高级检索

不同应变率下松软煤体动态压缩力学特征

朱传奇, 王磊, 刘怀谦, 陈礼鹏, 张帅

朱传奇,王 磊,刘怀谦,等. 不同应变率下松软煤体动态压缩力学特征[J]. 煤炭科学技术,2025,53(4):244−254. DOI: 10.12438/cst.2023-1994
引用本文: 朱传奇,王 磊,刘怀谦,等. 不同应变率下松软煤体动态压缩力学特征[J]. 煤炭科学技术,2025,53(4):244−254. DOI: 10.12438/cst.2023-1994
ZHU Chuanqi,WANG Lei,LIU Huaiqian,et al. Dynamic compression mechanical properties of soft coal under different strain rates[J]. Coal Science and Technology,2025,53(4):244−254. DOI: 10.12438/cst.2023-1994
Citation: ZHU Chuanqi,WANG Lei,LIU Huaiqian,et al. Dynamic compression mechanical properties of soft coal under different strain rates[J]. Coal Science and Technology,2025,53(4):244−254. DOI: 10.12438/cst.2023-1994

不同应变率下松软煤体动态压缩力学特征

基金项目: 安徽省高校自然科学研究资助项目(2023AH040153);国家自然科学基金资助项目(52004007)
详细信息
    作者简介:

    朱传奇: (1991—) ,男,安徽濉溪人,副教授,博士。E-mail:zhuchuanqi2013@126.com

    通讯作者:

    王磊: (1980—),男,山东济宁人,教授,博士。E-mail:leiwang723@126.com

  • 中图分类号: TD313

Dynamic compression mechanical properties of soft coal under different strain rates

  • 摘要:

    深部冲击荷载扰动极易诱发松软煤层围岩失稳事故。为研究不同应变率下松软煤体动态力学特征,针对淮南矿区潘一矿11518工作面松软煤体,压制ϕ50 mm×25 mm的圆柱形型煤试样,运用分离式霍普金森压杆试验系统,开展5组冲击速度下(0.30、0.35、0.40、0.45、0.50 MPa)煤体的动态压缩试验,获取煤体动态应力−应变曲线,计算破碎耗能及耗能密度,筛分不同粒径区间破碎煤体质量,分析煤体力学特征参数、能量耗散及破碎特征随应变率的变化规律,揭示煤体冲击破坏的应变率效应。结果表明:在试验应变率范围内,煤体初始压密阶段均不明显,且随应变率的增高,弹性变形阶段曲线斜率缓慢增大,屈服阶段有所增长,软化阶段应力降幅增大。煤体峰值应力、峰值应变、割线模量随应变率的增高均具有线性增大的变化特点,增幅分别为130.998%、111.335%、52.026%。随应变率的增高,煤体破碎耗能及破碎耗能密度均呈指数增长,破碎耗能占比逐渐增大。应变率越大,破坏后煤体小体积碎块越多,应变率由66.778 s−1变化到259.154 s−1过程中,碎块平均粒径由3.34 mm逐渐降低至2.49 mm,碎块分形维数由2.37缓慢增大到2.61,型煤与原煤(应变率为57.433~240.100 s−1)破碎特征随应变率变化趋势具有一致性。研究结果可为厘清松软煤体冲击动态力学响应过程、防控失稳灾害提供试验依据。

    Abstract:

    The disturbance of deep impact loading can easily induce the instability accident of surrounding rock in soft coal seam. In order to study the dynamic mechanical characteristics of soft coal under different strain rates, aiming at the soft coal of 11518 working face in Panyi Coal Mine of Huainan Mining Area, the cylindrical briquette samples of ϕ50 mm × 25 mm were pressed. The Split Hopkinson Pressure Bar (SHPB) equipment system was used to carry out the dynamic compression test of coal under five groups of impact velocities (0.30, 0.35, 0.40, 0.45, 0.50 MPa). The dynamic stress-strain curve of coal was obtained, the crushing energy consumption and energy consumption density were calculated, the quality of broken coal in different particle size ranges was screened, and the variation of mechanical characteristic parameters, energy dissipation and crushing characteristics of coal with strain rate were analyzed. The strain rate effect of coal impact failure was revealed. The results show that: In the range of strain rate in test, the initial compaction stage of coal is not obvious, and with the increase of strain rate, the slope of the curve in the elastic deformation stage increases slowly, the yield stage increases, and the drop of stress in the softening stage increases. The peak stress, peak strain and secant modulus of coal increase linearly with the increase of strain rate, with an increase of 130.998 %, 111.335 % and 52.026 %, respectively.With the increase of strain rate, the crushing energy consumption and crushing energy consumption density of coal increase exponentially, and the proportion of crushing energy consumption increases gradually. The larger the strain rate, the more the small volume fragments of coal after failure. In the process of strain rate changing from 66.778 s−1 to 259.154 s−1, the average particle size of the fragments gradually decreased from 3.34 mm to 2.49 mm, and the fractal dimension of the fragments increased slowly from 2.37 to 2.61. The variation trend of crushing characteristics of briquette with strain rate is consistent with that of raw coal (strain rate 57.433−240.100 s−1). The research results can provide experimental basis for clarifying the dynamic mechanical response process of soft coal under impact loading and preventing and controlling instability disasters.

  • 安徽两淮矿区煤炭资源丰富,但赋存条件复杂,松软煤层广泛分布[1]。进入深部开采后,采掘工作面开挖爆破、机械振动、覆岩垮落等冲击荷载极易引发松软煤层工作面围岩失稳事故[2],2023年4月23日,安徽界沟煤矿7132综采工作面顶板突然来压造成冒顶事故,导致1人死亡,直接经济损失185万元[3]。冲击荷载扰动是引发围岩失稳灾害的主要因素之一,研究冲击荷载作用下煤体力学特征对揭示围岩失稳机制、防控失稳灾害具有重要的理论意义。

