua. Design of coal spontaneous combustion safety monitoring system based on cloud computing[J]. Coal Technology,2023,42(8):154−158.

    [141] 丁恩杰,金 雷,陈 迪. 互联网+感知矿山安全监控系统研究[J]. 煤炭科学技术,2017,45(1):129−134.

    DING Enjie,JIN Lei,CHEN Di. Study on safety monitoring and control system of internet + perception mine[J]. Coal Science and Technology,2017,45(1):129−134.

    [142] 曹允钦. 基于云计算和物联网的煤矿安全动态诊断系统研究[J]. 煤炭科学技术,2016,44(7):135−139.

    CAO Yunqin. Study on dynamic diagnosis system of mine safety based on cloud computingand internet of things[J]. Coal Science and Technology,2016,44(7):135−139.

    [143] 周福宝,时国庆,王雁鸣,等. 矿井密闭全生命周期安全风险监测预警[J]. 工矿自动化,2023,49(6):48−56.

    ZHOU Fubao,SHI Guoqing,WANG Yanming,et al. Safety risks monitoring and warning throughout the full lifecycle of mine airstopping[J]. Journal of Mine Automation,2023,49(6):48−56.

    [144] 卢万杰,付 华,赵洪瑞. 基于深度学习算法的矿用巡检机器人设备识别[J]. 工程设计学报,2019,26(5):527−533. doi: 10.3785/j.issn.1006-754X.2019.05.005

    LU Wanjie,FU Hua,ZHAO Hongrui. Equipment recognition of mining patrol robot based on deep learning algorithm[J]. Chinese Journal of Engineering Design,2019,26(5):527−533. doi: 10.3785/j.issn.1006-754X.2019.05.005

    [145] 靳德武,乔 伟,李 鹏,等. 煤矿防治水智能化技术与装备研究现状及展望[J]. 煤炭科学技术,2019,47(3):10−17.

    JIN Dewu,QIAO Wei,LI Peng,et al. Research status and prospects on intelligent technology and equipment for minewater hazard prevention and control[J]. Coal Science and Technology,2019,47(3):10−17.

    [146] 葛明臣,刘大同. 基于BP神经网络的井下电弧火灾预警研究[J]. 煤炭技术,2020,39(9):195−198.

    GE Mingchen,LIU Datong. Study on downhole arc fire warning based on BP neural network[J]. Coal Technology,2020,39(9):195−198.

    [147] 肖粲俊,刘红梅,石发强,等. 基于数字孪生的煤矿智能管控平台架构研究与实现[J]. 矿业安全与环保,2023,50(5):43−49.

    XIAO Canjun,LIU Hongmei,SHI Faqiang,et al. Research and implementation of intelligent control platform architecture for coal mine based on digital twin[J]. Mining Safety & Environmental Protection,2023,50(5):43−49.

  • 期刊类型引用(6)

    1. 毛清华,柴建权,陈彦璋,薛旭升,王川伟. 激光雷达和IMU融合的煤矿掘进巷道三维重建方法. 煤炭科学技术. 2025(02): 351-362 . 本站查看
    2. 张全平,任助理,郝英豪,邓浩坤,苏士杰,袁瑞甫,方程. 基于移动式三维激光扫描技术的巷道围岩变形监测研究. 煤矿机械. 2025(05): 205-208 . 百度学术
    3. 李慧,李敏超,崔丽珍,马宝良,张清宇,潘冰冰. 露天煤矿三维激光雷达运动畸变算法. 煤炭科学技术. 2025(04): 373-382 . 本站查看
    4. 李倩,陈付龙,郑亮,赵法龙,陈智君. IMU紧耦合的多激光雷达定位与建图方法. 电子测量技术. 2024(09): 26-32 . 百度学术
    5. 崔邵云,鲍久圣,胡德平,袁晓明,张可琨,阴妍,王茂森,朱晨钟. SLAM技术及其在矿山无人驾驶领域的研究现状与发展趋势. 工矿自动化. 2024(10): 38-52 . 百度学术
    6. 胡泽广,金新宇,王婧. 基于可拓学评价模型的露天煤矿矿山地质环境综合评价. 能源与环保. 2024(12): 140-147 . 百度学术

    其他类型引用(1)

图(23)  /  表(6)
计量
  • 文章访问数:  1007
  • HTML全文浏览量:  122
  • PDF下载量:  298
  • 被引次数: 7
出版历程
  • 收稿日期:  2023-12-27
  • 网络出版日期:  2024-01-16
  • 刊出日期:  2024-01-24

目录

/

返回文章
返回