高级检索

煤与天然气协同开采理论与技术构想

杨胜利, 张燊, 王旭东, 张凯, 辛德林, 翟瑞昊

杨胜利,张 燊,王旭东,等. 煤与天然气协同开采理论与技术构想[J]. 煤炭科学技术,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720
引用本文:

杨胜利,张 燊,王旭东,等. 煤与天然气协同开采理论与技术构想[J]. 煤炭科学技术,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720

YANG Shengli,ZHANG Shen,WANG Xudong,et al. Theoretical and technological concepts of synergistic coal and natural gas extraction[J]. Coal Science and Technology,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720
Citation:

YANG Shengli,ZHANG Shen,WANG Xudong,et al. Theoretical and technological concepts of synergistic coal and natural gas extraction[J]. Coal Science and Technology,2024,52(4):50−68

. DOI: 10.12438/cst.2023-1720

煤与天然气协同开采理论与技术构想

基金项目: 

国家自然科学基金资助项目(51934008,51904304);中央高校基本科研业务费资助项目(2023YQTD02)

详细信息
    作者简介:

    杨胜利: (1983—),男,内蒙古宁城人,教授,博士生导师。E-mail:yslcumtb@163.com

    通讯作者:

    张燊: (1998—)男,河北石家庄人,博士研究生。E-mail:zshencumtb@163.com

  • 中图分类号: TD821; TE375

Theoretical and technological concepts of synergistic coal and natural gas extraction

Funds: 

National Natural Science Foundation of China (51934008, 51904304); Fundamental Research Funds for the Central Universities (2023YQTD02)

  • 摘要:

    我国存在大量的煤炭与天然气重叠赋存资源,出于对资源开采效率的要求,大量的煤与天然气重叠资源需要在同一时空内同步开采,传统的煤与天然气开采理论与技术难以满足协同开采出现的技术难题,煤与天然气协同开采的进程受到了严重制约。基于此,结合国内煤与天然气重叠赋存情况对煤与天然气协同开采进行了科学定义,总结了已有可借鉴的煤与天然气开采技术和相关理论。建立了天然气井近场岩体力学理论、天然气近场围岩耦合损伤理论、“围岩–水泥环–套管”耦合损伤理论、煤与天然气协同开采垂直场围岩耦合损伤理论,揭示了煤与天然气协同开采围岩的耦合损伤机理,为煤与天然气技术体系的构建提供了理论基础。提出了“煤与天然气协同开采技术”“煤炭开采通过废弃井技术”和“天然气近场小煤柱留设技术”3项技术以及“协同开采分区规划系统”“透明地质与生产信息动态监测系统”和“煤与天然气协同区安全监测与评价系统”三大系统,为煤与天然气协同开采提供技术支持,提高煤炭与天然气资源的开采效率。在此基础上,构建了煤与天然气协同开采的理论与技术体系,明确了煤与天然气协同开采未来的研究重点,提出了我国煤与天然气资源安全、绿色、高效协同开采的技术路径与研究方向。

    Abstract:

    There are a large number of overlapping coal and natural gas resources in China, and due to the requirement of resource extraction efficiency, a large number of overlapping coal and natural gas resources need to be extracted synchronously in the same time and space, and the traditional coal and natural gas extraction theories and technologies are difficult to meet the technical problems arising from coordinated extraction, and the process of coordinated extraction of coal and natural gas has been seriously constrained. Based on this, a scientific definition of coal and natural gas synergistic mining is made based on the overlapping coal and natural gas resources in China, and the existing coal and natural gas mining technologies and related theories are summarised. We have established the near-field rock mechanics theory of natural gas wells, the coupled damage theory of natural gas near-field surrounding rock, the coupled damage theory of “surrounding rock-cement ring-casing”, and the coupled damage theory of vertical surrounding rock of coal and natural gas synergistic mining, which reveal the coupled damage mechanism of surrounding rock of coal and natural gas synergistic mining, and provide a theoretical basis for the construction of the technology system of coal and natural gas. It provides a theoretical basis for the construction of coal and natural gas technology system. The three technologies of “Coal and Natural Gas Cooperative Mining Technology”, “Coal Mining through Abandoned Wells Technology” and “Natural Gas Near-Field Small Coal Pillar Retention Technology” are proposed, as well as the “Coal and Natural Gas Cooperative Mining Zoning Planning Technology”. Three major systems, namely, “Coal and Natural Gas Cooperative Mining Zoning Planning System”, “Transparent Geological and Production Information Dynamic Monitoring System” and “Coal and Natural Gas Cooperative Zone Safety Monitoring and Evaluation System”, provide technical support for coal and natural gas cooperative mining, and improve the safety of coal and natural gas production. This system provides technical support for the synergistic mining of coal and natural gas and improves the mining efficiency of coal and natural gas resources. On this basis, the theoretical and technological system of coal and natural gas synergistic mining is constructed, the future research focus of coal and natural gas synergistic mining is clarified, and the technological path and research direction for the safe, green and high-efficiency synergistic mining of coal and natural gas resources in China are proposed.

  • 对于煤矿充填采矿所用的胶结充填材料的强度、流动性等相关指标研究,煤炭行业学者充分借鉴混凝土标准测试方法、非煤矿山研究与实践经验,结合煤矿充填开采的特殊性,已探索形成了较为成熟完善的测试硬件、分析软件体系,逐步形成行业标准及国家标准,同时取得大量的学术成果[1-6],为工业性应用提供了坚实的理论基础,也为本研究的开展提供了重要支持。同时为进一步提高充填材料的流动性、强度性能,大批学者从原材料的精细加工、骨料与粉料比例调整、辅助添加料创新等方向也进行了大量研究[7-10]

    晋陕蒙宁甘省域的许多煤矿井田范围内存在过去小煤窑采用高落式等落后采煤工艺开采遗留的局部空区(包括空硐区、老巷群及煤矸冒落堆积区),原有煤层的完整性受到了极大破坏,同时为瓦斯和水积聚、浮煤自燃等提供了潜在条件[11-14]。后续再进行上述区域的资源回收时,采场围岩变形控制、覆岩移动控制等异常困难。在采掘进行预充填来消除局部空区、重新再造相对完整的煤岩体结构可大幅度提高作业安全性系数[15-20]。煤矿现有充填材料主要以散体矸石、高水或膏体胶结充填材料等为主,用于预充填易导致洗选过程煤矸分离难,影响煤炭品质和价格。

    与此同时,煤炭的洗选环节会产生大量终端产物−煤泥,煤泥粘性大、热量值低,传统的煤泥处理方式大多采用露天堆放,主要用于地销民用,销售价格低廉,煤泥价值利用不充分,而且现场环境脏乱,容易造成土壤和地下水污染。如何对煤泥进行无害化处理、资源化利用亦是诸多煤炭企业不得不面对的现实问题[21-23]