    为获取煤岩动态力学特征,国内外众多学者采用分离式霍普金森压杆(SHPB)开展了大量的冲击试验研究。以层理煤体为研究对象,LI等[4-5]通过真三轴动静组合加载冲击试验,获得了不同层理倾角和冲击速率条件下鄂尔多斯矿区煤体动态力学特征;赵毅鑫、龚爽等[6-7]针对忻州窑煤矿11煤,先后开展了直切槽半圆形及巴西圆盘霍普金森冲击断裂试验,探讨了层理、冲击速度与动态破坏的关系;解北京等[8]研究了含垂直及水平层理煤体动态应力−应变曲线形态,并与砂岩进行了对比。针对组合煤岩,刘少虹等[9]以强度和分形维数为参数,分析了组合煤岩动态强度和破碎后的分形规律;苗磊刚等[10]监测了岩−煤−岩组合体动态强度、变形随冲击速度的变化情况。在不同含水状态煤体动态力学特征测定方面,杨科等[11]得到含水率对煤样能量耗散特性和分形维数的影响规律;宋常胜等[12]探讨了自然与饱水状态煤样动态破坏过程中各能量变化及占比;王文等[13]研究了动静组合加载条件下,自然和饱水煤样动态强度。针对不同尺寸煤体,吴拥政等[14]分析了不同长径比煤样动态峰值应力、组合峰值应力及能量耗散特性;王磊等[15]探究了不同长径比煤样能量耗散和破碎分形规律,揭示了能量耗散的长径比效应。另外,王登科等[16]依据煤体动态力学参数随应变率的变化规律,定量描述了煤体破坏后的自相似特征;李明等[17]量化了不同冲击速度下煤体应力−应变曲线特征及破坏程度;汪海波等[18]对比研究了径向自由和被动围压2种约束状态下煤体动态力学特征。

    上述文献针对层理、煤岩组合形式、含水率、尺寸等因素影响下的煤体动态力学特征进行了大量试验研究,但大都以坚硬煤体为研究对象;另一方面,松软煤层工作面推进过程中,冲击荷载施加速度动态变化,应变率影响下的煤体力学特征变化规律有待进一步研究。基于此,笔者采用分离式霍普金森压杆试验,研究不同应变率下淮南矿区松软煤体动态力学参数、能量耗散及破碎特征,以期为揭示其动态力学响应过程、防控失稳灾害提供理论依据。

    试验所用的原煤选自淮南矿区潘一矿11518工作面,点荷载试验测定的煤体单轴抗压强度为1.61 MPa[19],为典型的松软煤体[20-21],较为松散、破碎,难以制备用于试验的标准原煤试样。本文采用型煤代替原煤开展动态冲击试验,虽然原煤和型煤的形成过程差异较大,但两者力学特性相似性较高,采用型煤代替原煤开展室内试验合理可行[22-23]。型煤制备流程具体如下:① 按照试验标准《煤和岩石物理力学性质测定方法第1部分:采样的一般规定》(GB/T23561.1—2009)采集松软原煤运回实验室后烘干、充分破碎;② 按照试验标准《煤炭筛分试验方法》(GB/T477—2008)筛分出粒径在0.125~0.25 mm范围内的颗粒煤;③ 取一定质量的原料(颗粒煤50 g、纯水12 g、水泥8 g)均匀混合后放入制样模具空腔内;④ 将制样模具置于压力机加载平台后,对空腔内的原料缓慢施加荷载,待试样高度为25 mm左右时,停止压缩并稳压30 min,随后取出试样,如图1所示;⑤ 重复制样,编号,选取初始波速差异性较低的煤样,放于养护箱内养护7 d,保持温度为25 ℃,湿度为60%,标准试样如图2所示,并依据试验中施加冲击气压不同进行编号,详见表1

    图  1  制样过程
    Figure  1.  Sample preparation process
    图  2  型煤试样
    Figure  2.  Briquettes

    图3为代表性煤样CT扫描图像,可见:型煤试样内部无明显的孔裂隙结构,但随机分布大小不一、点状和椭圆状的高密度矿物,试样的整体均质性较强。

    表  1  试样编号及动态力学特征参数
    Table  1.  Test number and dynamic mechanical characteristics parameters of specimen
    编号 直径
    /mm
    长度
    l0/mm
    质量
    m/g
    初始波速
    v0/(km·s−1
    冲击气压
    P/MPa
    冲击速度
    v/(m·s−1
    应变率
    $ \dot \varepsilon $/s−1
    峰值应力
    σd/MPa
    峰值应变
    εd/10−2
    割线模量
    Ed/GPa
    A-1 50.6 25.0 65.79 0.806 0.30 6.6968 92.382 6.218 1.652 3.742
    A-2 50.7 24.9 65.85 0.765 6.7856 66.778 6.823 1.641 4.073
    A-3 50.7 25.4 66.92 0.744 6.4601 102.416 7.051 1.724 4.124
    B-1 50.7 25.6 67.50 0.698 0.35 7.6267 112.796 8.756 2.044 4.450
    B-2 50.4 26.7 69.48 0.815 7.4104 156.738 7.652 1.924 4.721
    B-3 50.7 25.8 67.52 0.762 7.3337 144.974 9.099 2.256 4.803
    C-1 50.6 25.4 66.45 0.710 0.40 8.2173 171.962 10.535 2.450 5.094
    C-2 50.7 25.2 66.89 0.880 8.0302 170.578 9.852 2.109 4.886
    C-3 50.6 24.8 65.19 0.710 8.0700 166.772 12.339 2.611 5.618
    D-1 50.8 24.9 65.93 0.739 0.45 8.5964 202.756 12.009 2.412 5.809
    D-2 50.4 25.8 67.56 0.779 8.4615 197.566 14.148 3.018 5.124
    D-3 50.5 25.2 67.10 0.792 8.8172 190.300 12.658 2.752 5.763
    E-1 50.7 25.2 66.52 0.718 0.50 9.6179 247.044 14.969 3.214 6.321
    E-2 50.7 25.7 66.40 0.801 9.7494 247.390 17.589 3.828 6.701
    E-3 50.4 25.8 65.70 0.780 9.6684 259.154 15.761 3.468 6.192
    下载: 导出CSV 
    | 显示表格
    图  3  试样CT扫描图像
    Figure  3.  Specimen CT scan image

    试验采用直径为50 mm分离式霍普金森压杆试验系统,如图4所示,包含动力单元、压杆单元和监测单元3个部分。动力单元包括高压气腔、整形器+圆柱冲头、腔膛等装置;压杆单元包括入射杆、透射杆、缓冲杆等装置;测量单元主要有SDY2107超动态应变仪、激光测速仪和DL850E示波器等。试验采用的冲头与压杆均为40Cr合金钢,其弹性模量、泊松比、密度、纵波波速分别为210 GPa、0.3、7796 kg/m35190 m/s,试验系统各部件满足试验的要求。

