Key technologies and practices for safe, efficient, and intelligent mining of deep coal resources
-
摘要:
深地煤炭资源地质赋存复杂,智能化开采是深地资源安全、高效、绿色发展的必由之路。智能化开采成套技术与装备能否适应千米深井复杂地质环境、控制围岩稳定并驱动装备跟随煤层自动推进是影响煤炭安全高效开采、减少作业人员、降低劳动强度的关键。山东能源集团聚焦千米深井智能化开采围岩控制理论,提出了以强度耦合、刚度耦合和稳定性耦合为核心的支架−围岩智能耦合关系,并形成与之相适应的智能耦合控制逻辑;为突破超大采高智能综采开采工艺及超高煤壁围岩控制技术瓶颈,提出了超大采高液压支架工作阻力“双因素控制法”,发明了三滚筒采煤机及其配套开采方法,研制了与超大采高智能综采相匹配的液压支架及配套系统;针对超大采高综放开采智能化放煤理论与围岩控制难题,提出超大采高综放支架−围岩耦合协调采放空间控制方法,创新了超大采高综放“马鞍形”开采工艺,研制了7 m超大采高智能综放开采液压支架及配套系统;研发了无反复支撑、快速循环自移的单元式超前支架,解决了回采巷道超前支护距离长、支护技术与装备适应性差的问题;开发了基于惯导和精准地质模型的智能采煤控制系统,解决了深部矿井工作面设备智能控制及困扰连续生产的难题;搭建了千米深井智能化开采综合管控平台,实现了千米深井重大灾害多源异构数据融合与管控。上述核心技术在山东能源集团赵楼煤矿7302工作面、东滩煤矿3308工作面等多个工作面进行了智能化开采示范建设,取得了良好的应用效果,所获成果整体推动了我国深地煤炭资源安全高效智能化开采水平,可以为类似矿井智能化工作面建设提供理论与技术借鉴。
Abstract:The geological conditions of deep coal resources are complex, and intelligent mining is the only way for the safe, efficient, and green development of deep coal resources. The complete set of intelligent mining technology and equipment that adapts to the complex geological environment of a kilometer deep well, controls the stability of surrounding rock, and drives the equipment to automatically advance along with the coal seam is the key to affecting safe and efficient coal mining, reducing operating personnel, and reducing labor intensity. Focusing on the theory of intelligent mining surrounding rock control for kilometer deep mines, the intelligent coupling relationship between hydraulic support and surrounding rock is proposed with strength coupling, stiffness coupling, and stability coupling, and a corresponding intelligent coupling control logic is formed. In order to break through the bottleneck of ultra-large mining height intelligent fully mechanized mining technology and super-high coal wall control technology, the “dual factor control method” for the working resistance of hydraulic support is put forward, the three-drum shearer and its mining method are invented, and the hydraulic support and supporting system matching with ultra-large mining height intelligent fully mechanized top coal mining are developed. To solve the problems of intelligent coal caving theory and surrounding rock control in fully-mechanized top-coal caving mining with ultra-large mining height, a control method that utilizes the intelligent coupling relationship between the support and surrounding rock to coordinate the mining and caving space is proposed. By studying the transport law of the top coal, the “saddle shaped” mining process of ultra-large mining height fully-mechanized top-coal caving is innovated. Then, an intelligent hydraulic support and supporting system for fully-mechanized top-coal caving mining with a height of 7 meters are developed. Aiming at the problems of long advance support distance and poor adaptability of support technology and equipment in mining roadway, a unit advance support with no repeated support and fast cycle self-moving is developed. An intelligent coal mining control system based on inertial navigation and precise geological model is developed, which solves the problems of intelligent control of equipment and continuous production in deep mine working face. Finally, a comprehensive management and control platform for intelligent mining of kilometer deep mines is established, achieving multi-source heterogeneous data fusion and control of major disasters in kilometer deep mines. The above intelligent mining technologies have been demonstrated and constructed in multiple working faces such as Zhaolou Coal Mine 7302 working face and Dongtan Coal Mine 3308 working face, and good application results have been achieved. The achievements have overall promoted the level of safe, efficient, and intelligent mining of deep coal resources in China, and can provide theoretical and technical references for the construction of intelligent chemical working faces in similar mines.