    鉴于此,本研究提出以煤泥为主料配制充填材料用于空区的预充填作业,实现回采前消除空区和资源化利用煤泥的双重目标。但截止目前,尚未系统性地开展研究并掌握煤泥基预充填材料的流动性及强度特性配比要素及作用机制,这极大限制了该材料的研制应用,亟待开展针对性研究。

    根据矸石膏体充填材料的制备经验,选择高水、水泥、粉煤灰这3种材料作为添加剂,与煤泥水共同制备胶结充填材料,其中水泥为42.5号普通硅酸盐水泥,粉煤灰为二级粉煤灰。经过数次配比调配试验,并参照已经开展前期研究[24]发现:当煤泥水质量分数(即煤泥占煤泥水的质量比)为28.75%~40.00%、高水材料质量、水泥质量、粉煤灰质量分别维持在煤泥基胶结充填材料总质量的2.4%~3.9%、3.3%~10%、3.3%~10%时,所制成的煤泥基胶结充填材料同时兼具较好的固结性、流动性与经济性。

    结合试验矿井—彬长矿区水帘洞煤矿现场充填相关实际,设计4因素3水平正交试验表L9(34)进行方案设计,具体见表1。其中表中A表示煤泥水质量分数,B表示高水添加比例(高水添加质量/煤泥水质量),C表示水泥添加比例(水泥添加质量/煤泥水质量),D表示粉煤灰添加比例(粉煤灰添加质量/煤泥水质量)。

    表  1  因素水平
    Table  1.  Factor levels
    水平组数A/%BCD
    140.000.030 00.040 00.040 0
    233.750.037 50.080 00.080 0
    328.750.045 00.120 00.120 0
    下载: 导出CSV 
    | 显示表格

    在室温25 ℃左右配置好材料,进行流动性测试以及试件制作;将试件放置在25 ℃、湿度90%的养护箱养护28 d,之后测试各试件的单轴抗压强度、单轴抗剪强度,测试结果见表2,极差分析结果见表3。需要说明的是:不同于水泥基材料,煤泥基充填材料强度较低无法使用维卡仪测量初凝时间,因而借鉴了高水材料的测试方法-将制备好的材料浆液置入烧杯中,静止一段时间后,将烧杯向一侧倾斜45°,当凝结无流动现象时认定为初凝(每隔1~2 min进行一次),该过程所历经时间即为初凝时间[25]

    表  2  正交试验结果
    Table  2.  Summary of orthogonal test results
    试验组数影响因素试验结果
    A/%BCD初凝时间/min扩散度/cm抗压强度/MPa抗剪强度/MPa
    140.000.030 00.040 00.040 057.00042.0000.1070.056
    240.000.037 50.080 00.080 056.00050.8000.1610.095
    340.000.045 00.120 00.120 052.00040.0000.2340.369
    433.750.030 00.080 00.120 058.00057.8000.2470.109
    533.750.037 50.120 00.040 067.00061.3000.0860.043
    633.750.045 00.040 00.080 053.00062.2000.0760.052
    728.750.030 00.120 00.080 062.00076.5000.1150.139
    828.750.037 50.040 00.120 055.00067.2000.1020.036
    928.750.045 00.080 00.040 052.00068.3000.1050.033
    下载: 导出CSV 
    | 显示表格
    表  3  试验数据极差分析
    Table  3.  Ranged analysis of test data
    因素 初凝时间/min 扩散度/cm
    A B C D A B C D
    k1 55.000 59.000 55.000 58.667 44.267 58.767 57.133 57.200
    k2 59.333 59.333 55.333 57.000 60.433 59.767 58.967 63.167
    k3 56.333 52.333 60.333 55.000 70.667 56.833 59.267 55.000
    R 4.333 7.000 5.333 3.667 26.400 2.933 2.133 8.167
    因素 抗压强度/MPa 抗剪强度/MPa
    A B C D A B C D
    k1 0.168 0.157 0.095 0.099 0.173 0.101 0.048 0.044
    k2 0.136 0.116 0.171 0.117 0.068 0.058 0.079 0.095
    k3 0.107 0.138 0.145 0.194 0.069 0.151 0.184 0.171
    R 0.061 0.040 0.076 0.095 0.105 0.093 0.136 0.127
      注:k为因素各个水平下指标总和的平均数;R为极差,表示因子对结果的影响幅度。
    下载: 导出CSV 
    | 显示表格

    表2可知:煤泥基充填材料初凝时间区间为52~67 min,扩散度为42.0~76.5 cm,抗压强度为0.076~0.247 MPa,抗剪强度为0.033~0.369 MPa,各参数分布范围较大。根据正交试验数据进行极差分析,得出4种因素对于试验结果的显著性排序,由表3可知:对于初凝时间,影响显著性有B>C>A>D;对于扩散度,有A>D>B>C;对于抗压强度,有D>C>A>B;对于抗剪强度,有C>D>A>B

    根据正交试验所得结果,所得多因素对初凝时间的影响关系如图1所示。由图1可知,各因素对初凝时间的影响程度存在差异,根据试验结果,将粉煤灰质量作为误差列,进行各水平的显著性检验,取显著性水平α=0.01、0.05、0.10、0.25。试验方差分析结果见表4

    图  1  初凝时间与多因素的关系
    Figure  1.  Relationship between initial setting time and multiple factors
    表  4  试验数据方差分析
    Table  4.  Analysis of test data ANOVA
    变异来源 偏差平方和 自由度 方差 F Fa 显著水平
    A 29.5319 2 14.766 1.187 F0.01(2,4)=18
    B 93.5319 2 46.7659 3.759 F0.05(2,4)=6.944 o
    C 53.5319 2 26.766 2.151 F0.1(2,4)=4.325 o
    误差e1 20.2324 2 10.1162 0.813 F0.25(2,4)=2
    修正误差e2 49.7643 4 12.4411
    总和 196.828
      注:FaF分布临界值;***表示影响极为显著;**表示影响较为显著;*表示影响一般显著;o表示有显著影响;—表示无显著影响。
    下载: 导出CSV 
    | 显示表格

    由方差分析结果可知:BC对初凝时间有一定影响,AD的影响不显著,表明高水添加比例、水泥添加比例是影响初凝速度的主要因素,煤泥水百分浓度、粉煤灰添加比例影响不显著。根据F值:FB>FC,可以判断高水添加比例在设定水平内变化时所造成的影响高于水泥添加比例。

    根据正交试验所得结果,所得多因素对扩散度的影响关系如图2所示。由图2可知,各因素对扩散度的影响程度存在差异,根据试验结果分析,将水泥添加比例作为误差列,进行各水平的显著性检验,方差分析见表5