    图  4  松软煤体动态冲击试验系统
    Figure  4.  Dynamic impact test system of soft coal

    试验过程中通过气体压力控制冲击速度,为寻找合理的冲击速度,先开展预冲击试验,冲击气压设定0.1~0.9 MPa,依据煤样破坏程度,最终确定了0.30、0.35、0.40、0.45、0.50 MPa 5组冲击气压,每组冲击气压水平下均开展3个平行试验。试验过程中同步采集波信号,并转换为动态应力、应变等信息,试验结束后,收集破坏后煤样碎块。

    采用正方形橡胶片作为波形整形器,其边长为10 mm,厚度为3 mm,试验采集到的原始波形信号如图5所示,分别记录了入射信号、反射信号和透射信号,波形整体平滑。

    图  5  原始应力波
    Figure  5.  Original stress wave

    采用应力平衡因子η表征应力平衡程度,其计算公式[24]

    $$ \eta = \frac{{2({\sigma _{\rm{SI}}} - {\sigma _{\rm{ST}}})}}{{{\sigma _{\rm{SI}}} + {\sigma _{\rm{ST}}}}} = \frac{{2({U_{\rm{I}}} + {U_{\rm{R}}} - {U_{\rm{T}}})}}{{{U_{\rm{I}}} + {U_{\rm{R}}} + {U_{\rm{T}}}}} $$ (1)

    式中:σSI为入射杆应力,MPa;σST为投射杆应力,MPa;UI为入射电压,MPa;UT为投射电压,MPa;UR为反射电压,MPa。

    图6为冲击过程中代表性煤样两端的应力平衡曲线,由图可知,入射应力、反射应力之和与透射应力基本相等,应力平衡因子较小,煤样两端应力平衡程度满足试验要求。

    图  6  应力平衡
    Figure  6.  Stress balance diagram

    根据弹性杆上应变片测得电压信号,可计算得到入射应变${\varepsilon _{\text{i}}}(t)$和反射应变${\varepsilon _{\text{r}}}(t)$以及透射杆上应变片测得的透射应变${\varepsilon _{\text{t}}}(t)$,从而推导出煤样在冲击过程中的应力$ \sigma $、应变$ \varepsilon $和应变率$ \dot \varepsilon $,其计算公式如下:

    $$ \left\{ \begin{gathered} \sigma (t) = \frac{{EA}}{{{A_0}}}{\varepsilon _{\text{t}}}(t) \\ \varepsilon (t) = - \frac{{2C}}{{{l_0}}}\int_0^t {{\varepsilon _{\text{r}}}(t){\text{d}}t{\text{ }}} \\ \dot \varepsilon (t) = - \frac{{2C}}{{{l_0}}}{\varepsilon _{\text{r}}}(t) \\ \end{gathered} \right. $$ (2)

    式中:A为弹性压杆的横截面积,mm2E为弹性压杆的弹性模量,GPa;C为弹性压杆的纵波波速,m/s;A0为煤样的横截面积,mm2l0为煤样的原始长度,mm。

    不同应变率下的松软煤体力学参数见表1图7为试件的冲击子弹速度与应变率的关系。可以看出,随着冲击速度的升高,煤样应变率呈增大的趋势,二者具有良好的线性增长关系。

    图  7  冲击速度与应变率的关系
    Figure  7.  Relationship between impact velocity and strain rate

    图8为不同应变率下松软煤体动态应力−应变曲线(各应变率水平选取一个代表性试样)。可以看出:各应变率下松软煤体动态应力−应变曲线分布相似,但曲线形态具有一定的差异。具体看来,各煤样加载初期的压密阶段均不明显,主要因为型煤是颗粒煤经高压压制而成,加载前煤样较为密实,且内部无明显孔裂隙结构(图3),冲击荷载作用前期几乎无原始裂隙闭合现象。随加载的进行,煤样进入弹性变形阶段,该阶段外部荷载不足以促使煤样产生微裂隙,应力随应变线性增大,应变率越高,变形曲线越陡。随煤样变形增加,变形曲线过渡至屈服阶段,煤样内部裂隙逐渐萌生、扩展,应力非线性增加,直至极限强度,随应变率的增高,峰值应力增大,应力峰值点也逐渐右移,屈服阶段有所增长。处于软化阶段的煤样内部裂隙充分发育,随变形的增加应力显著降低,且应变率越高,降幅越大。

    图  8  不同应变率下松软煤体动态应力−应变曲线
    Figure  8.  Dynamic stress-strain curves of soft coal at different strain rates

    图9为煤样峰值应力随应变率的变化趋势图,结合表1分析可知:随应变率的增高,煤样峰值应力呈线性增大的变化趋势,由应变率为66.778 s−1时的6.823 MPa增至应变率为259.154 s−1时的15.761 MPa,增加了8.938 MPa,增幅达130.998%,两者间的拟合关系式为

    图  9  煤样峰值应力随应变率的变化趋势
    Figure  9.  Trend chart of peak stress of coal sample with strain rate
    $$\sigma_{\mathrm{d}}=0.056\;5 \dot{\varepsilon}+ 1.508\;3,{R}^2=0.866\;1 $$ (3)

    图10为煤样峰值应变随应变率的变化趋势,结合表1分析可见:煤样峰值应变随应变率的增高线性增大,由应变率为66.778 s−1时的1.641×10−2增至应变率为259.154 s−1时的3.468×10−2,增加了1.827×10−2,增幅达111.335%,两者间的拟合关系式为

    图  10  煤样峰值应变随应变率的变化趋势
    Figure  10.  Trend chart of peak strain of coal sample with strain rate
    $$ \sigma_{{\mathrm{d}}}=0.010\;7 \dot \varepsilon +0.673\;8, R^{2}=0.848\;5 $$ (4)

    图11为煤样割线模量随应变率的变化趋势图,结合表1分析可得:煤样割线模量随应变率的变化规律明显,当应变率为66.778 s−1时,割线模量为4.073 GPa,随应变率的增高线性增大到应变率为259.154 s−1时的6.192 GPa,增加了2.119 GPa,增幅达52.026%,两者间拟合关系式为

    图  11  煤样割线模量随应变率的变化趋势
    Figure  11.  Trend chart of secant modulus of coal sample with strain rate
    $$ E_{{\mathrm{d}}}=0.014\;3 \dot \varepsilon +2.746\;5,R^{2}=0.887\;9 $$ (5)

