Current status and prospects of research on coal mine dust mist condensation and dust reduction efficiency enhancement
-
摘要:
矿井机械化、智能化水平提升所导致的煤尘问题愈发严重,喷雾广泛用于井下工作面煤尘问题治理,尘雾凝并过程可实现煤尘沉降,继而缓解煤尘对职工健康的危害与安全生产压力。为进一步完善工作面降尘措施,提高井下工作环境质量,优化矿井工作面湿式除尘体系,加速实现绿色矿山目标。查阅国内外相关文献,结合相关理论发展历程与实践研究现状,分析当前尘雾凝并湿式除尘技术的研究进展,包括雾滴捕尘过程及机理、煤尘润湿性研究、表面活性剂优化进展、内外流场射流破碎雾化机理、喷嘴发展历程。同时针对喷雾降尘接触—润湿—结合—沉降机理研究不透彻、液态介质在喷雾内流场外流场作用下射流破碎雾化行为认识不足、雾化效果各影响因素间耦合关系不明朗、措施优化缺乏足够理论支撑、现场应用与实验室结果不符等问题,在除尘及雾化机理、煤尘润湿性、表面活性剂、喷嘴雾化特性、现场应用等方面提出研究展望。研究表明,我国矿井煤尘防治体系已初具雏形,未来研究重点将转向润湿—捕尘机理研究、深层次多角度煤尘润湿性影响因素联合分析、雾化及降尘效果表征参数及测量手段完善、尘−雾多角度喷嘴雾化特性优化、无害强增效表面活性剂研制和现场应用普及。
Abstract:The problem of coal dust caused by the improvement of mine mechanization and intellectualization is becoming more and more serious. spray is widely used to treat coal dust problems in underground working faces. The coalescence process of dust mist can achieve coal dust settlement, and then alleviate the harm of coal dust to workers’ health and the pressure on safe production. In order to further improve the dust reduction measures at the working face, improve the quality of the underground working environment, optimize the wet dust removal system at the working face of the mine, and accelerate the achievement of the goal of green mining. By reviewing relevant literature at home and abroad, combined with the development history of relevant theories and the current status of practical research, this paper analyzes the research progress of dust mist condensation wet dust removal technology, including the process and mechanism of droplet dust collection, research on coal dust wettability, progress in surfactant optimization, mechanism of internal and external flow field jet fragmentation and atomization, and the development history of nozzles. At the same time, in view of the lack of thorough research on the contact wetting combination sedimentation mechanism of spray dust reduction, insufficient understanding of the atomization behavior of liquid medium under the action of the external flow field in the internal flow field of spray, unclear coupling relationship between various influencing factors of atomization effect, lack of sufficient theoretical support for measures optimization, inconsistency between field application and laboratory results, and other problems, the impact of the impact of the spray on the atomization mechanism, coal dust wettability, surfactant, nozzle atomization characteristics Propose research prospects for on-site applications and other aspects. Research has shown that the prevention and control system for coal dust in China’s mines has begun to take shape. In the future, the focus of research will shift to the study of wetting dust collection mechanism, joint analysis of factors affecting the wettability of deep-seated and multi-angle coal dust, improvement of characterization parameters and measurement methods for atomization and dust reduction effects, optimization of atomization characteristics of dust mist multi-angle nozzles, development of harmless and synergistic surfactants, and popularization of on-site applications.
-
-
表 1 润湿过程自发进行判定依据
Table 1 Determination basis for spontaneous wetting process
润湿过程 自由能判据 接触角判据 沾湿 $ {W}_{{\mathrm{W}}}\geqslant 0 $ $ \theta \leqslant 180\text{°} $ 浸湿 $ {W}_{{\mathrm{S}}}\geqslant 0 $ $ \theta \leqslant 90\text{°} $ 铺展 $ {W}_{{\mathrm{U}}}\geqslant 0 $ $ \theta =0\mathrm{或}\mathrm{不}\mathrm{存}\mathrm{在} $ -
[1] 伍永平,贠东风,解盘石,等. 大倾角煤层长壁综采:进展、实践、科学问题[J]. 煤炭学报,2020,45(1):24−34. WU Yongping,YUN Dongfeng,XIE Panshi,et al. Progress,practice and scientific issues in steeply dipping coal seams fully-mechanized mining[J]. Journal of China Coal Society,2020,45(1):24−34.
[2] 张宏,郭奋超,马亮,等. 综掘工作面气水联动除尘装置影响因素及应用效果分析[J]. 中国安全生产科学技术,2023,19(3):189−194. ZHANG Hong,GUO Fenchao,MA Liang,et al. Analysis on influencing factors and application effect of air-water linkage dust removal device in fully mechanized heading face[J]. Journal of Safety Science and Technology,2023,19(3):189−194.
[3] 相海涛,寇凯博,严国超,等. 表面活性剂对无烟煤润湿影响实验研究[J]. 煤炭技术,2023,42(4):127−131. XIANG Haitao,KOU Kaibo,YAN Guochao,et al. Experimental study on influence of surfactant on wetting of anthracite[J]. Coal Technology,2023,42(4):127−131.