    图  2  扩散度与多因素的关系
    Figure  2.  Relationship between diffusion degree and multiple factors
    表  5  试验数据方差分析
    Table  5.  Analysis of test data ANOVA
    变异来源 偏差平方和 自由度 方差 F Fa 显著水平
    A 1063.0560 2 531.528 99.466 F0.01(2,4)=18 ***
    B 13.3581 2 6.679 1.250 F0.05(2,4)=6.944
    D 107.1497 2 53.5749 10.026 F0.1(2,4)=4.325 **
    误差e1 8.0169 2 4.0085 0.750 F0.25(2,4)=2
    修正误差e2 21.3750 4 5.3438
    总和 1191.5810
    下载: 导出CSV 
    | 显示表格

    由方差分析结果可知:A对扩散度有极为显著影响,D含量有高度显著影响,BC基本无明显影响,表明煤泥水百分浓度、粉煤灰添加比例是影响扩散度的主要因素。

    根据正交试验所得结果,所得多因素对单轴抗压强度的影响关系如图3所示。由图3可知,各因素对抗压强度的影响程度存在差异,根据试验结果分析,将高水添加比例作为误差列,进行各水平的显著性检验,方差分析见表6

    图  3  抗压强度与多因素的关系
    Figure  3.  Relationship between compressive strength and multiple factors
    表  6  试验数据方差分析
    Table  6.  Analysis of test data ANOVA
    变异来源 偏差平方和 自由度 方差 F Fa 显著水平
    A 0.0055 2 0.0027 2.250 F0.01(2,2)=99
    C 0.0090 2 0.0045 3.750 F0.05(2,2)=19 o
    D 0.0154 2 0.0077 6.417 F0.1(2,2)=9 o
    误差e1 0.0025 2 0.0012 1.000 F0.25(2,2)=3
    总和 0.0320
    下载: 导出CSV 
    | 显示表格

    由方差分析结果可知:CD对抗压强度有一定影响,根据F值:FD>FC,可以判断粉煤灰添加比例在设定水平内变化时所造成的影响高于水泥,AB基本无明显影响,表明水泥添加比例、粉煤灰添加比例是影响单轴抗压强度的主要因素。

    根据正交试验所得结果,所得多因素对单轴抗压强度的影响关系如图4所示。由图4可知,各因素对抗剪强度的影响程度存在差异,根据试验结果分析,将高水添加比例作为误差列,进行各水平的显著性检验,方差分析见表7

    图  4  抗剪强度与多因素的关系
    Figure  4.  Relationship between shear strength and multiple factors
    表  7  试验数据方差分析
    Table  7.  Analysis of test data ANOVA
    变异来源 偏差平方和 自由度 方差 F Fa 显著水平
    A 0.0218 2 0.010 9 1.1010 F0.01(2,6)=10.925
    C 0.0303 2 0.015 2 1.5354 F0.05(2,6)=5.143
    D 0.0245 2 0.012 3 1.2424 F0.1(2,6)=3.463
    误差e1 0.0132 2 0.006 6 0.6667 F0.25(2,6)=1.762
    修正误差e2 0.0594 6 0.009 9
    总和 0.09
    下载: 导出CSV 
    | 显示表格

    由方差分析结果可知:在给定范围内,ABCD这4个因素对抗剪强度均无明显影响。

    通过上述不同配比的试验,得出了各因素对材料流动性及强度的影响,分析结果如图5所示。由图5可知:初凝时间随着AB的增加呈现先增加后减少的趋势,随着C的增加而逐渐增加,随着D的增加逐渐减少;扩散度随着A的增加而逐渐减少,随着BD的增加先增大后减少,随着C的增加而增加;抗压强度随着AD的增加而逐渐增大,随着B的增大先减少后增大,随着C的增大先增大后减少;抗剪强度随着ACD的增加而逐渐增大,随着B的增大先减少后增大。

    图  5  不同因素影响下材料流动性分析
    Figure  5.  Analysis of material fluidity under the influence of different factors

    图5图6中各影响因素与材料参数曲线进行拟合,可得到材料的煤泥水百分浓度、高水添加比例、水泥添加比例、粉煤灰添加比例与初凝时间、扩散度及抗压强度、抗剪强度的的关系式,具体见表8

    图  6  不同因素影响下材料强度分析
    Figure  6.  Material strength analysis under the influence of different factors
    表  8  拟合关系
    Table  8.  Fitting relationship
    因素 指标 拟合关系式 拟合度R2
    A 初凝时间 $ {t_1} = - 1\;150{A^2} + 778.5A - 72.47 $ 0.99
    扩散度 $ {S_1} = 114.866 - 13.355{{\text{e}}^{A/0.24}} $ 0.99
    抗压强度 $ {\sigma _{Y1}} = 0.33 - 0.497{{\text{e}}^{ - A/0.36}} $ 0.99
    抗剪强度 $ {\sigma _{J1}} = {\text{15}}{\text{.22}}{A^2} - 9.537A + 1.553 $ 0.99
    B 初凝时间 $ {t_2} = - 65\;190{B^2} + 4\;444B - 15.67 $ 0.99
    扩散度 $ {S_2} = 59.89{{\text{e}}^{ - {{{\text{[(}}B - 0.035\;63{\text{)/}}0.040\;91{\text{]}}}^2}}} $ 0.99
    抗压强度 $ {\sigma _{Y2}} = 551.1{B^2} - 42.53B + 0.936\;3 $ 0.99
    抗剪强度 $ {\sigma _{J2}} = 1\;215{B^2} - 87.77B + 1.641 $ 0.99
    C 初凝时间 $ {t_3} = {\text{54}}{\text{.976\;7}} + 0.023\;3{{\text{e}}^{(C - 0.04)/0.014\;7}} $ 0.99
    扩散度 $ {S_3} = 59.328\;44 - 13.483\;77{{\text{e}}^{ - C/0.022\;05}} $ 0.99
    抗压强度 $ {\sigma _{Y3}} = - 31.875{C^2} + 5.725C - 0.083 $ 0.99
    抗剪强度 $ {\sigma _{J3}} = {\text{0}}{\text{.034\;95}} + 0.013\;1{{\text{e}}^{(C - 0.04)/0.032\;87}} $ 0.99
    D 初凝时间 $ {t_4} = 67 - 6.944\;4{{\text{e}}^{D/0.219\;4}} $ 0.99
    扩散度 $ {S_4} = 63.21\sin \left( {11.94D + 0.653\;6} \right) $ 0.99
    抗压强度 $ {\sigma _{Y4}} = {\text{0}}{\text{.093\;8}} + 0.005\;5{{\text{e}}^{(D - 0.04)/0.027\;5}} $ 0.99
    抗剪强度 $ {\sigma _{J4}} = - {\text{0}}{\text{.062\;8}} + 0.106\;8{{\text{e}}^{(D - 0.04)/0.101\;94}} $ 0.99
    下载: 导出CSV 
    | 显示表格