    SHPB试验中,受高压气体的驱动,子弹以一定速度撞击入射杆,携带的能量以应力波的形式传入弹性杆中。基于一维应力波理论及均匀性假设,入射应力波能量(入射能),经入射杆传递至煤样,一部分能量被煤样吸收用于自身破坏,剩余能量被反射回入射杆中或穿透试样传至透射杆。各压杆上的入射能WI、投射能WT和反射能WR计算公式[25]如下:

    $$ \left\{ {\begin{array}{*{20}{c}} {{W_{\mathrm{I}}} = AEC\displaystyle\int_0^t {\varepsilon _i^2(t){\mathrm{d}}t} } \\ {{W_{\mathrm{R}}} = AEC\displaystyle\int_0^t {\varepsilon _r^2(t){\mathrm{d}}t} } \\ {{W_{\mathrm{T}}} = AEC\displaystyle\int_0^t {\varepsilon _t^2(t){\mathrm{d}}t} } \end{array}} \right. $$ (6)

    根据能量守恒定律,忽略应力波传播过程中的能量损失,可以得到煤样吸收能WS

    $$ {W_{\rm{S}}} = {W_{\rm{I}}} - {W_{\rm{R}}} - {W_{\rm{T}}} $$ (7)

    吸收能中约95%的能量用于煤样内部裂隙扩展,极少部分用于煤样破碎动能及其他热消耗能,可忽略该部分能量,破碎耗能Wd可直接用吸收能Ws近似代替[26],即:

    $$ {W_{\mathrm{S}}} = {W_{\mathrm{d}}} $$ (8)

    为能更好地反映煤样破碎吸能情况,将试验结果处理成单位体积煤样破碎耗散的能量,引入破碎耗能指标,即破碎耗能密度ed 和破碎耗能占比W

    $$ \left\{ {\begin{array}{*{20}{c}} {{e_{\rm{d}}} = \dfrac{{{W_{\rm{S}}}}}{V} = \dfrac{{{W_{\rm{d}}}}}{V}} \\ {\omega = \dfrac{{{W_{\rm{S}}}}}{{{W_{\rm{I}}}}} = \dfrac{{{W_{\rm{d}}}}}{{{W_{\rm{I}}}}}} \end{array}} \right. $$ (9)

    式中:V为煤样体积,mm3

    煤样破碎耗能反映了其内部裂隙不断发育、扩展直至强度完全丧失的全过程,通过研究煤样冲击过程中破碎耗能演化规律,有助于揭示煤样变形破坏特征。为探究应变率对松软煤体能量耗散特性的影响,根据式(6)—式(9)将应变仪上的电信号计算转换为能量参数,不同应变率下煤样能量参数见表2

    表  2  不同应变率下煤样能量参数
    Table  2.  Energy parameters of coal sample at different strain rates
    编号 质量m/g 应变率$ \dot \varepsilon $/s−1 冲击速度v/(m·s−1 入射能WI/J 破碎耗能Wd/J 耗能密度ed/(J·cm−3) 破碎耗能占比ω/%
    A-165.7992.3826.696814.280.430.00863.02
    A-265.8566.7786.785616.960.880.01765.20
    A-366.92102.4166.460119.400.090.00170.45
    B-167.50112.7967.626729.391.150.02233.93
    B-269.48156.7387.410434.281.960.03695.73
    B-367.52144.9747.333733.020.550.01061.67
    C-166.45171.9628.217341.011.710.03354.17
    C-266.89170.5788.030241.411.830.03604.43
    C-365.19166.7728.070042.251.940.03904.60
    D-165.93202.7568.596447.732.530.05025.31
    D-267.56197.5668.461549.932.940.05705.88
    D-367.10190.3008.817252.692.480.04914.71
    E-166.52247.0449.617988.675.910.11626.67
    E-266.40247.3909.749484.625.380.10386.36
    E-365.70259.1549.668482.974.810.09345.79
    下载: 导出CSV 
    | 显示表格

    图12得:煤样破碎耗能随应变率增加呈指数增长,即当应变率为66.778 s−1时,破碎耗能为0.88 J;当应变率增加到112.796、171.962、197.566、247.390 s−1时,破碎耗能分别为1.15、1.71、2.94、5.38 J,较应变率为66.778 s−1时依次增加了30.682%、94.318%、234.091%、511.364%,增长趋势逐渐变大,两者间拟合关系见式(10),破碎耗能占比随应变率增高逐渐增大(图13)。

    图  12  煤样破碎耗能随应变率的变化趋势
    Figure  12.  Trend chart of energy consumption in crushing of coal sample with strain rates
    图  13  煤样破碎耗能占比随应变率的变化趋势
    Figure  13.  Trend chart of the proportion of energy consumption in crushing of coal sample with strain rates
    $$ W_\text{d}=-0.432+0.351{\text{e}}^{ \dot \varepsilon/90.241},{R}^{2}=0.917\;5$$ (10)

    图14为煤样破碎耗能密度随应变率的变化趋势图,可见,煤样破碎耗能密度与应变率呈指数关系,当应变率为66.778 s−1时,破碎耗能密度为0.0176 J/cm3;当应变率增高至112.796 s−1时,破碎耗能密度增加到0.0223 J/cm3,增加幅度为26.705%;当应变率增高至171.962 s−1时,破碎耗能密度增加至0.0335 J/cm3,增加幅度为90.341%;当应变率增高至197.566 s−1时,破碎耗能密度增加至0.0570 J/cm3,增加幅度为223.864%;当应变率增高至247.39 s−1时,破碎耗能密度增加至0.1038 J/cm3,增加幅度为489.773%。破碎耗能密度与应变率拟合关系为

    图  14  煤样破碎耗能密度随应变率的变化趋势
    Figure  14.  Trend chart of energy consumption density in crushing of coal sample with strain rates
    $$ e_\text{d}=-0.008+0.007{\text{e}}^{ \dot \varepsilon/91.242},{R}^{2}=0.916\;0$$ (11)

    图15不同应变率下煤样破坏形态,由图可知,各应变率下煤样均已破坏,且破碎块体特征尺寸皆为厘米级和毫米级并存,但形态存在较大区别。具体表现为:当应变率为92.382 s−1时,厘米级破碎块体较多,毫米级破碎块体较少,随应变率的增高,厘米级破碎块体逐渐减少,毫米级破碎块体逐渐增多,当应变率为247.390 s−1时,破碎块体主要集中在毫米级。总的来看,随应变率的增高,破坏后的煤样小体积碎块逐渐增多,破坏程度明显增大,主要因为高应变率下,用于破碎煤体的能量较大,导致煤样充分破碎,微小碎块比例增加。