-
-
支架高度/m 2.2~4.8 顶梁宽度/mm 1 000 顶梁长度/mm 2 040 工作阻力/kN 2 000 初撑力/kN 1 980 支护强度/MPa 1 泵站压力/MPa 31.5 操纵方式 电液控制 立柱数量/(根·架−1) 2 立柱型式 双伸缩 初撑力/kN 990 额定工作阻力/kN 1 000 立柱缸径/mm ø200/ø160 立柱杆径/mm ø190/ø130 表 1 采煤机三维坐标转换及误差
Table 1 Three dimensional coordinate conversion and error of coal mining machine
移动后特征点 实测绝对坐标 三维坐标转换绝对坐标 误差 东距E/m 北距N/m 高程Z/m 东距E/m 北距N/m 高程Z/m ΔE/m ΔN/m ΔZ/m GD1 20400662.143 3916150.080 873.374 20400662.16 3916150.051 873.420 0.020 −0.029 −0.046 GD2 20400662.369 3916149.627 873.409 20400662.37 3916149.610 873.452 0.005 −0.017 −0.043 GD3 20400661.901 3916149.416 873.373 20400661.92 3916149.393 873.419 0.024 −0.023 −0.046 -
[1] 谢和平,高 峰,鞠 杨,等. 深地科学领域的若干颠覆性技术构想和研究方向[J]. 工程科学与技术,2017,49(1):1−8. XIE Heping,GAO Feng,JU Yang,et al. Novel idea and disruptive technologies for the exploration and research of deep earth[J]. Advanced Engineering Sciences,2017,49(1):1−8.
[2] 齐庆新,李一哲,赵善坤,等. 我国煤矿冲击地压发展70年:理论与技术体系的建立与思考[J]. 煤炭科学技术,2019,47(9):1−40. QI Qingxin,LI Yizhe,ZHAO Shankun,et al. Seventy years development of coal mine rockburst in China:establishment and considera-tion of theory and technology system[J]. Coal Science and Technology,2019,47(9):1−40.
[3] 孟祥军,张广超,李 友,等. 深厚表土覆岩结构运移演化及高应力突变致灾机理[J]. 煤炭学报,2023,48(5):1919−1931. MENG Xiangjun,ZHANG Guangchao,LI You,et al. Migration evolution laws of overburden structure with deep-lying thick surface soil and disaster mechanism induced by high stress mutation[J]. Journal of China Coal Society,2023,48(5):1919−1931.
[4] 孟祥军,李 伟. 山东能源集团煤炭产业技术创新体系建设[J]. 煤炭科学技术,2022,50(4):1−41. MENG Xiangjun,LI Wei. Construction of Shandong Energy Group coal industry technological innovation system[J]. Coal Science and Technology,2022,50(4):1−41.
[5] 齐庆新,马世志,孙希奎,等. 煤矿冲击地压源头防治理论与技术架构[J]. 煤炭学报,2023,48(5):1861−1874. QI Qingxin,MA Shizhi,SUN Xikui,et al. Theory and technical framework of coal mine rock burst origin prevention[J]. Journal of China Coal Society,2023,48(5):1861−1874.
[6] 王国法,庞义辉,刘 峰,等. 智能化煤矿分类、分级评价指标体系[J]. 煤炭科学技术,2020,48(3):1−13. WANG Guofa,PANG Yihui,LIU Feng,et al. Specification and classification grading evaluation index system for intelligent coal mine[J]. Coal Science and Technology,2020,48(3):1−13.
[7] 王国法,刘 峰,孟祥军,等. 煤矿智能化(初级阶段)研究与实践[J]. 煤炭科学技术,2019,47(8):1−34. WANG Guofa,LIU Feng,MENG Xiangjun,et al. Research and practice on intelligent coal mine construction (primary stage)[J]. Coal Science and Technology,2019,47(8):1−36.
[8] 王国法,刘 峰,庞义辉. 煤矿智能化-煤炭工业高质量发展的核心技术支撑[J]. 煤炭学报,2019,44(2):349−357. WANG Guofa,LIU Feng,PANG Yihui,et al. Coal mine intellectualization:the core technology of high quality development[J]. Journal of China Coal Society,2019,44(2):349−357.
[9] 李 伟. 深部煤炭资源智能化开采技术现状与发展方向[J]. 煤炭科学技术,2021,49(1):139−145. LI Wei. Current status and development direction of intelligent mining technology for deep coal resources[J]. Coal Science and Technology,2021,49(1):139−145.