    表8可知,初凝时间与AB成二次函数关系,与CD均呈指数关系;扩散度与ABC均呈指数关系,与D呈三角函数关系;抗压强度与AD均呈指数关系,与BC呈二次多项式关系;抗剪强度与AB呈二次多项式关系,与CD均呈指数关系。

    表8初凝时间、扩散度、抗剪强度及抗压强度与各因素的关系式,结合多元线性模型构建原则,可建立材料特性参数的综合预测模型,见式(1)。

    $$ \left\{ \begin{gathered} t = {a_1}{t_1} + {a_2}{t_2} + {a_3}{t_3} + {a_4}{t_4} + {a_5} \\ S = {b_1}{S_1} + {b_2}{S_2} + {b_3}{S_3} + {b_4}{S_4} + b{}_5 \\ {\sigma _Y} = {c_1}{\sigma _{Y1}} + {c_2}{\sigma _{Y2}} + {c_3}{\sigma _{Y3}} + {c_4}{\sigma _{Y4}} + {c_5} \\ {\sigma _J} = {d_1}{\sigma _{J1}} + {d_2}{\sigma _{J2}} + {d_3}{\sigma _{J3}} + {d_4}{\sigma _{J4}} + {d_5} \\ \end{gathered} \right. $$ (1)

    式中:t为4种因素共同影响下煤泥基胶结充填材料的初凝时间,s;S为4种因素共同影响下煤泥基胶结充填材料的扩散度,cm;σY为4种因素共同影响下煤泥基胶结充填材料的抗压强度,MPa;σJ为4种因素共同影响下煤泥基胶结充填材料的抗剪强度,MPa;a1、a2、a3、a4、a5、b1、b2、b3、b4、b5、c1、c2、c3、c4、c5、d1、d2、d3、d4、d5为系数。

    根据大量的特性参数测试结果,对式(1)进行多元线性回归,可得到初凝时间、扩散度、抗剪强度及抗压强度与各因素的关系,见式(2)。

    $$ \left\{ \begin{gathered} t = 0.167{t_1} + 0.898{t_2} + 0.831{t_3} + 0.942{t_4} - 106.076 \\ S = 0.966{S_1} + 0.355{S_2} + 0.232{S_3} + 1.465{S_4} - 119.329 \\ {\sigma _Y} = 1.068{\sigma _{Y1}} + 1.020{\sigma _{Y2}} + 1.058{\sigma _{Y3}} + 1.063{\sigma _{Y4}} - 0.436 \\ {\sigma _J} = 1.022{\sigma _{J1}} + 1.017{\sigma _{J2}} + 0.974{\sigma _{J3}} + 1.025{\sigma _{J4}} - 0.316 \\ \end{gathered} \right. $$ (2)

    对上述公式进行了校验,选取了3组配比(表9)配置充填材料浆液及试件,并进行初凝时间、扩散度、抗压强度、抗剪强度的实测,将根据预计模型得到预测值数据与试验值数据进行对比,对比表及误差见表10

    表  9  校验方案设计
    Table  9.  Fitting relationship
    测试件编号.煤泥水百分
    浓度A/%
    高水添加
    比例B
    水泥添加
    比例C
    粉煤灰添加
    比例D
    TEST-135.000.035 00.100 00.100 0
    TEST-230.000.028 00.050 00.050 0
    TEST-339.000.025 00.050 00.100 0
    下载: 导出CSV 
    | 显示表格
    表  10  校验结果分析
    Table  10.  Fitting relationship
    试件编号 材料 初凝时
    间/min
    扩散
    度/cm
    抗压强
    度/MPa
    抗剪强
    度/MPa
    TEST-1 预测值 57.290 60.200 0.173 0.056
    试验值 60.010 63.980 0.159 0.062
    误差/% 4.53 5.91 8.74 9.68
    TEST-2 预测值 55.900 69.900 0.105 0.095
    试验值 52.060 63.900 0.096 0.086
    误差/% 7.38 9.39 9.69 10.47
    TEST-3 预测值 50.910 51.330 0.241 0.370
    试验值 48.330 53.710 0.263 0.411
    误差/% 5.34 4.43 8.52 9.88
    下载: 导出CSV 
    | 显示表格

    分析可知:根据该综合预测模型计算得到的参数与试验测试值较吻合,各项指标相对误差区间为4.43%~10.47% ,平均7.83% 。

    1)应用正交试验的方法,以煤泥水百分浓度、高水添加比例、水泥添加比例、粉煤灰添加比例为4个因素,每个因素设置3个水平,进行了流动性及强度特性正交测试后,分析得出煤泥基预充填材料的初凝时间分布在52~57 min,扩散度分布在42.0~76.5 cm,抗压强度分布在0.076~0.247 MPa,抗剪强度分布在0.033~0.139 MPa。

    2)对于初凝时间,影响显著性排序为B>C>A>D,高水添加比例、水泥添加比例是影响初凝速度的主要因素;对于扩散度,影响显著性排序为A>D>B>C,表明煤泥水百分浓度、粉煤灰添加比例是影响扩散度的主要因素;对于抗压强度,影响显著性排序为D>C>A>B,水泥添加比例、粉煤灰添加比例是影响单轴抗压强度的主要因素;对于抗剪强度,影响显著性排序为C>D>A>B,且4种因素显著性均较低。

    3)拟合出了ABCD与流动性指标及强度指标的数学关系式,初凝时间与AB成二次函数关系、与CD均呈指数关系;扩散度与ABC均呈指数关系,与D呈三角函数关系;抗压强度与AD均呈指数关系,与BC呈二次多项式关系;抗剪强度与AB呈二次多项式关系、与CD均呈指数关系;构建初了4种原材料不同配比的特性参数综合预测模型,并进行了校验。

  • 图  1   近年煤炭与天然气消费总量及占比

    Figure  1.   Total consumption and proportion of coal and natural gas in recent years

    图  2   煤与天然气开采面临的挑战及解决途径

    Figure  2.   Challenges and solution of coal and natural gas extraction

    图  3   煤与天然气协同开采示意

    Figure  3.   Schematic diagram of coal and natural gas co-mining

    图  4   煤与天然气协同开采技术路径

    Figure  4.   Technical path of coal and natural gas co-mining

    图  5   近场岩体力学理论构想

    Figure  5.   Theoretical conception of near-field rock mass mechanics

    图  6   工作面与天然气井距离缩进时应力重叠情况

    Figure  6.   Stress overlap when distance between working face and natural gas well is indented

    图  7   “围岩–水泥环–套管”组合体耦合损伤模型

    Figure  7.   Stress overlap during workover and gas well distance indentation

    图  8   煤、气垂直场时空示意图

    Figure  8.   Spatio-temporal diagram of coal and gas vertical fields

    图  9   天然气井近场煤柱留设技术构想

    Figure  9.   Technical concept of small coal pillar retention in near field of natural gas well