    图  15  不同应变率下煤样破碎形态
    Figure  15.  Failure patterns of coal sample at different strain rates

    采用标准土样筛将试验后的煤样破碎块体依次筛分,粒径为0~0.125 mm、0.125~0.250 mm、0.250~0.500 mm、0.500~1.000 mm、1.000~2.000 mm、2.000~3.000 mm、3.000~4.000 mm、4.000~8.000 mm、8.000~12.500 mm和>12.500 mm共10个等级,并分别称量各粒径区间破碎块体质量,结果见表3。为量化不同应变率下煤样破碎程度,采用碎块平均粒径dm描述破碎程度[15]dm

    表  3  不同应变率下煤样碎块粒径分布和分形维数
    Table  3.  Particle size distribution and fractal dimension of coal sample at different strain rates
    编号 $ \dot \varepsilon $/s−1 筛孔间碎块质量/g 碎块平均
    粒径dm/mm
    分形维数D
    <0.125 0.125~
    0.250
    0.250~
    0.500
    0.500~
    1.000
    1.000~
    2.000
    2.000~
    3.000
    3.000~
    4.000
    4.000~
    8.000
    8.000~
    12.500
    >12.500
    A192.3823.269.414.935.086.771.792.699.4913.605.514.752.56
    A266.7780.473.3415.136.348.403.644.8612.928.280.003.342.37
    A3102.4162.368.634.104.386.982.724.227.0119.853.545.152.50
    B1112.7962.7710.014.564.868.642.875.009.6510.442.593.952.55
    B2156.7383.8610.662.604.935.007.702.8210.608.721.493.682.60
    B3144.9742.1013.806.415.888.102.622.846.8714.860.003.652.57
    C1171.9621.5410.217.195.638.533.774.6015.093.712.373.282.52
    C2170.5786.516.345.416.047.301.762.236.9816.011.714.292.62
    C3166.7724.668.705.807.2910.433.806.1712.004.741.212.972.60
    D1202.7562.4111.655.576.048.832.735.0016.355.140.003.102.56
    D2197.5664.0611.425.445.208.152.403.226.7710.383.213.732.62
    D3190.3004.318.394.704.827.873.674.9915.288.600.003.602.58
    E1247.0442.7715.486.756.598.792.503.028.533.291.212.392.63
    E2247.3902.4115.417.466.138.042.752.5712.883.910.002.532.61
    E3259.1542.9614.714.925.648.883.824.9914.102.040.002.492.61
    下载: 导出CSV 
    | 显示表格
    $$ d_{\mathrm{m}} = \frac{{\sum {r_{i}d_{i}} }}{{\sum {r_{i}} }} $$ (12)

    式中:di为不同等级标准筛中碎块的平均尺寸,mm;ri为对应的碎块质量分数。

    图16为煤样碎块平均粒径随应变率的变化趋势图,结合表3可知:随应变的增高,煤样碎块平均粒径逐渐降低,从应变率为66.778 s−1时的3.34 mm,降低至259.154 s−1时的2.49 mm,两者间拟合关系式为

    图  16  煤样碎块平均粒径随应变率的变化趋势
    Figure  16.  Trend chart of the average particle size of coal sample fragments with strain rate
    $$d_\text{m}=-0.010 \dot \varepsilon +5.223,{R}^{2}=0.537\;4$$ (13)

    引入分形维数量化不同应变率下煤样破碎的自相似特征,煤样在冲击破碎后的块度分布方程为

    $$ M(x)/{M_{\mathrm{T}}} = {(x/{x_{\mathrm{m}}})^{3 - D}} $$ (14)

    式中:M(x),MT分别为各孔径筛网下的累计质量和总质量,mm;xxm分别为碎块的粒径和最大粒径,m;D为分形维数。

    进一步有:

    $$ D = 3 - k $$ (15)

    式中:k为在$\lg (M(x)/{M_{\mathrm{T}}}) - \lg (x - {x_{\mathrm{m}}})$的双对数坐标系中所绘制直线的斜率。

    图17为煤样碎块分形维数随应变率的变化趋势图,结合表3分析可知:随应变率的增高,分形维数表现出增大的变化特点,由应变率为66.778 s−1时的2.37逐渐增加至应变率为259.154 s−1时的2.61,增加了0.24。两者间的拟合关系式为:

    图  17  煤样碎块分形维数随应变率的变化趋势
    Figure  17.  Trend chart of fractal dimension of coal sample fragments with strain rate
    $$D=-0.000\;8 \dot \varepsilon +2.427\;3,{R}^{2}=0.526\;6$$ (16)

    煤样碎块平均粒径、分形维数与应变率关系式拟合度不高的可能原因是由于冲击后的碎块更加松软、易碎,筛分过程容易造成碎块的二次破坏,导致试验结果的离散型较大。

    煤样破碎特征随应变率的变化规律可解释为:在低应变率阶段,破碎耗能较小,荷载作用后煤样内部萌生、发育的裂隙数目较小,裂隙扩展、贯通路径也较少,碎块粒径较大、分布相对简单,分形维数较小,煤样破碎程度较低;随应变率的增大,破碎耗能增加,荷载作用后煤样内部萌生、发育的裂隙数目增大,裂隙扩展、贯通路径也增多,碎块粒径减小、粒径分布趋于复杂,分形维数增大,煤样破碎程度较高。

    文献[17]针对直径为50 mm,长度为25 mm的原煤试样,通过设定不同冲击速度,采用分离式霍普金森压杆试验系统,研究了不同应变率条件下煤样的破碎特征,试验方案、试验内容均与本文相似,为对比分析型煤与原煤的冲击破碎特征,基于文献[17]基础数据,运用式(12)、式(14)、式(15),计算求得原煤碎块平均粒径和分形维数,图18图19分别给出了原煤碎块平均粒径及分形维数随应变率的变化趋势图,可以看出:应变率由57.433 s−1增加到240.100 s−1过程中,破坏后的原煤碎块平均粒径由17.60 mm降低至2.47 mm,分形维数由1.86增加到2.76,变化趋势与型煤一致。