[4] 王利文. 综采工作面综合防尘技术应用[J]. 煤炭科技,2023,44(1):131−134. WANG Liwen. Application of comprehensive dust prevention technology in fully-mechanized mining face[J]. Coal Science & Technology Magazine,2023,44(1):131−134.
[5] 杨海鹏. 煤矿综掘面降尘技术研究[J]. 能源与节能,2023(2):115−119. YANG Haipeng. Dust suppression technology in fully mechanized excavation face of coal mines[J]. Energy and Energy Conservation,2023(2):115−119.
[6] 张袁宁,刘刚,童富果. 基于水气两相流的泄洪雾化机理及规律研究[J]. 水动力学研究与进展(A辑),2020,35(4):515−525. ZHANG Yuanning,LIU Gang,TONG Fuguo. Mechanism and change law of water-air two-phase flood discharge atomization[J]. Chinese Journal of Hydrodynamics,2020,35(4):515−525.
[7] 严红,陈福振. 航空发动机燃油雾化特性研究进展[J]. 推进技术,2020,41(9):2038−2058. YAN Hong,CHEN Fuzhen. Review on fuel atomization in aeroengine[J]. Journal of Propulsion Technology,2020,41(9):2038−2058.
[8] 杜云贺. 单/双流体喷嘴雾化及降尘性能实验研究[D]. 徐州:中国矿业大学,2021:8−12. DU Yunhe. Experimental study on atomization and dust suppression performance of single/double fluid nozzle[D]. Xuzhou:China University of Mining and Technology,2021:8−12.
[9] 吴超. 化学抑尘[M]. 长沙:中南大学出版社,2003:76−78. [10] QIAN L J,LIN J Z,BAO F B. Numerical models for viscoelastic liquid atomization spray[J]. Energies,2016,9(12):1079. doi: 10.3390/en9121079
[11] ZENG Z Y,LI Y F,SHANG T L,et al. Effects of the atomisation spray on heating transfer in evaporative condensers:A numerical study[J]. Thermal Science and Engineering Progress,2023,42:101923. doi: 10.1016/j.tsep.2023.101923
[12] 曹建明. 液体喷雾学[M]. 北京:北京大学出版社,2013:43-54. [13] XIA Y K,KHEZZAR L,ALSHEHHI M,et al. Atomization of impinging opposed water jets interacting with an air jet[J]. Experimental Thermal and Fluid Science,2018,93:11−22. doi: 10.1016/j.expthermflusci.2017.12.010
[14] 魏伟. 综掘工作面粉尘扩散与不同粒径粉尘的沉降规律研究[J]. 矿业安全与环保,2021,48(5):38−42. WEI Wei. Research on dust diffusion and settlement law of different particle size in fully mechanized excavation face[J]. Mining Safety & Environmental Protection,2021,48(5):38−42.
[15] 张天,荆德吉,葛少成,等. 超音速汲水虹吸气动雾化降尘技术[J]. 煤炭学报,2021,46(12):3912−3921. ZHANG Tian,JING Deji,GE Shaocheng,et al. Supersonic siphon suction water aerodynamic atomization in dust removal[J]. Journal of China Coal Society,2021,46(12):3912−3921.
[16] SUN B,CHENG W M,WANG J Y,et al. Development of Venturi negative-pressure secondary dedust device and application of local spray closure technique[J]. Advanced Powder Technology,2019,30(1):42−54. doi: 10.1016/j.apt.2018.10.005
[17] NIE W,LIU Y H,WANG H,et al. The development and testing of a novel external-spraying injection dedusting device for the heading machine in a fully-mechanized excavation face[J]. Process Safety and Environmental Protection,2017,109:716−731. doi: 10.1016/j.psep.2017.06.002
[18] PAK S I,CHANG K S. Performance estimation of a Venturi scrubber using a computational model for capturing dust particles with liquid spray[J]. Journal of Hazardous Materials,2006,138(3):560−573. doi: 10.1016/j.jhazmat.2006.05.105
[19] LODGE J P Jr. Air pollution control engineering:Basic calculations for particulate collection[J]. Atmospheric Environment (1967),1980,14(12):1454−1455. doi: 10.1016/0004-6981(80)90168-7
[20] LIU Z Q,NIE W,PENG H T,et al. The effects of the spraying pressure and nozzle orifice diameter on the atomizing rules and dust suppression performances of an external spraying system in a fully-mechanized excavation face[J]. Powder Technology,2019,350:62−80. doi: 10.1016/j.powtec.2019.03.029
[21] XU C W,NIE W,LIU Z Q,et al. Multi-factor numerical simulation study on spray dust suppression device in coal mining process[J]. Energy,2019,182:544−558. doi: 10.1016/j.energy.2019.05.201
[22] 王惠,王贵昌,蔡遵生,等. 布朗扩散系数对胶体分形粒子簇扩散控制聚集动力学影响的Monte Carlo模拟[J]. 高等学校化学学报,2000,21(6):922−925. WANG Hui,WANG Guichang,CAI Zunsheng,et al. Monte Carlo simulation to the effect of cluster Brownian diffusion coefficient on the colloidal fractal cluster aggregation kinetics[J]. Chemical Research in Chinese Universities,2000,21(6):922−925.