[10] 王国法,庞义辉,任怀伟. 千米深井三软煤层智能开采关键技术与展望[J]. 煤炭工程,2019,51(1):1−6 WANG Guofa,PANG Yihui,REN Huaiwei. Intelligent mining technology development path and prospect for three-soft seam of deep coal mine[J]. Coal Engineering,2019,51(1):1−6.
[11] 王国法,张 良,李首滨,等. 煤矿无人化智能开采系统理论与技术研发进展[J]. 煤炭学报,2023,48(1):34−53. WANG Guofa,ZHANG Liang,LI Shoubin,et al. Progresses in theory and technological development of unmanned smart mining system[J]. Journal of China Coal Society,2023,48(1):34−53.
[12] 康红普,姜鹏飞,黄炳香,等. 煤矿千米深井巷道围岩支护-改性-卸压协同控制技术[J]. 煤炭学报,2020,45(3):845−864. KANG Hongpu,JIANG Pengfei,HUANG Bingxiang,et al. Roadway strata control technology by means of bolting-modi-fication-destressing in synergy in 1 000 m deep coal mines[J]. Journal of China Coal Society,2020,45(3):845−864.
[13] 康红普,王国法,姜鹏飞,等. 煤矿千米深井围岩控制及智能开采技术构想[J]. 煤炭学报,2018,43(7):1789−1800. KANG Hongpu,WANG Guofa,JIANG Pengfei,et al. Conception for strata control and intelligent mining technology in deep coal mines with depth more than 1000 m[J]. Journal of China Coal Society,2018,43(7):1789−1800.
[14] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305. XIE Heping. Research review of the state key research development program of China:deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.
[15] 范京道,魏 东,汪青仓,等. 智能化建井理论技术研究与工程实践[J]. 煤炭学报,2023,48(1):470−483. FAN Jingdao,WEI Dong,WANG Qingcang,et al. Theory and practice of intelligent coal mine shaft excavation[J]. Journal of China Coal Society,2023,48(1):470−483.
[16] 葛世荣,王世佳,曹 波,等. 智能采运机组自主定位原理与技术[J]. 煤炭学报,2022,47(1):75−86. GE Shirong,WANG Shijia,CAO Bo,et al. Autonomous positioning principle and technology of intelligent shearer and conveyor[J]. Journal of China Coal Society,2022,47(1):75−86.
[17] 张 帆,葛世荣. 矿山数字孪生构建方法与演化机理[J]. 煤炭学报,2023,48(1):510−522. ZHANG Fan,GE Shirong. Construction method and evolution mechanism of mine digital twins[J]. Journal of China Coal Society,2023,48(1):510−522.
[18] 鞠金峰,许家林,王庆雄. 大采高采场关键层“悬臂梁”结构运动型式及对矿压的影响[J]. 煤炭学报,2011,36(12):2115−2120. JU Jinfeng,XU Jialin,WANG Qingxiong. Cantilever structure moving type of key strata and its influence on ground pressure in large mining height workface[J]. Journal of China Coal Society,2011,36(12):2115−2120.
[19] 苏 涛. 推进速度对大采高工作面关键层“悬臂梁”垮落形式的影响[J]. 中州煤炭,2015(5):71−73. SU Tao. Influence of propulsive velocity on caving form of cantilever beam in key layer of large mining height working face[J]. Zhongzhou Coal,2015(5):71−73.
[20] 许家林,鞠金峰. 特大采高综采面关键层结构形态及其对矿压显现的影响[J]. 岩石力学与工程学报,2011,30(8):1547−1556. XU Jialin,JU Jinfeng. Strauctral morphology of key stratum and its infleence on strata behaviors in fully-mechanized face with super-lager mining height [J]. Chinese Journal of Rock Mechanics and Engineering,2011,30(8):1547−1556.
[21] 刘全喜. 刮板输送机智能控制系统在煤矿综采工作面中的应用[J]. 当代化工研究,2021(9):63−64. LIU Quanxi. Application of intelligent control system of scraper conveyor in fully mechanized coal mining face[J]. Modern Chemical Research,2021(9):63−64.
[22] 彭苏萍. 我国煤矿安全高效开采地质保障系统研究现状及展望[J]. 煤炭学报,2020,45(7):2331−2345. PENG Suping. Current status and prospects of research on geological assurance system for coal mine safe and high efficient mining[J]. Journal of China Coal Society,2020,45(7):2331−2345.
-
期刊类型引用(1)
1. 杨继东, 仝艳军. 深部突出矿井采空区瓦斯地面井高效抽采技术. 工矿自动化. 2025(06) 百度学术
其他类型引用(0)