    图  18  原煤碎块平均粒径随应变率的变化趋势
    Figure  18.  Trend chart of the average particle size of coal fragments with strain rate
    图  19  原煤破碎分形维数随应变率的变化趋势
    Figure  19.  Trend chart of fractal dimension of coal fragments with strain rate

    1)在试验应变率范围内,松软煤体动态应力−应变曲线的初始压密阶段均不明显,且随应变率的增高,弹性变形阶段曲线斜率缓慢增大,屈服阶段有所增长,软化阶段应力降幅增大。

    2)应变率对松软煤体力学特征参数影响显著,煤体峰值应力、峰值应变、割线模量随应变率的增高均具有线性增大的变化特点,增幅分别为130.998%、111.335%、52.026%。

    3)应变率影响下松软煤体破碎耗能及破碎耗能密度变化规律明显。随应变率的增高,煤体破碎耗能及破碎耗能密度均呈指数增长,破碎耗能占比逐渐增大。

    4)不同应变率下松软煤体破碎特征具有明显的规律性,应变率越大,破坏后煤体小体积碎块越多,随应变率的增高,碎块平均粒径由3.34 mm逐渐降低至2.49 mm,碎块分形维数由2.37缓慢增大到2.61,型煤与原煤(应变率为57.433~240.100 s−1)破碎特征随应变率变化趋势具有一致性。

    本文虽基于破碎形态、粒径分布分析了不同应变率作用后煤体破碎特征,后续的工作中仍需研究破坏煤体裂隙分布及断面形貌,以便更加全面揭示煤体失稳破坏机制。

  • 图  1   制样过程

    Figure  1.   Sample preparation process

    图  2   型煤试样

    Figure  2.   Briquettes

    图  3   试样CT扫描图像

    Figure  3.   Specimen CT scan image

    图  4   松软煤体动态冲击试验系统

    Figure  4.   Dynamic impact test system of soft coal

    图  5   原始应力波

    Figure  5.   Original stress wave

    图  6   应力平衡

    Figure  6.   Stress balance diagram

    图  7   冲击速度与应变率的关系

    Figure  7.   Relationship between impact velocity and strain rate

    图  8   不同应变率下松软煤体动态应力−应变曲线

    Figure  8.   Dynamic stress-strain curves of soft coal at different strain rates

    图  9   煤样峰值应力随应变率的变化趋势

    Figure  9.   Trend chart of peak stress of coal sample with strain rate

    图  10   煤样峰值应变随应变率的变化趋势

    Figure  10.   Trend chart of peak strain of coal sample with strain rate

    图  11   煤样割线模量随应变率的变化趋势

    Figure  11.   Trend chart of secant modulus of coal sample with strain rate

    图  12   煤样破碎耗能随应变率的变化趋势

    Figure  12.   Trend chart of energy consumption in crushing of coal sample with strain rates

    图  13   煤样破碎耗能占比随应变率的变化趋势

    Figure  13.   Trend chart of the proportion of energy consumption in crushing of coal sample with strain rates

    图  14   煤样破碎耗能密度随应变率的变化趋势

    Figure  14.   Trend chart of energy consumption density in crushing of coal sample with strain rates

    图  15   不同应变率下煤样破碎形态

    Figure  15.   Failure patterns of coal sample at different strain rates

    图  16   煤样碎块平均粒径随应变率的变化趋势

    Figure  16.   Trend chart of the average particle size of coal sample fragments with strain rate

    图  17   煤样碎块分形维数随应变率的变化趋势

    Figure  17.   Trend chart of fractal dimension of coal sample fragments with strain rate

    图  18   原煤碎块平均粒径随应变率的变化趋势

    Figure  18.   Trend chart of the average particle size of coal fragments with strain rate

    图  19   原煤破碎分形维数随应变率的变化趋势

    Figure  19.   Trend chart of fractal dimension of coal fragments with strain rate

    表  1   试样编号及动态力学特征参数

    Table  1   Test number and dynamic mechanical characteristics parameters of specimen

    编号 直径
    /mm
    长度
    l0/mm
    质量
    m/g
    初始波速
    v0/(km·s−1
    冲击气压
    P/MPa
    冲击速度
    v/(m·s−1
    应变率
    $ \dot \varepsilon $/s−1
    峰值应力
    σd/MPa
    峰值应变
    εd/10−2
    割线模量
    Ed/GPa
    A-1 50.6 25.0 65.79 0.806 0.30 6.6968 92.382 6.218 1.652 3.742
    A-2 50.7 24.9 65.85 0.765 6.7856 66.778 6.823 1.641 4.073
    A-3 50.7 25.4 66.92 0.744 6.4601 102.416 7.051 1.724 4.124
    B-1 50.7 25.6 67.50 0.698 0.35 7.6267 112.796 8.756 2.044 4.450
    B-2 50.4 26.7 69.48 0.815 7.4104 156.738 7.652 1.924 4.721
    B-3 50.7 25.8 67.52 0.762 7.3337 144.974 9.099 2.256 4.803
    C-1 50.6 25.4 66.45 0.710 0.40 8.2173 171.962 10.535 2.450 5.094
    C-2 50.7 25.2 66.89 0.880 8.0302 170.578 9.852 2.109 4.886
    C-3 50.6 24.8 65.19 0.710 8.0700 166.772 12.339 2.611 5.618
    D-1 50.8 24.9 65.93 0.739 0.45 8.5964 202.756 12.009 2.412 5.809
    D-2 50.4 25.8 67.56 0.779 8.4615 197.566 14.148 3.018 5.124
    D-3 50.5 25.2 67.10 0.792 8.8172 190.300 12.658 2.752 5.763
    E-1 50.7 25.2 66.52 0.718 0.50 9.6179 247.044 14.969 3.214 6.321
    E-2 50.7 25.7 66.40 0.801 9.7494 247.390 17.589 3.828 6.701
    E-3 50.4 25.8 65.70 0.780 9.6684 259.154 15.761 3.468 6.192
    下载: 导出CSV