[23] CHEN S,CHEUNG C S,CHAN C K,et al. Numerical simulation of aerosol collection in filters with staggered parallel rectangular fibres[J]. Computational Mechanics,2002,28(2):152−161. doi: 10.1007/s00466-001-0289-4
[24] YILBAS B S,HASSAN G,AL-SHARAFI A,et al. Water droplet dynamics on a hydrophobic surface in relation to the self-cleaning of environmental dust[J]. Scientific Reports,2018,8(1):2984. doi: 10.1038/s41598-018-21370-5
[25] 侯腾彦,高贵军,刘邱祖. 矿用风水雾化器液滴破碎机理及其降尘效率研究[J]. 矿山机械,2014,42(7):132−135. HOU Tengyan,GAO Guijun,LIU Qiuzu. Study on droplet breakup mechanism and dust-fall efficiency of mine wind-water atomizer[J]. Mining & Processing Equipment,2014,42(7):132−135.
[26] 陈建泽,宋淑然,孙道宗,等. 远射程风送式喷雾机气流场分布及喷雾特性试验[J]. 农业工程学报,2017,33(24):72−79. CHEN Jianze,SONG Shuran,SUN Daozong,et al. Test on airflow field and spray characteristics for long-range air-blast sprayer[J]. Transactions of the Chinese Society of Agricultural Engineering,2017,33(24):72−79.
[27] AZADI TABAR M,GHAZANFARI M H,DEHGHAN MONFARED A. Compare numerical modeling and improved understanding of dynamic sessile drop contact angle analysis in Liquid-Solid-Gas system[J]. Journal of Petroleum Science and Engineering,2020,184:106552. doi: 10.1016/j.petrol.2019.106552
[28] 赵国玺. 表面活性剂物理化学[M]. 2版. 北京:北京大学出版社,1991:355−361. [29] 陈跃,马东民,夏玉成,等. 低阶煤不同宏观煤岩组分润湿性及影响因素研究[J]. 煤炭科学技术,2019,47(9):97−104. CHEN Yue,MA Dongmin,XIA Yucheng,et al. Study on wettability and influencing factors of different macroscopic components in low rank coal[J]. Coal Science and Technology,2019,47(9):97−104.
[30] ZHUO Q M,LIU W L,WANG P H,et al. Influence of flotation reagents on separation mechanism of macerals:A multi-scale study[J]. Fuel,2023,333:126480. doi: 10.1016/j.fuel.2022.126480
[31] LIU Z J,PU C,DU X D,et al. Combined effects of pore structure and surface chemistry on water vapor adsorption characteristics of coal:Equilibrium,thermodynamic and kinetic studies[J]. Arabian Journal of Chemistry,2023,16(6):104790. doi: 10.1016/j.arabjc.2023.104790
[32] XIE B,ZHANG X H,GE S C,et al. Hygroscopicity of coal powders with different ranks[J]. Fuel,2024,356:129583. doi: 10.1016/j.fuel.2023.129583
[33] DING Y S,YIN D W,HU H,et al. Influence characteristics and macro-meso mechanism of pressure immersion time on tensile properties for coal materials[J]. Journal of Materials Research and Technology,2023,26:2358−2370. doi: 10.1016/j.jmrt.2023.08.030
[34] JIANG B Y,ZHOU Y,JI B,et al. Investigation on the effect of functional groups on the wettability of coal dust:Experiments and theoretical validation[J]. Fuel,2023,351:128987. doi: 10.1016/j.fuel.2023.128987
[35] BRACCO G,HOLST B. Surface science techniques[M]. Berlin,Heidelberg:Springer Berlin Heidelberg,2013
[36] XU G,CHEN Y P,EKSTEEN J,et al. Surfactant-aided coal dust suppression:A review of evaluation methods and influencing factors[J]. Science of the Total Environment,2018,639:1060−1076. doi: 10.1016/j.scitotenv.2018.05.182
[37] LU W W,LIU Y,ZHANG Z Y,et al. Dual emissive amphiphilic carbon dots as ratiometric fluorescent probes for the determination of critical micelle concentration of surfactants[J]. Analytical Methods,2022,14(6):672−677. doi: 10.1039/D1AY02042K
[38] 村田逞诠. 煤的润湿性研究及其应用[M]. 朱春笙,龚祯祥译. 北京:煤炭工业出版社,1992:31−34. [39] 谭烜昊,王鹏飞,易波波,等. 煤尘润湿性能与粒径关系的实验研究[J]. 矿业工程研究,2018,33(2):14−17. TAN Xuanhao,WANG Pengfei,YI Bobo,et al. Experimental study on relationship between wetting performance and particle size of coal dust[J]. Mineral Engineering Research,2018,33(2):14−17.