    图  10   天然气井身优化示意

    Figure  10.   Schematic diagram of natural gas wellbore optimization

    图  11   工作面回采过废弃井

    Figure  11.   Working face passes through abandoned well

    图  12   废弃井处理方法示意

    Figure  12.   Schematic diagram of the disposal method of the abandoned well

    图  13   协同开采分区规划示意

    Figure  13.   Schematic of zoning plan for co-mining

    图  14   三场透明可视化构想

    Figure  14.   Three transparent visualization ideas

    图  15   透明地质示意与生产信息监测

    Figure  15.   Transparent geological diagram and production information monitoring map

    图  16   透明地质与生产信息动态监测系统构想

    Figure  16.   Concept of dynamic monitoring system for transparent geological and production information

    图  17   协同区安全监测系统构想

    Figure  17.   Concept of safety monitoring system in the coordination area

    图  18   煤矿工作面与天然气井位置示意

    Figure  18.   Schematic diagram of coal mine working face and gas well location

    图  19   煤炭工作面开采套管应力峰值变化

    Figure  19.   Peak stress variation in casing for coal working face mining

    图  20   天然气设施稳定性控制技术体系

    Figure  20.   Stability control technology system for natural gas facilities

    图  21   煤–气协同开采数据库示意

    Figure  21.   Coal-gas synergistic mining database schematic

  • [1] 吕超贤,孙 文,宋关羽,等. 煤矿能源资源高效利用发展研究[J]. 中国工程科学,2023,25(5):136−145. doi: 10.15302/J-SSCAE-2023.05.012

    LYU Chaoxian,SUN Wen,SONG Guanyu,et al. Efficient utilization of energy resources in coal mines[J]. Strategic Study of CAE,2023,25(5):136−145. doi: 10.15302/J-SSCAE-2023.05.012

    [2] 崔 艳. 我国煤系共伴生矿产资源分布与开发现状[J]. 洁净煤术,2018,24(S1):27−32.

    CUI Yan. Distribution and exploration of associated resources occurred in Chinese coal-bearing series[J]. Clean Coal Technology,2018,24(S1):27−32.

    [3] 黄炳香,赵兴龙,张 权. 煤与煤系伴生资源共采的理论与技术框架[J]. 中国矿业大学学报,2016,45(4):653−662.

    HUANG Bingxiang,ZHAO Xinglong,ZHANG Quan. Framework of the theory and technology for simultaneous mining of coal and its associated resources[J]. Journal of China University of Mining & Technology,2016,45(4):653−662.

    [4] 袁 亮. 煤及共伴生资源精准开采科学问题与对策[J]. 煤炭学报,2019,44(1):1−9.

    YUAN Liang. Scientific problem and countermeasure for precision mining of coal and associated resources[J]. Journal of China Coal Society,2019,44(1):1−9

    [5] 郭旭升,胡东风,黄仁春,等. 四川盆地深层—超深层天然气勘探进展与展望[J]. 天然气工业,2020,40(5):1−14. doi: 10.3787/j.issn.1000-0976.2020.05.001

    GUO Xusheng,HU Dongfeng,HUANG Renchun,et al. Deep and ultra-deep natural gas exploration in the Sichuan Basin:Progress and prospect[J]. Natural Gas Industry,2020,40(5):1−14. doi: 10.3787/j.issn.1000-0976.2020.05.001

    [6] 王家臣,唐岳松,王兆会,等. 千米深井综采工作面覆岩微震显现特征与损伤度计算方法[J]. 中国矿业大学学报,2023,52(3):417−431.

    WANG Jiachen,TANG Yuesong,WANG Zhaohui,et al. Characteristics of microseismic events and damage degree calculation method in kilometer deep fully mechanical longwall panel[J]. Journal of China University of Mining & Technology,2023,52(3):417−431.

    [7] 王兆会,唐岳松,李 辉,等. 千米深井超长工作面支架阻力分布特征及影响因素研究[J]. 采矿与安全工程学报,2023,40(1):1−10.

    WANG Zhaohui,TANG Yuesong,LI Hui,et al. Distribution and influence factors of support resistance in longwall panel with large face length of a kilometer-deep coal mine[J]. Journal of Mining & Safety Engineering,2023,40(1):1−10.

    [8] 杨伟利,王 毅,王传刚,等. 鄂尔多斯盆地多种能源矿产分布特征与协同勘探[J]. 地质学报,2010,84(4):579−586.

    YANG Weili,WANG Yi,WANG Chuangang,et al. Distribution and co-exploration of multiple energy minerals in Ordos Basin[J]. Acta Geologica Sinica,2010,84(4):579−586.

    [9] 郝秀强,常振恒,俞珠峰. 鄂尔多斯盆地煤与天然气的协调开发及综合评价[J]. 煤炭经济研究,2017,37(11):63−67.

    HAO Xiuqiang,CHANG Zhenheng,YU Zhufeng. Coordinated development and comprehensive evaluation on coal and natural gas in Ordos Basin[J]. Coal Economic Research,2017,37(11):63−67.

    [10] 王 文,杨 昆,何 云,等. 煤–气交叉开采区天然气井防碰撞预警技术研究[J]. 矿业科学学报,2022,7(4):490−497.

    WANG Wen,YANG Kun,HE Yun,et al. A study on collision warning of gas wells in coal-gas cross mining area[J]. Journal of Mining Science and Technology,2022,7(4):490−497.

    [11] 刘云鹏. 气煤重叠区交叉开采安全技术研究[J]. 当代石油石化,2019,27(1):27−31. doi: 10.3969/j.issn.1009-6809.2019.01.005

    LIU Yunpeng. Safety technology research of cross mining for gas and coal overlap area[J]. Petroleum & Petrochemical Today,2019,27(1):27−31. doi: 10.3969/j.issn.1009-6809.2019.01.005

    [12] 任建东,赵毅鑫,孙中博,等. 气煤叠置区埋地管道的保护煤柱优化设计及多参量演化规律研究[J]. 岩土力学,2023,44(9):2679−2695.

    REN Jiandong,ZHAO Yixin,SUN Zhongbo,et al. Protective coal pillar optimization and multi-parameter evolution characteristics of buried pipeline in gas-coal superposition area[J]. Rock and Soil Mechanics,2023,44(9):2679−2695.

    [13] 王 文,任建东,王付斌,等. 鄂尔多斯盆地“煤气走廊”开采模式研究[J]. 金属矿山,2019(10):23−31.

    WANG Wen,REN Jiandong,WANG Fubin,et al. Study on the mining mode of “gas corridor” in Erdos Basin[J]. Metal Mine,2019(10):23−31.