    表  2   不同应变率下煤样能量参数

    Table  2   Energy parameters of coal sample at different strain rates

    编号 质量m/g 应变率$ \dot \varepsilon $/s−1 冲击速度v/(m·s−1 入射能WI/J 破碎耗能Wd/J 耗能密度ed/(J·cm−3) 破碎耗能占比ω/%
    A-165.7992.3826.696814.280.430.00863.02
    A-265.8566.7786.785616.960.880.01765.20
    A-366.92102.4166.460119.400.090.00170.45
    B-167.50112.7967.626729.391.150.02233.93
    B-269.48156.7387.410434.281.960.03695.73
    B-367.52144.9747.333733.020.550.01061.67
    C-166.45171.9628.217341.011.710.03354.17
    C-266.89170.5788.030241.411.830.03604.43
    C-365.19166.7728.070042.251.940.03904.60
    D-165.93202.7568.596447.732.530.05025.31
    D-267.56197.5668.461549.932.940.05705.88
    D-367.10190.3008.817252.692.480.04914.71
    E-166.52247.0449.617988.675.910.11626.67
    E-266.40247.3909.749484.625.380.10386.36
    E-365.70259.1549.668482.974.810.09345.79
    下载: 导出CSV

    表  3   不同应变率下煤样碎块粒径分布和分形维数

    Table  3   Particle size distribution and fractal dimension of coal sample at different strain rates

    编号 $ \dot \varepsilon $/s−1 筛孔间碎块质量/g 碎块平均
    粒径dm/mm
    分形维数D
    <0.125 0.125~
    0.250
    0.250~
    0.500
    0.500~
    1.000
    1.000~
    2.000
    2.000~
    3.000
    3.000~
    4.000
    4.000~
    8.000
    8.000~
    12.500
    >12.500
    A192.3823.269.414.935.086.771.792.699.4913.605.514.752.56
    A266.7780.473.3415.136.348.403.644.8612.928.280.003.342.37
    A3102.4162.368.634.104.386.982.724.227.0119.853.545.152.50
    B1112.7962.7710.014.564.868.642.875.009.6510.442.593.952.55
    B2156.7383.8610.662.604.935.007.702.8210.608.721.493.682.60
    B3144.9742.1013.806.415.888.102.622.846.8714.860.003.652.57
    C1171.9621.5410.217.195.638.533.774.6015.093.712.373.282.52
    C2170.5786.516.345.416.047.301.762.236.9816.011.714.292.62
    C3166.7724.668.705.807.2910.433.806.1712.004.741.212.972.60
    D1202.7562.4111.655.576.048.832.735.0016.355.140.003.102.56
    D2197.5664.0611.425.445.208.152.403.226.7710.383.213.732.62
    D3190.3004.318.394.704.827.873.674.9915.288.600.003.602.58
    E1247.0442.7715.486.756.598.792.503.028.533.291.212.392.63
    E2247.3902.4115.417.466.138.042.752.5712.883.910.002.532.61
    E3259.1542.9614.714.925.648.883.824.9914.102.040.002.492.61
    下载: 导出CSV
  • [1] 彭苏萍,袁亮. 淮南煤矿三维地震勘探技术应用与效果[J]. 安徽地质,2011,21(2):95−99. doi: 10.3969/j.issn.1005-6157.2011.02.005

    PENG Suping,YUAN Liang. Research and achievements of three dimensional seismic prospecting technologies in Huainan coal mines[J]. Geology of Anhui,2011,21(2):95−99. doi: 10.3969/j.issn.1005-6157.2011.02.005

    [2] 李夕兵,宫凤强. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报,2021,46(3):846−866.

    LI Xibing,GONG Fengqiang. Research progress and prospect of deep mining rock mechanics based on coupled static-dynamic loading testing[J]. Journal of China Coal Society,2021,46(3):846−866.

    [3] 张盈盈,杨云,张景,等. 2021—2023年我国煤矿事故统计分析及致因研究[J]. 矿业研究与开发,2024,44(11):224−231.

    ZHANG Yingying,YANG Yun,ZHANG Jing,et al. Statistical Analysis and Causal Research on Coal Mine Accidents in China from 2021 to 2023[J]. Mining Research and Development,2024,44(11):224−231.

    [4]

    LI J,ZHAO J,GONG S Y,et al. Mechanical anisotropy of coal under coupled biaxial static and dynamic loads[J]. International Journal of Rock Mechanics and Mining Sciences,2021,143:104807. doi: 10.1016/j.ijrmms.2021.104807

    [5]

    LI J,WANG H C,ZHANG Q B. Progressive damage and fracture of biaxially-confined anisotropic coal under repeated impact loads[J]. International Journal of Rock Mechanics and Mining Sciences,2022,149:104979. doi: 10.1016/j.ijrmms.2021.104979

    [6] 赵毅鑫,肖汉,黄亚琼. 霍普金森杆冲击加载煤样巴西圆盘劈裂试验研究[J]. 煤炭学报,2014,39(2):286−291.

    ZHAO Yixin,XIAO Han,HUANG Yaqiong. Dynamic split tensile test of Brazilian disc of coal with split Hopkinson pressure bar loading[J]. Journal of China Coal Society,2014,39(2):286−291.

    [7] 龚爽,赵毅鑫,王震,等. 层理对煤岩动态裂纹扩展分形特征的影响[J]. 煤炭学报,2021,46(8):2574−2582.

    GONG Shuang,ZHAO Yixin,WANG Zhen,et al. Effect of bedding on the fractal characteristics of dynamic crack propagation in coal rocks[J]. Journal of China Coal Society,2021,46(8):2574−2582.

    [8] 解北京,王新艳,吕平洋. 层理煤岩SHPB冲击破坏动态力学特性实验[J]. 振动与冲击,2017,36(21):117−124.

    XIE Beijing,WANG Xinyan,LV Pingyang. Dynamic properties of bedding coal and rock and the SHPB testing for its impact damage[J]. Journal of Vibration and Shock,2017,36(21):117−124.

    [9] 刘少虹,秦子晗,娄金福. 一维动静加载下组合煤岩动态破坏特性的试验分析[J]. 岩石力学与工程学报,2014,33(10):2064−2075.

    LIU Shaohong,QIN Zihan,LOU Jinfu. Experimental study of dynamic failure characteristics of coal-rock compound under one-dimensional static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2064−2075.

    [10] 苗磊刚,牛园园,石必明. 不同应变率下岩-煤-岩组合体冲击动力试验研究[J]. 振动与冲击,2019,38(17):137−143.

    MIAO Leigang,NIU Yuanyuan,SHI Biming. Impact dynamic testsfor rock-coal-rock combination under different strain rates[J]. Journal of Vibration and Shock,2019,38(17):137−143.

    [11] 杨科,魏祯,窦礼同,等. 含水煤样动态拉伸能量演化与破坏特征试验研究[J]. 煤炭学报,2021,46(2):398−411.