[40] KOLLIPARA V K,CHUGH Y P,MONDAL K. Physical,mineralogical and wetting characteristics of dusts from Interior Basin coal mines[J]. International Journal of Coal Geology,2014,127:75−87. doi: 10.1016/j.coal.2014.02.008
[41] SAVITSKYI D P. Impact of the pH on angles of contact of water wettability of brown coal[J]. Journal of Water Chemistry and Technology,2015,37(4):155−160. doi: 10.3103/S1063455X15040013
[42] 杨静,徐辉,高建广,等. 粒度对煤尘表面特性及润湿性的影响[J]. 煤矿安全,2014,45(10):140−143. YANG Jing,XU Hui,GAO Jianguang,et al. Influence of particle size on surface characteristic and wetting mechanism of coal dust[J]. Safety in Coal Mines,2014,45(10):140−143.
[43] LI Q Z,LIN B Q,ZHAO S,et al. Surface physical properties and its effects on the wetting behaviors of respirable coal mine dust[J]. Powder Technology,2013,233:137−145. doi: 10.1016/j.powtec.2012.08.023
[44] 程卫民,徐翠翠,周刚. 煤尘表面碳、氧基团随变质增加的演化规律及其对润湿性的影响[J]. 燃料化学学报,2016,44(3):295−304. CHENG Weimin,XU Cuicui,ZHOU Gang. Evolution law of carbon and oxygen groups on coal surface with increasing metamorphic grade and its effect on wettability[J]. Journal of Fuel Chemistry and Technology,2016,44(3):295−304.
[45] LIU S Y,LIU X Y,GUO Z Y,et al. Wettability modification and restraint of moisture re-adsorption of lignite using cationic gemini surfactant[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2016,508:286−293.
[46] XU C H,WANG D M,WANG H T,et al. Effects of chemical properties of coal dust on its wettability[J]. Powder Technology,2017,318:33−39. doi: 10.1016/j.powtec.2017.05.028
[47] 程卫民,薛娇,周刚,等. 基于红外光谱的煤尘润湿性[J]. 煤炭学报,2014,39(11):2256−2262. CHENG Weimin,XUE Jiao,ZHOU Gang,et al. Study of coal dust wettability based on FTIR[J]. Journal of China Coal Society,2014,39(11):2256−2262.
[48] 周刚,程卫民,徐翠翠,等. 不同变质程度煤尘润湿性差异的13C-NMR特征解析[J]. 煤炭学报,2015,40(12):2849−2855. ZHOU Gang,CHENG Weimin,XU Cuicui,et al. Characteristic analysis of 13C-NMR for the wettability difference of coal dust with diverse degrees of metamorphism[J]. Journal of China Coal Society,2015,40(12):2849−2855.
[49] 周刚,薛娇,程卫民,等. 基于X射线衍射实验的堆垛结构对煤尘润湿性的影响[J]. 工程科学学报,2015,37(12):1535−1541. ZHOU Gang,XUE Jiao,CHENG Weimin,et al. Effect of stacking structure on the wettability of coal dust based on X-ray diffraction experiment[J]. Chinese Journal of Engineering,2015,37(12):1535−1541.
[50] 程卫民,薛娇,周刚,等. 烟煤煤尘润湿性与无机矿物含量的关系研究[J]. 中国矿业大学学报,2016,45(3):462−468. CHENG Weimin,XUE Jiao,ZHOU Gang,et al. Research on the relationship between bituminous coal dust wettability and inorganic mineral content[J]. Journal of China University of Mining & Technology,2016,45(3):462−468.
[51] 张新花,徐翠翠,颜国强,等. 不同煤种润湿性影响因素分析[J]. 煤矿安全,2015,46(1):156−158,162. ZHANG Xinhua,XU Cuicui,YAN Guoqiang,et al. Influencing factors analysis of different types of coal wettability[J]. Safety in Coal Mines,2015,46(1):156−158,162.
[52] 邱贵霞,侯力,易宗礼,等. 离心喷嘴喷口结构参数对雾化性能的影响分析[J]. 推进技术,2020,41(12):2782−2789. QIU Guixia,HOU Li,YI Zongli,et al. Effects of structure parameters of centrifugal nozzle on atomization performance[J]. Journal of Propulsion Technology,2020,41(12):2782−2789.
[53] 裴娜,杨华,刘联胜,等. 喷孔结构对双旋流气泡雾化喷嘴喷雾特性的影响[J]. 流体机械,2021,49(9):1−5,12. PEI Na,YANG Hua,LIU Liansheng,et al. Effect of orifice structure on spray characteristics of double swirl effervescent atomizer[J]. Fluid Machinery,2021,49(9):1−5,12.