    [14] 倪 炜,孙宝东,郝秀强,等. 新街台格庙矿区高质量开发路径及关键问题研究[J]. 煤炭工程,2023,55(5):1−7.

    NI Wei,SUN Baodong,HAO Xiuqiang,et al. High quality development path and key issues of Xinjie Taigemiao Mining Area[J]. Coal Engineering,2023,55(5):1−7.

    [15]

    BP. BP Statistical Review of World Energy 2023[M]. London:BP plc,2023.

    [16] 袁 亮. 煤炭精准开采科学构想[J]. 煤炭学报,2017,42(1):1−7.

    YUAN Liang. Scientific conception of precision coal mining[J]. Journal of China Coal Society,2017,42(1):1−7.

    [17] 姜耀东,潘一山,姜福兴,等. 我国煤炭开采中的冲击地压机理和防治[J]. 煤炭学报,2014,39(2):205−213.

    JIANG Yaodong,PAN Yishan,JIANG Fuxing,et al. State of the art review on mechanism and prevention of coal bumps in China[J]. Journal of China Coal Society,2014,39(2):205−213.

    [18] 康红普,徐 刚,王彪谋,等. 我国煤炭开采与岩层控制技术发展40 a及展望[J]. 采矿与岩层控制工程学报,2019,1(2):7−39.

    KANG Hongpu,XU Gang,WANG Biaomou,et al. Forty years development and prospects of underground coal mining and strata control technologies in China[J]. Journal of Mining And Strata Control Engineering,2019,1(2):7−39.

    [19] 袁 亮. 深部采动响应与灾害防控研究进展[J]. 煤炭学报,2021,46(3):716−725.

    YUAN Liang. Research progress of mining response and disaster prevention and control in deep coal mines[J]. Journal of China Coal Society,2021,46(3):716−725.

    [20] 王家臣. 基于采动岩层控制的煤炭科学开采[J]. 采矿与岩层控制工程学报,2019,1(2):40−47.

    WANG Jiachen. Sustainable coal mining based on mining ground control[J]. Journal of Mining And Strata Control Engineering,2019,1(2):40−47.

    [21] 杨 莉,姚建华,罗平亚. 钻井液常见污染问题及处理方法探讨[J]. 钻井液与完井液,2012,29(2):47−50,93.

    YANG Li,YAO Jianhua,LUO Pingya. Discussion on common contamination problems and treatment methods for drilling fluid[J]. Drilling Fluid & Completion Fluid,2012,29(2):47−50,93.

    [22] 杨勋尧. 四川天然气深井钻井主要工程地质问题及对策[J]. 钻采工艺,2004(2):9−11,3.

    YANG Xunyao. Engineering geology probloms of deep drilling and its strategy in Sichuan natural gas well[J]. Drilling & Production Technology,2004(2):9−11,3.

    [23] 宋 明,杨凤香,宋胜利,等. 固井水泥环对套管承载能力的影响规律[J]. 石油钻采工艺,2002(4):7−9,82.

    SONG Ming,YANG Fengxiang,SONG Shengli,et al. Influencing tendencies of cement sheath on casing retaining capacity[J]. Oil Drilling & Production Technology,2002(4):7−9,82.

    [24] 冯 琦,仝少凯,徐晓航,等. 高浓度H2S天然气井中射孔段套管的应力腐蚀[J]. 腐蚀与防护,2013,34(5):417−422.

    FENG Qi,TONG Shaokai,XU Xiaohang,et al. Stress corrosion of perforating casing in solution of high H2S gas well[J]. Corrosion & Protection,2013,34(5):417−422.

    [25] 郝一松. 煤–气交叉开采油井保护煤柱采动应力演化及泄漏甲烷运移规律研究[D]. 徐州:中国矿业大学,2023.

    HAO Yisong. Evolution of mining induced stresses within the coal protective pillar and the transport characteristics of leaked methane in co-extraction of coal and deep natural gas[D]. Xuzhou:China University of Mining and Technology,2023.

    [26] 王 文,任建东,李小军,等. 开采沉陷区天然气井避让距离控制预测方法研究[J]. 中国矿业大学学报,2021,50(5):943−954.

    WANG Wen,REN Jiandong,LI Xiaojun,et al. Research on prediction method of natural gas well avoidance distance control in mining sinkhole area[J]. Journal of China University of Mining & Technology,2021,50(5):943−954.

    [27] 王 文,任建东,董 淼,等. 采动影响下天然气管道变形演化模拟试验研究[J]. 采矿与安全工程学报,2020,37(4):777−787.

    WANG Wen,REN Jiandong,DONG Miao,et al. A simulation experimental study on deformation evolution of natural gas pipeline under mining influence[J]. Journal of Mining & Safety Engineering,2020,37(4):777−787.

    [28] 朱庆杰,赵 晨,陈艳华,等. 埋地天然气管道泄漏的影响因素及保护措施[J]. 环境工程学报,2018,12(2):417−420.

    ZHU Qingjie,ZHAO Chen,CHEN Yanhua,et al. Influencing factors and protective measures of buried natural gas pipeline leakage[J]. Chinese Journal of Environmental Engineering,2018,12(2):417−420.

    [29] 石 林,汪海阁,纪国栋. 中石油钻井工程技术现状、挑战及发展趋势[J]. 天然气工业,2013,33(10):1−10.

    SHI Lin,WANG Haige,JI Guodong. Current situation,challenges and developing trend of CNPC’s oil & gas drilling[J]. Natural Gas Industry,2013,33(10):1−10.

    [30] 聂 臻,夏朝辉,吴波鸿,等. 中东地区碳酸盐岩油藏钻井工程技术现状及发展趋势[J]. 石油钻探技术,2024,52(1):8−16.

    NIE Zhen,XIA Zhaohui,WU Bohong,et al. Status and the future perspective of drilling engineering technologies in middle east carbonate reservoirs[J]. Petroleum Drilling Techniques,2024,52(1):8−16.

    [31] 刘硕琼,李德旗,袁进平,等. 页岩气井水泥环完整性研究[J]. 天然气工业,2017,37(7):76−82.

    LIU Shuoqiong,LI Deqi,YUAN Jinping,et al. Cement sheath integrity of shale gas wells:A case study from the Sichuan Basin[J]. Natural Gas Industry,2017,37(7):76−82.

    [32] 宋振骐,文志杰,蒋宇静,等. 采动力学与岩层控制关键理论及工程应用[J]. 煤炭学报,2024,49(1):16−35.

    4-01-02]. SONG Zhenqi,WEN Zhijie,JIANG Yujing,et al. The theory and application of mining mechanics and strata control[J]. Journal of China Coal Society,2024,49(1):16−35.

    [33] 钱鸣高,许家林. 煤炭开采与岩层运动[J]. 煤炭学报,2019,44(4):973−984.