    YANG Ke,WEI Zhen,DOU Litong,et al. Research on dynamic tensile energy evolution and fractal characteristics of water-bearing coal samples[J]. Journal of China Coal Society,2021,46(2):398−411.

    [12] 宋常胜,王文,刘凯,等. 真三轴动静组合加载饱水煤样能量耗散特征[J]. 煤炭学报,2022,47(5):2011−2026.

    SONG Changsheng,WANG Wen,LIU Kai,et al. Energy dissipation characteristics of water saturated coal samples under true triaxial dynamic and static combined loading[J]. Journal of China Coal Society,2022,47(5):2011−2026.

    [13] 王文,张世威,LIUKai,等. 真三轴动静组合加载饱水煤样动态强度特征研究[J]. 岩石力学与工程学报,2019,38(10):2010−2020.

    WANG Wen,ZHANG Shiwei,LIUKAI,et al. Experimental study on dynamic strength characteristics of water-saturated coal under true triaxial static-dynamic combination loadings[J]. Chinese Journal of Rock Mechanics and Engineering,2019,38(10):2010−2020.

    [14] 吴拥政,孙卓越,付玉凯. 三维动静加载下不同长径比煤样力学特性及能量耗散规律[J]. 岩石力学与工程学报,2022,41(5):877−888.

    WU Yongzheng,SUN Zhuoyue,FU Yukai. Mechanical characteristics and energy dissipation law of coal samples with different length-diameter ratios under three-dimensional dynamic and static loading[J]. Chinese Journal of Rock Mechanics and Engineering,2022,41(5):877−888.

    [15] 王磊,袁秋鹏,谢广祥,等. 冲击载荷下煤样能量耗散与破碎分形的长径比效应[J]. 煤炭学报,2022,47(4):1534−1546.

    WANG Lei,YUAN Qiupeng,XIE Guangxiang,et al. Length-diameter ratio effect of energy dissipation and fractals of coal samples under impact loading[J]. Journal of China Coal Society,2022,47(4):1534−1546.

    [16] 王登科,刘淑敏,魏建平,等. 冲击载荷作用下煤的破坏特性试验研究[J]. 采矿与安全工程学报,2017,34(3):594−600.

    WANG Dengke,LIU Shumin,WEI Jianping,et al. The failure characteristics of coal under impact load in laboratory[J]. Journal of Mining & Safety Engineering,2017,34(3):594−600.

    [17] 李明,茅献彪,曹丽丽,等. 高应变率下煤力学特性试验研究[J]. 采矿与安全工程学报,2015,32(2):317−324.

    LI Ming,MAO Xianbiao,CAO Lili,et al. Experimental study on mechanical properties of coal under high strain rate[J]. Journal of Mining & Safety Engineering,2015,32(2):317−324.

    [18] 汪海波,高强,宗琦,等. 冲击载荷作用下硬煤的动态力学特性研究[J]. 采矿与安全工程学报,2019,36(2):344−350.

    WANG Haibo,GAO Qiang,ZONG Qi,et al. Research on dynamic mechanical properties of hard coal under impact load[J]. Journal of Mining & Safety Engineering,2019,36(2):344−350.

    [19] 朱传奇,谢广祥,王磊. 松软煤体波速演化规律与破坏程度量化指标[J]. 煤炭学报,2022,47(7):2609−2622.

    ZHU Chuanqi,XIE Guangxiang,WANG Lei. Wave velocity evolution law and quantitative index of damage degree of soft coal[J]. Journal of China Coal Society,2022,47(7):2609−2622.

    [20] 聂百胜,薛斐. 软煤钻杆研究进展及发展趋势[J]. 煤炭科学技术,2016,44(1):47−54.

    NIE Baisheng,XUE Fei. Research progress and development tendency of borehole drilling rod for soft seam[J]. Coal Science and Technology,2016,44(1):47−54.

    [21] 周斌,郝晋伟,张春华. 松软煤层瓦斯钻孔失稳分析及动态密封技术[J]. 煤田地质与勘探,2016,44(4):161−166. doi: 10.3969/j.issn.1001-1986.2016.04.031

    ZHOU Bin,HAO Jinwei,ZHANG Chunhua. Analysis on borehole instability under coupled multiple stress and dynamic sealing technology in soft coal seam[J]. Coal Geology & Exploration,2016,44(4):161−166. doi: 10.3969/j.issn.1001-1986.2016.04.031

    [22] 许江,叶桂兵,李波波,等. 不同黏结剂配比条件下型煤力学及渗透特性试验研究[J]. 岩土力学,2015,36(1):104−110.

    XU Jiang,YE Guibing,LI Bobo,et al. Experimental study of mechanical and permeability characteristics of moulded coals with different binder ratios[J]. Rock and Soil Mechanics,2015,36(1):104−110.

    [23] 朱传奇,谢广祥,王磊,等. 含水率及孔隙率对松软煤体强度特征影响的试验研究[J]. 采矿与安全工程学报,2017,34(3):601−607.

    ZHU Chuanqi,XIE Guangxiang,WANG Lei,et al. Experimental study on the influence of moisture content and porosity on soft coal strength characteristics[J]. Journal of Mining & Safety Engineering,2017,34(3):601−607.

    [24]

    LI X B,ZOU Y,ZHOU Z L. Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method[J]. Rock Mechanics and Rock Engineering,2014,47(5):1693−1709.

    [25] 金解放,徐虹,余雄,等. 动荷载和含水率对红砂岩破坏及能耗特性的影响[J]. 岩土力学,2022,43(12):3231−3240.

    JIN Jiefang,XU Hong,YU Xiong,et al. Effect of dynamic load and water content on failure and energy dissipation characteristics of red sandstone[J]. Rock and Soil Mechanics,2022,43(12):3231−3240.

    [26] 洪亮. 冲击荷载下岩石强度及破碎能耗特征的尺寸效应研究[D]. 长沙:中南大学,2008.

    HONG Liang. Study on the size effect of rock strength and crushing energy consumption characteristics under impact load[D]. Changsha:Central South University,2008.

图(19)  /  表(3)
计量
  • 文章访问数:  33
  • HTML全文浏览量:  6
  • PDF下载量:  39
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-25
  • 网络出版日期:  2025-04-07
  • 刊出日期:  2025-04-24

目录

/

返回文章
返回