[54] HAN H,WANG P F,LI Y J,et al. Effect of water supply pressure on atomization characteristics and dust-reduction efficiency of internal mixing air atomizing nozzle[J]. Advanced Powder Technology,2020,31(1):252−268. doi: 10.1016/j.apt.2019.10.017
[55] LI Z H,WU Y X,CAI C R,et al. Mixing and atomization characteristics in an internal-mixing twin-fluid atomizer[J]. Fuel,2012,97:306−314. doi: 10.1016/j.fuel.2012.03.006
[56] 马威. 煤矿井下气水喷雾雾化效果实验研究及应用[J]. 煤矿安全,2021,52(11):32−37. MA Wei. Experimental research and application of atomization effect of gas-water spray in underground coal mine[J]. Safety in Coal Mines,2021,52(11):32−37.
[57] 刘旭泽,高贵军. 基于Hartmann哨超声喷嘴的雾化特性研究[J]. 真空科学与技术学报,2016,36(3):268−272. LIU Xuze,GAO Guijun. Atomization characteristics of ultrasonic nozzle with hartmann whistle structure[J]. Chinese Journal of Vacuum Science and Technology,2016,36(3):268−272.
[58] WANG H T,WU J L,DU Y H,et al. Investigation on the atomization characteristics of a solid-cone spray for dust reduction at low and medium pressures[J]. Advanced Powder Technology,2019,30(5):903−910. doi: 10.1016/j.apt.2019.02.004
[59] WONGWAILIKHIT K,DIETRICH N,HÉBRARD G,et al. Performance of a monofiber optical probe in determining the droplet size and velocity in spray systems compared with a high-speed camera[J]. Industrial & Engineering Chemistry Research,2019,58(51):23366−23379.
[60] WANG X G,HUANG Z H,KUTI O A,et al. Experimental and analytical study on biodiesel and diesel spray characteristics under ultra-high injection pressure[J]. International Journal of Heat and Fluid Flow,2010,31(4):659−666. doi: 10.1016/j.ijheatfluidflow.2010.03.006
[61] 马中飞,张于祥,杨秀莉,等. 自吸式喷雾降尘性能试验[J]. 排灌机械工程学报,2012,30(1):97−101. MA Zhongfei,ZHANG Yuxiang,YANG Xiuli,et al. Experiment on dust suppression performance of self-priming sprayer[J]. Journal of Drainage and Irrigation Machinery Engineering,2012,30(1):97−101.
[62] YAO C D,GENG P L,YIN Z H,et al. Impacts of nozzle geometry on spray combustion of high pressure common rail injectors in a constant volume combustion chamber[J]. Fuel,2016,179:235−245. doi: 10.1016/j.fuel.2016.03.097
[63] MINOV S V,COINTAULT F,VANGEYTE J,et al. Spray droplet characterization from a single nozzle by high speed image analysis using an in-focus droplet criterion[J]. Sensors,2016,16(2):218. doi: 10.3390/s16020218
[64] NIE W,LIU F,XU C W,et al. Study on the optimal parameter range of droplet-wrapped respirable dust in spray dustfall by mesoscopic method[J]. Environmental Research,2022,214:114035. doi: 10.1016/j.envres.2022.114035
[65] 聂文,刘阳昊,程卫民,等. 综采面架间喷雾引射除尘技术[J]. 中南大学学报(自然科学版),2015,46(11):4384−4390. NIE Wen,LIU Yanghao,CHENG Weimin,et al. Dust removal technology of eject spraying between hydraulic supports on fully mechanized mining face[J]. Journal of Central South University (Science and Technology),2015,46(11):4384−4390.
[66] 程超,葛少成,孙丽英,等. 超音速气动液滴荷电雾化及降尘性能试验研究[J]. 中国安全生产科学技术,2022,18(12):89−96. CHENG Chao,GE Shaocheng,SUN Liying,et al. Experimental study on charged atomization and dust reduction performance of supersonic pneumatic droplets[J]. Journal of Safety Science and Technology,2022,18(12):89−96.
[67] 王鹏飞,刘荣华,汤梦,等. 煤矿井下高压喷雾雾化特性研究[J]. 环境工程学报,2015,9(9):4433−4439. WANG Pengfei,LIU Ronghua,TANG Meng,et al. Study on atomization characteristics of high pressure spray in underground coal mines[J]. Chinese Journal of Environmental Engineering,2015,9(9):4433−4439.
[68] 邬长福,欧阳启明,陈祖云,等. hyd型低压除尘喷嘴雾化特性的实验研究[J]. 热能动力工程,2016,31(5):99−105,155−156. WU Changfu,OUYANG Qiming,CHEN Zuyun,et al. Experimental study of the atomization characteristics of a HYD type low pressure dust-removal nozzle[J]. Journal of Engineering for Thermal Energy and Power,2016,31(5):99−105,155−156.