    QIAN Minggao,XU Jialin. Behaviors of strata movement in coal mining[J]. Journal of China Coal Society,2019,44(4):973−984.

    [34] 缪协兴,陈荣华,浦 海,等. 采场覆岩厚关键层破断与冒落规律分析[J]. 岩石力学与工程学报,2005(8):1289−1295.

    MIAO Xiexing,CHEN Ronghua,PU Hai,et al. Analysis of breakage and collapse of thick key strata around coal face[J]. Chinese Journal of Rock Mechanics and Engineering,2005(8):1289−1295.

    [35] 谢和平. 深部岩体力学与开采理论研究进展[J]. 煤炭学报,2019,44(5):1283−1305.

    XIE Heping. Research review of the state key research development program of China:Deep rock mechanics and mining theory[J]. Journal of China Coal Society,2019,44(5):1283−1305.

    [36] 李夕兵,周 健,王少锋,等. 深部固体资源开采评述与探索[J]. 中国有色金属学报,2017,27(6):1236−1262.

    LI Xibing,ZHOU Jian,WANG Shaofeng,et al. Review and practice of deep mining for solid mineral resources[J]. The Chinese Journal of Nonferrous Metals,2017,27(6):1236−1262.

    [37] 谢和平,张国庆,罗 通,等. 月球大深度保真取芯探矿机器人系统构想与设计[J]. 工程科学与技术,2020,52(2):1−9.

    XIE Heping,ZHANG Guoqing,LUO Tong,et al. Scheme and design of a lunar large-depth and in-situ condition-holding coring robot system[J]. Advanced Engineering Sciences,2020,52(2):1−9.

    [38] 史配铭,李晓明,倪华峰,等. 苏里格气田水平井井身结构优化及钻井配套技术[J]. 石油钻探技术,2021,49(6):29−36.

    SHI Peiming,LI Xiaoming,NI Huafeng,et al. Casing program optimization and drilling matching technologies for horizontal wells in sulige gas field[J]. Petroleum Drilling Techniques,2021,49(6):29−36.

    [39] 黄 熠,陈浩东,郑浩鹏,等. 套管偏心对压裂井水泥环力学完整性的影响研究[J]. 中国海上油气,2022,34(6):135−141.

    HUANG Yi,CHEN Haodong,ZHENG Haopeng,et al. Influence of casing eccentricity on mechanical integrity of cement sheath in fractured wells[J]. China Offshore Oil and Gas,2022,34(6):135−141.

    [40] 杨 钊,孙 锐,梁 飞,等. 基于裂缝诱导应力场的套管应力影响因素分析[J]. 石油机械,2023,51(4):135−143.

    YANG Zhao,SUN Rui,LIANG Fei,et al. Analysis on influential factors of casing stress based on fracture induced stress field[J]. China Petroleum Machinery,2023,51(4):135−143.

    [41] 闫 炎,管志川,阎卫军,等. 水力压裂过程中水泥环裂缝扩展的数值模拟[J]. 科学技术与工程,2021,21(32):13673−13680. doi: 10.3969/j.issn.1671-1815.2021.32.008

    YAN Yan,GUAN Zhichuan,YAN Weijun,et al. Crack propagation simulation of perforated cement sheath during hydraulic fracturing[J]. Science Technology and Engineering,2021,21(32):13673−13680. doi: 10.3969/j.issn.1671-1815.2021.32.008

    [42] 李 勇,纪宏飞,邢鹏举,等. 气井井筒温度场及温度应力场的理论解[J]. 石油学报,2021,42(1):84−94.

    LI Yong,JI Hongfei,XING Pengju,et al. Theoretical solutions of temperature field and thermal stress field in wellbore of a gas well[J]. Acta Petrolei Sinica,2021,42(1):84−94.

    [43] 杨永明,孙梦珂. 三轴应力下孔隙水泥环的压裂破坏机制[J]. 高压物理学报,2022,36(6):92−102.

    YANG Yongming,SUN Mengke. Fracturing failure mechanism of porous cement sheath under triaxial stress[J]. Chinese Journal of High Pressure Physics,2022,36(6):92−102.

    [44]

    THIERCELIN M J,DARGAUD B,BARET J F,et al. Cement design based on cement mechanical response[J]. SPE Drill & Compl,1998,13(4):266−273.

    [45] 张 智,王嘉伟,吴 优,等. 页岩气水平井固井水泥环状态对套管力学完整性的影响[J]. 石油学报,2022,43(8):1158−1172.

    ZHANG Zhi,WANG Jiawei,WU You,et al. Effect of cement sheath condition on casing mechanical integrity in shale gas horizontal wells[J]. Acta Petrolei Sinica,2022,43(8):1158−1172.

    [46] 初 纬,沈吉云,杨云飞,等. 连续变化内压下套管–水泥环–围岩组合体微环隙计算[J]. 石油勘探与开发,2015,42(3):379−385. doi: 10.1016/S1876-3804(15)30028-8

    CHU Wei,SHEN Jiyun,YANG Yunfei,et al. Calculation of micro-annulus size in casing-cement sheath-formation system under continuous internal casing pressure change[J]. Petroleum Exploration and Development,2015,42(3):379−385. doi: 10.1016/S1876-3804(15)30028-8

    [47] 姜福兴,冯 宇,KOUAME K J A,等. 高地应力特厚煤层“蠕变型”冲击机理研究[J]. 岩土工程学报,2015,37(10):1762−1768.

    JIANG Fuxing,FENG Yu,KOUAME K J A,et al. Mechanism of creep-induced rock burst in extra-thick coal seam under high ground stress[J]. Chinese Journal of Geotechnical Engineering,2015,37(10):1762−1768.

    [48] 叶子昂,黄瑞萱,师晓达,等. 大倾角特厚煤层开采地表沉降规律数值模拟研究[J]. 煤炭技术,2023,42(10):40−45.

    YE Ziang,HUANG Ruixuan,SHI Xiaoda,et al. Numerical simulation of surface subsidence patterns in large inclination extra-thick coal seam mining[J]. Coal Technology,2023,42(10):40−45.

    [49] 谢和平,鞠 杨,高明忠,等. 煤炭深部原位流态化开采的理论与技术体系[J]. 煤炭学报,2018,43(5):1210−1219.

    XIE Heping,JU Yang,GAO Mingzhong,et al. Theories and technologies for in-situ fluidized mining of deep underground coal resources[J]. Journal of China Coal Society,2018,43(5):1210−1219.

    [50] 张庆贺,王晓蕊,袁 亮. 煤炭地下气化多场耦合数值模拟程序开发及多场演化规律[J]. 煤炭学报,2023,48(6):2506−2518.

    ZHANG Qinghe,WANG Xiaorui,YUAN Liang. Development of multi-field coupled numerical simulation program for underground coal gasification and multi-field evolution laws[J]. Journal of China Coal Society,2023,48(6):2506−2518.