[69] SHAFAEE M,BANITABAEI S A,ESFAHANIAN V,et al. An investigation on effect of geometrical parameters on spray cone angle and droplet size distribution of a two-fluid atomizer[J]. Journal of Mechanical Science and Technology,2011,25(12):3047−3052. doi: 10.1007/s12206-011-0901-2
[70] GAO G J,WANG C J,KOU Z M. Experimental studies on the spraying pattern of a swirl nozzle for coal dust control[J]. Applied Sciences,2018,8(10):1770. doi: 10.3390/app8101770
[71] YAN J J, WANG F, LI Y C, et al. Influence of swirl intensity on atomization characteristics and dust-reduction using pressure swirl nozzle[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2025(47): 10895−10915. YAN J J, WANG F, LI Y C, et al. Influence of swirl intensity on atomization characteristics and dust-reduction using pressure swirl nozzle[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects,2025(47):10895−10915.
[72] FANG X M,YUAN L,JIANG B Y,et al. Effect of water–fog particle size on dust fall efficiency of mechanized excavation face in coal mines[J]. Journal of Cleaner Production,2020,254:120146. doi: 10.1016/j.jclepro.2020.120146
[73] MUGELE R A,EVANS H D. Droplet size distribution in sprays[J]. Industrial & Engineering Chemistry,1951,43(6):1317−1324.
[74] 聂文,彭慧天,晋虎,等. 喷雾压力影响采煤机外喷雾喷嘴雾化特性变化规律[J]. 中国矿业大学学报,2017,46(1):41−47. NIE Wen,PENG Huitian,JIN Hu,et al. The effect of spray pressure on atomization characteristics of external spray nozzle on coal mining machine[J]. Journal of China University of Mining & Technology,2017,46(1):41−47.
[75] WANG H T,DU Y H,WEI X B,et al. An experimental comparison of the spray performance of typical water-based dust reduction media[J]. Powder Technology,2019,345:580−588. doi: 10.1016/j.powtec.2019.01.032
[76] 陈曦,葛少成,张忠温,等. 基于Fluent多喷嘴喷雾干涉数值模拟分析[J]. 环境工程学报,2014,8(6):2503−2508. CHEN Xi,GE Shaocheng,ZHANG Zhongwen,et al. Numerical simulation and analysis of multi-nozzle interference base on Fluent[J]. Chinese Journal of Environmental Engineering,2014,8(6):2503−2508.
[77] 王茂华. 喷雾降尘中加速沉降尘粒雾滴尾流效应研究[J]. 煤矿安全,2017,48(9):21−24. WANG Maohua. Research on droplet’s wake effect with dust particle’s accelerated sedimentation in dust control by spraying[J]. Safety in Coal Mines,2017,48(9):21−24.
[78] ZHOU Z F,WU W T,CHEN B,et al. An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray[J]. International Journal of Heat and Mass Transfer,2012,55(15-16):4460−4468. doi: 10.1016/j.ijheatmasstransfer.2012.04.021
[79] GONO T,SYUTO T,YAMAGATA T,et al. Time-resolved scanning stereo PIV measurement of three-dimensional velocity field of highly buoyant jet[J]. Journal of Visualization,2012,15(3):231−240. doi: 10.1007/s12650-012-0129-y
[80] ZHALEHRAJABI E,RAHMANIAN N,ZARRINPASHNE S,et al. Investigation of the growth of particles produced in a Laval nozzle[J]. Particulate Science and Technology,2014,32(6):595−601. doi: 10.1080/02726351.2014.933459
[81] CHEN B,GAO D R,WU S F,et al. Influence of self-excited vibrating cavity structure on droplet diameter characteristics of twin-fluid nozzle[J]. Chinese Journal of Mechanical Engineering,2018,31(1):73. doi: 10.1186/s10033-018-0277-7
[82] 陈琛,郭增乐,白淑敏. 旋流芯式喷嘴喷雾降尘数值模拟与现场应用[J]. 煤矿安全,2019,50(5):186−189. CHEN Chen,GUO Zengle,BAI Shumin. Numerical simulation and field application of swirling-cored nozzle for dust suppression[J]. Safety in Coal Mines,2019,50(5):186−189.
[83] 王健,刘荣华,王鹏飞,等. 常用压力式喷嘴雾化特性及降尘性能研究[J]. 煤矿安全,2019,50(8):36−40. WANG Jian,LIU Ronghua,WANG Pengfei,et al. Study on atomization characteristics and dust reduction performance of common pressure nozzles[J]. Safety in Coal Mines,2019,50(8):36−40.
[84] AGARWAL A,TRUJILLO M F. The effect of nozzle internal flow on spray atomization[J]. International Journal of Engine Research,2020,21(1):55−72. doi: 10.1177/1468087419875843
[85] 苗懂艳,高贵军. 喷嘴螺旋倾角对雾化性能影响的试验研究[J]. 煤矿安全,2020,51(4):14−17. MIAO Dongyan,GAO Guijun. Experimental study on influence of nozzle spiral inclination angle on atomization performance[J]. Safety in Coal Mines,2020,51(4):14−17.
[86] WANG J P,XU C C,ZHOU G,et al. Spray structure and characteristics of a pressure-swirl dust suppression nozzle using a phase Doppler particle analyze[J]. Processes,2020,8(9):1127. doi: 10.3390/pr8091127
[87] ZHOU R,SHEN C B,JIN X. Numerical study on the morphology of a liquid-liquid pintle injector element primary breakup spray[J]. Journal of Zhejiang University:Science A,2020,21(8):684−694. doi: 10.1631/jzus.A1900624
[88] 陈聪,刘振. 基于多普勒技术的气水喷嘴雾场粒度速度实验研究[J]. 煤矿安全,2017,48(12):33−36. CHEN Cong,LIU Zhen. Experimental study on particle size velocity of air-water nozzle fog field based on Doppler technology[J]. Safety in Coal Mines,2017,48(12):33−36.
[89] 袁辉,徐锐,陈本良,等. 气水两相流喷嘴喷射条件对雾化降尘影响的实验研究[J]. 煤炭工程,2018,50(12):127−132. YUAN Hui,XU Rui,CHEN Benliang,et al. Experimental study on influence of the spray condition to dust removal of gas-liquid two-phase flow nozzle[J]. Coal Engineering,2018,50(12):127−132.
[90] 蒋仲安,许峰,王亚朋,等. 空气雾化喷嘴雾化机理及影响因素实验分析[J]. 中南大学学报(自然科学版),2019,50(10):2360−2367. JIANG Zhongan,XU Feng,WANG Yapeng,et al. Experimental analysis of atomization mechanism and influencing factors of air atomizing nozzle[J]. Journal of Central South University (Science and Technology),2019,50(10):2360−2367.
[91] WANG P F,SHI Y J,ZHANG L Y,et al. Effect of structural parameters on atomization characteristics and dust reduction performance of internal-mixing air-assisted atomizer nozzle[J]. Process Safety and Environmental Protection,2019,128:316−328. doi: 10.1016/j.psep.2019.06.014
[92] 蒋仲安,王亚朋,许峰. 金属矿山气−水喷头雾化特性及降尘能力实验研究[J]. 中南大学学报(自然科学版),2020,51(1):184−192. doi: 10.11817/j.issn.1672-7207.2020.01.021 JIANG Zhongan,WANG Yapeng,XU Feng. Experimental study on atomization characteristics and dust reduction capacity of gas-water nozzles in metal mines[J]. Journal of Central South University (Science and Technology),2020,51(1):184−192. doi: 10.11817/j.issn.1672-7207.2020.01.021
[93] MA R,DONG B,YU Z Q,et al. An experimental study on the spray characteristics of the air-blast atomizer[J]. Applied Thermal Engineering,2015,88:149−156. doi: 10.1016/j.applthermaleng.2014.11.068
[94] 吴恩启,顾自明,赵兵,等. 空气雾化喷嘴的设计与实验研究[J]. 热能动力工程,2018,33(4):69−75. WU Enqi,GU Ziming,ZHAO Bing,et al. Design of an air atomized nozzle and its experimental study[J]. Journal of Engineering for Thermal Energy and Power,2018,33(4):69−75.
[95] 刘赵淼,李泽轩,林家源,等. 压力条件对旋流槽数不同的离心式喷嘴液膜破碎及雾化的影响研究[J]. 机械工程学报,2021,57(4):247−256. doi: 10.3901/JME.2021.04.247 LIU Zhaomiao,LI Zexuan,LIN Jiayuan,et al. Effect of the slot number on the breakup and atomization of liquid film in swirl nozzle[J]. Journal of Mechanical Engineering,2021,57(4):247−256. doi: 10.3901/JME.2021.04.247
[96] 吴正人,吴启东,肖华,等. 喷嘴组的雾化特性及液滴直径分布影响因素研究[J]. 济南大学学报(自然科学版),2022,36(6):741−747. WU Zhengren,WU Qidong,XIAO Hua,et al. Influencing factors of atomization characteristics and droplet diameter distribution of nozzle groups[J]. Journal of University of Jinan (Science and Technology),2022,36(6):741−747.
[97] COLINET J,HALLDIN C N,SCHALL J. Best practices for dust control in coal mining[M]. Second ediion. Pittsburgh:DHHS,2021.
[98] 程卫民,周刚,左前明,等. 喷嘴喷雾压力与雾化粒度关系的实验研究[J]. 煤炭学报,2010,35(8):1308−1313. CHENG Weimin,ZHOU Gang,ZUO Qianming,et al. Experimental research on the relationship between nozzle spray pressure and atomization particle size[J]. Journal of China Coal Society,2010,35(8):1308−1313.
[99] 周刚,程卫民,聂文,等. 高压喷雾射流雾化及水雾捕尘机理的拓展理论分析[J]. 重庆大学学报,2012,35(3):121−126. ZHOU Gang,CHENG Weimin,NIE Wen,et al. Extended theoretical analysis of jet and atomization under high-pressure spraying and collecting dust mechanism of droplet[J]. Journal of Chongqing University,2012,35(3):121−126.