    [51] 于海洋,许永彬,陈智明,等. 双碳目标下煤炭深部流态化开采及前景[J]. 洁净煤技术,2023,29(1):15−32.

    YU Haiyang,XU Yongbin,CHEN Zhiming,et al. Deep fluidized coal mining and its prospect under the target of carbon peak and carbon neutralization[J]. Clean Coal Technology,2023,29(1):15−32.

    [52] 王家臣,杨胜利,刘淑琴,等. 急倾斜煤层开采技术现状与流态化开采构想[J]. 煤炭科学技术,2022,50(1):48−59.

    WANG Jiachen,YANG Shengli,LIU Shuqin,et al. Technology status and fluidized mining conception for steeply inclined coal seams[J]. Coal Science and Technology,2022,50(1):48−59.

    [53] 周 泽,易同生,秦 勇,等. 煤炭地下气化的敏感性地质因素探讨[J]. 煤田地质与勘探,2024,52(3):24−36.

    ZHOU Ze,YI Tongsheng,QIN Yong,et al. Exploring geological parameters sensitive to underground coal gasification[J]. Coal Geology & Exploration,2024,52(3):24−36.

    [54] 秦 勇,易同生,杨 磊,等. 中国煤炭地下气化现场试验探索历程与前景展望[J]. 煤田地质与勘探,2023,51(7):17−25.

    QIN Yong,YI Tongsheng,YANG Le,et al. Underground coal gasification field tests in China:history and prospects[J]. Coal Geology & Exploration,2023,51(7):17−25.

    [55] 刘曰武,方惠军,李龙龙,等. 煤炭地下气化关键力学问题的数值研究进展[J]. 力学学报,2023,55(3):669−685.

    LIU Yuewu,FANG Huijun,LI Longlong,et al. Recent progress on numerical research of key mechanical problems during underground coal gasification[J]. Chinese Journal of Theoretical and Applied Mechanics,2023,55(3):669−685.

    [56] 谢和平,高 峰,鞠 杨,等. 深地煤炭资源流态化开采理论与技术构想[J]. 煤炭学报,2017,42(3):547−556.

    XIE Heping,GAO Feng,JU Yang,et al. Theoretical and technological conception of fluidization mining for deep coal resources[J]. Journal of China Coal Society,2017,42(3):547−556.

    [57] 卢文斌,杨永杰,郝以瑞. 深部孤岛工作面沿空掘巷小煤柱留设及巷道支护设计[J]. 煤矿安全,2015,46(5):208−211.

    LU Wenbin,YANG Yongjie,HAO Yirui. Small coal pillar leaving and roadway support design for gob-side entry driving at deep isolated island coal face[J]. Safety in Coal Mines,2015,46(5):208−211.

    [58] 刘茂森,付建红,白 璟. 页岩气双二维水平井轨迹优化设计与应用[J]. 特种油气藏,2016,23(2):147−150,158. doi: 10.3969/j.issn.1006-6535.2016.02.036

    LIU Maosen,FU Jianhong,BAI Jing. Optimization of shale gas dual-2D horizontal-well trajectories and its application[J]. Special Oil & Gas Reservoirs,2016,23(2):147−150,158. doi: 10.3969/j.issn.1006-6535.2016.02.036

    [59] 黎金明,陈在君,陈 磊,等. 苏里格气田废弃钻井液固液分离及回用研究[J]. 钻采工艺,2018,41(4):89−91,11.

    LI Jinming,CHEN Zaijun,CHEN Lei,et al. Research on solid-liquid separation and recycling of waste drilling fluid at sulige gasfield[J]. Drilling & Production Technology,2018,41(4):89−91,11.

    [60] 张其朋,问小江,谭东升,等. 岩层倾角对钻井套管剪切变形的影响分析[J]. 煤矿安全,2020,51(5):183−186.

    ZHANG Qipeng,WEN Xiaojiang,TAN Dongsheng,et al. Analysis of influence of strata dip angle on shear deformation of drilling casing[J]. Safety in Coal Mines,2020,51(5):183−186.

    [61] 王国法,张建中,薛国华,等. 煤矿回采工作面智能地质保障技术进展与思考[J]. 煤田地质与勘探,2023,51(2):12−26.

    WANG Guofa,ZHANG Jianzhong,XUE Guohua,et al. Progress and reflection of intelligent geological guarantee technology in coal mining face[J]. Coal Geology & Exploration,2023,51(2):12−26.

    [62] 李 梅,毛善君,赵明军. 煤矿智能地质保障系统研究进展与展望[J]. 煤炭科学技术,2023,51(2):334−348.

    LI Mei,MAO Shanjun,ZHAO Mingjun. Research progress and prospects of coal mine intelligent geological guarantee systems[J]. Coal Science and Technology,2023,51(2):334−348.

    [63] 王国法. 煤矿智能化最新技术进展与问题探讨[J]. 煤炭科学技术,2022,50(1):1−27.

    WANG Guofa. New technological progress of coal mine intelligence and its problems[J]. Coal Science and Technology,2022,50(1):1−27.

    [64] 袁 亮,张平松. 煤矿透明地质模型动态重构的关键技术与路径思考[J]. 煤炭学报,2023,48(1):1−14.

    YUAN Liang,ZHANG Pingsong. Key technology and path thinking of dynamic reconstruction of mine transparent geological model[J]. Journal of China Coal Society,2023,48(1):1−14.

    [65] 毛明仓,张孝斌,张玉良. 基于透明地质大数据智能精准开采技术研究[J]. 煤炭科学技术,2021,49(1):286−293.

    MAO Mingcang,ZHANG Xiaobin,ZHANG Yuliang. Research on intelligent and precision mining technology based on transparent geological big data[J]. Coal Science and Technology,2021,49(1):286−293.

    [66] 杨胜利,王家臣,李 明. 煤矿采场围岩智能控制技术路径与设想[J]. 矿业科学学报,2022,7(4):403−416.

    YANG Shengli,WANG Jiachen,LI Ming. Technology path and assumptions of intelligent surrounding rock control at longwall working face[J]. Journal of Mining Science and Technology,2022,7(4):403−416.

    [67] 刘 鹏,李 云,郭 祥,等. 北海油田废弃井处置标准对我国的借鉴意义[J]. 石油工程建设,2020,46(S1):266−272.

    LIU Peng,LI Yun,GUO Xiang,et al. Disposal standards for abandoned wells in north sea oilfields and enlightenment to China[J]. Petroleum Engineering Construction,2020,46(S1):266−272.

图(21)
计量
  • 文章访问数:  161
  • HTML全文浏览量:  20
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-31
  • 网络出版日期:  2024-03-31
  • 刊出日期:  2024-04-24

目录

/

返回文章
返回