[100] SHIN J,KIM D,SEO J,et al. Effects of the physical properties of fuel on spray characteristics from a gas turbine nozzle[J]. Energy,2020,205:118090. doi: 10.1016/j.energy.2020.118090
[101] EJIM C E,RAHMAN M A,AMIRFAZLI A,et al. Effects of liquid viscosity and surface tension on atomization in two-phase,gas/liquid fluid coker nozzles[J]. Fuel,2010,89(8):1872−1882. doi: 10.1016/j.fuel.2010.03.005
[102] LI Z H,WU Y X,YANG H R,et al. Effect of liquid viscosity on atomization in an internal-mixing twin-fluid atomizer[J]. Fuel,2013,103:486−494. doi: 10.1016/j.fuel.2012.06.097
[103] KHAN M A,GADGIL H,KUMAR S. Influence of liquid properties on atomization characteristics of flow-blurring injector at ultra-low flow rates[J]. Energy,2019,171:1−13. doi: 10.1016/j.energy.2019.01.006
[104] 肖进新,赵振国. 表面活性剂应用技术[M]. 北京:化学工业出版社,2018. [105] XU C H,WANG D M,WANG H T,et al. Experimental investigation of coal dust wetting ability of anionic surfactants with different structures[J]. Process Safety and Environmental Protection,2019,121:69−76. doi: 10.1016/j.psep.2018.10.010
[106] 郑源臻,李庆钊,代华明,等. 沉积煤尘层表面渗透润湿模型的试验研究[J]. 中国煤炭,2015,41(7):100−103,115. doi: 10.3969/j.issn.1006-530X.2015.07.024 ZHENG Yuanzhen,LI Qingzhao,DAI Huaming,et al. Experimental study on wetting and permeating model of fallen coal dust surface[J]. China Coal,2015,41(7):100−103,115. doi: 10.3969/j.issn.1006-530X.2015.07.024
[107] 齐健,闫奋飞,王怀法. 不同煤种接触角及润湿性规律探究[J]. 矿产综合利用,2018(2):112−117. doi: 10.3969/j.issn.1000-6532.2018.02.00x QI Jian,YAN Fenfei,WANG Huaifa. Study on contact angle and wetting property of different coal[J]. Multipurpose Utilization of Mineral Resources,2018(2):112−117. doi: 10.3969/j.issn.1000-6532.2018.02.00x
[108] NI G H,SUN Q,XUN M,et al. Effect of NaCl-SDS compound solution on the wettability and functional groups of coal[J]. Fuel,2019,257:116077. doi: 10.1016/j.fuel.2019.116077
[109] MENG J Q,XIA J K,MENG H X,et al. Effects of surfactant compounding on the wettability characteristics of Zhaozhuang coal:Experiment and molecular simulation[J]. Tenside Surfactants Detergents,2020,57(5):390−400. doi: 10.3139/113.110704
[110] SHI G Q,HAN C,WANG Y M,et al. Experimental study on synergistic wetting of a coal dust with dust suppressant compounded with noncationic surfactants and its mechanism analysis[J]. Powder Technology,2019,356:1077−1086. doi: 10.1016/j.powtec.2019.09.040
[111] 张雪洁,陈明义,张同浩,等. 表面活性剂水溶液抑制煤体瓦斯解吸作用的研究进展[J]. 矿业科学学报,2022,7(6):738−751. ZHANG Xuejie,CHEN Mingyi,ZHANG Tonghao,et al. Research progress of surfactantaqueous solution inhibiting the desorption of gas in coal[J]. Journal of Mining Science and Technology,2022,7(6):738−751.
[112] WANG J,HE Y Q,ZHANG Y,et al. Research on cationic surfactant adsorption performance on different density lignite particles by XPS nitrogen analysis[J]. Fuel,2018,213:48−54. doi: 10.1016/j.fuel.2017.10.072
[113] WANG K,DING C N,JIANG S G,et al. Application of the addition of ionic liquids using a complex wetting agent to enhance dust control efficiency during coal mining[J]. Process Safety and Environmental Protection,2019,122:13−22. doi: 10.1016/j.psep.2018.11.011
[114] 王成勇,邢耀文,夏阳超,等. 离子型表面活性剂对低阶煤润湿性的调控机制[J]. 煤炭学报,2022,47(8):3101−3107. WANG Chengyong,XING Yaowen,XIA Yangchao,et al. Regulation mechanism of ionic surfactant on the wettability of low rank coal[J]. Journal of China Coal Society,2022,47(8):3101−3107.
[115] WANG X N,YUAN S J,LI X,et al. Synergistic effect of surfactant compounding on improving dust suppression in a coal mine in Erdos,China[J]. Powder Technology,2019,344:561−569. doi: 10.1016/j.powtec.2018.12.061
[116] 刘硕,葛少成,王俊峰,等. 基于量子化学分析表面活性剂对不同煤种润湿机理的影响[J]. 中国安全生产科学技术,2021,17(11):105−111. LIU Shuo,GE Shaocheng,WANG Junfeng,et al. Influence of surfactants on wettability mechanism of different coals based on quantum chemistry analysis[J]. Journal of Safety Science and Technology,2021,17(11):105−111.