高级检索

半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响

杜华栋, 谢姗姗, 毕银丽, 刘研, 孙浩, 刘云龙

杜华栋,谢姗姗,毕银丽,等. 半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响[J]. 煤炭科学技术,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455
引用本文: 杜华栋,谢姗姗,毕银丽,等. 半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响[J]. 煤炭科学技术,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455
DU Huadong,XIE Shanshan,BI Yinli,et al. Influence of mining ground fissures development on seedling bank and seedling establishment factors in semi-arid mining area[J]. Coal Science and Technology,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455
Citation: DU Huadong,XIE Shanshan,BI Yinli,et al. Influence of mining ground fissures development on seedling bank and seedling establishment factors in semi-arid mining area[J]. Coal Science and Technology,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455

半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响

基金项目: 

国家重点研发计划资助项目(2022YFF1303303)

详细信息
    作者简介:

    杜华栋: (1982—),陕西华州人,副教授,博士。E-mail:dddhhhddd@126.com

  • 中图分类号: Q948; X171.4

Influence of mining ground fissures development on seedling bank and seedling establishment factors in semi-arid mining area

Funds: 

National Key Research and Development Program of China (2022YFF1303303)

  • 摘要:

    半干旱矿区煤炭井工开采引起的地表塌陷,造成水土流失强度增加以及植被生境损害等一系列生态干扰,其中采动地裂缝发育对坡面幼苗库特征及建植的影响仍有待深入研究。本文首先探明了榆神府矿区距采动地裂缝不同距离(0~1 m、1~2 m和2~5 m)幼苗库密度、组成和多样性特征,再结合土壤因子、地上植被群落及枯落物特征揭示裂缝发育造成影响幼苗建植的环境因子在空间上的差异性,最后采用物种相似性模型探究了裂缝发育区幼苗库对地上植被自然更新的影响。结果表明:①在未有裂缝发育的对照区,幼苗库组成以多年生草本为主(占比57%),裂缝发育后距地裂缝0~1 m和1~2 m范围,多年生草本比例分别下降至30%和35%,但一年生草本占比较对照区分别增加了28%和25%;与对照区相比0~1 m和1~2 m幼苗密度分别显著增加了92%和68%,幼苗库Margalef丰富度指数、Shannon-Wiener多样性指数和Simpson优势度指数分别增加了42%和24%、62%和40%、33%和18%,但Pielou均匀度相较于对照区分别降低了55%和38%;而距裂缝2~5 m范围,幼苗库生活型组成、密度和多样性与对照区已无显著性差异,因此裂缝发育对幼苗库特征影响范围在2 m范围之内。②地表裂缝发育后,距地裂缝0~1 m和1~2 m范围影响裂缝幼苗建植的相同因子包括土壤含水量、土壤有机质含量和枯落物厚度,但0~1 m范围除上述影响因子外还包括枯落物盖度、土壤结皮盖度与厚度、地上植被盖度与生物量等因子;随着距裂缝距离增加,距裂缝2~5 m范围限制幼苗建植的关键因子减少且与对照区相似,主要包括土壤含水量、地上植被盖度和枯落物盖度。③距地裂缝0~1 m和1~2 m以一年生为主的幼苗库物种组成与以多年生为主的地上植被物种相似性较低仅为0.42和0.48,加之一年生植物对植物群落演替促进能力较弱,因此可以得出受裂缝干扰较大的0~2 m范围幼苗库对植被群落恢复贡献有限,故该范围生态恢复中应在自然恢复的基础上,适当考虑人工植被建设以促进矿区塌陷地植被恢复进程,提高该区植被群落多样性和稳定性。随水平距离的增大,距裂缝2~5 m范围和对照区幼苗库与地上植被物种组成相似性接近,分别为0.67和0.68,表明裂缝发育后2~5 m范围植物群落恢复潜力并未受到影响,通过自然更新即可保证该区植被恢复。

    Abstract:

    In semi-arid areas, underground coal mining could cause ecological and environmental problems such as surface subsidence, which can increase soil erosion intensity and damage vegetation habitats. In these ecological damages, the effect of mining ground fissures development on the seedling banks still needs to be studied further for its important role in plant restoration. In this study, the density, composition, and diversity characteristics of seedling banks were clarified at different horizontal distances (0-1 m, 1-2 m, and 2-5 m) from the mining ground fissuresin the Yushenfu mining area. Then the spatial variability of driving factors affecting seedling establishment were explored by combining soil factors, aboveground vegetation communities and litters characterization. Finally, the species similarity model was used to explore the effects of seedling banks on the natural vegetation regeneration in different areas from the ground fissures. The results showed that: ① In the control site without fissures development, the composition of the seedling bank was dominated by perennial grasses (57%), but after fissures development, the proportion of perennial herbs decreased to 30% and 35% in the 0-1 m and 1-2 m area from the fissures, respectively. Compared with the control sites, the seedling density increased significantly by 92% and 68% in 0-1 m and 1-2 m area, the Margalef richness index, Shannon-Wiener diversity index, and Simpson dominance index of the seedling bank increased by 42% and 24%, 62% and 40%, and 33% and 18%, but Pielou evenness index was reduced by 55% and 38%, respectively. However, there were no significant differences in the composition, density and diversity of seedling bank in 2-5 m area from the ground fissures compared to the control area. Therefore, the impact of ground fissures development on the characteristics of the seedling bank was within the range of 2 meters. ② After the development of ground fissures, the same factors affected seedling establishment were soil moisture content, soil organic matter content and litter thickness in the 0-1 m and 1-2 m areas from the ground fissures. In addition to the above factors, seedling establishing factors in 0-1 m area also included litter cover, soil crust cover and thickness, aboveground vegetation cover and biomass. With increasing distance from ground fissures, the key factors limiting seedling establishment were reduced in the 2-5 m area, and were similar to those in the control area, which included soil moisture content, aboveground vegetation cover, and litter cover. ③ In 0-1 m and1-2 m areas from ground fissures, the annual herbaceous species composition were less similar to that of above-ground vegetation species which dominated by the perennial herbs, the species similarity is only 0.42 and 0.48, respectively. Considering the weak contribution of annuals to plant community succession, it can be concluded that the contribution of the seedling bank is limited for vegetation restoration with in the 0-2 m areas from the ground fissures which is greatly disturbed by the fissure. In the 2-5 m area and control area, the species similarity between the seedling bank and aboveground vegetation was 0.67 and 0.68, which indicate that the recovery potential of the vegetation community is not affected by the development of ground fissures in this area.

  • 图  1   研究区域位置

    Figure  1.   Spatial distribution of sampling points

    图  2   野外采样样地示意

    Figure  2.   Illustration of field sampling plot

    图  3   距采动地裂缝不同距离幼苗库密度特征

    Figure  3.   Seedling bank density characteristics at different distances from mining ground fissure

    图  4   距采动地裂缝不同距离幼苗库生活型组成特征

    Figure  4.   Characteristics of life-form composition of seedling bank at different distances from mining ground fissure

    图  5   距采动地裂缝不同距离幼苗库多样性特征

    Figure  5.   Diversity characteristics of seedling bank at different distances from mining ground fissure

    图  6   距采动地裂缝不同距离幼苗库与环境因子CCA排序图

    红色箭头代表环境因子,蓝色三角形代表幼苗物种分布注: 物种名称:A1—牻牛儿苗Erodium stephanianum;A2—草木樨Melilotus suaveolens;A3—兴安胡枝子Lespedeza davurica;A4—猪毛蒿Artemisia scoparia;A5—獐牙菜Swertia bimaculata;A6—苦荬菜Ixeris polycephala;A7—地锦Parthenocissus tricuspidata;A8—拐轴鸦葱Lipschitzia divaricata;A9—阿尔泰狗娃花Aster altaicus;A10—茵陈蒿Artemisia capillaris;A11—远志Polygala tenuifolia;A12—长芒草Stipa bungeana;A13—猪毛菜Salsola collina;A14—蒙古蒿Artemisia mongolica;A15—糙叶黄芪Astragalus scaberrimus;A16—乳浆大戟Euphorbia esula;A17—斜茎黄芪Astragalus laxmannii;A18—狗尾草Setaria viridis;A19—华北白前Vincetoxicum mongolicum;A20—柠条Caragana korshinskii;A21—二色补血草Limonium bicolor;A22—朝阳隐子草Cleistogenes hackelii;A23—茭蒿Artemisia giraldii;A24—狭叶米口袋Gueldenstaedtia stenophylla;A25—赖草Leymus secalinus;A26—野胡萝卜Daucus carota;A27—野葱Allium chrysanthum;A28—紫筒草Stenosolenium saxatile;A29—苦苣菜Sonchus oleraceus;A30—芦苇Phragmites australis;A31—棘豆Oxytropis glabra;A32—苜蓿Medicago sativa;A33—百里香Thymus mongolicus;A34—异叶败酱Patrinia heterophylla;A35—北京隐子草Cleistogenes hancei;A36—青蒿Artemisia caruifolia;A37—白莲蒿 Artemisia stechmanniana.环境因子:AVEC—地上植被盖度;AVEB—地上植被生物量;SCC—土壤结皮盖度;SCT—土壤结皮厚度;LLC—枯落物层盖度;LLT—枯落层厚度;LLB—枯落物层生物量;SOM—土壤有机质;SM—土壤含水量;AK—土壤速效钾;AP—土壤速效磷;AN—土壤速效氮;BD—土壤容重。下同

    Figure  6.   CCA of seedling bank and environmental factors at different distances from mining ground fissure

    图  7   距采动地裂缝不同距离环境因子与幼苗库之间相关热图

    Figure  7.   Heat map of correlation between environmental factors and seedling bank at different distances

    图  8   距采动地裂缝不同距离幼苗库与地上植被物种组成集合图

    注:Ⅰ—幼苗库和地上植被总物种数;Ⅱ—距采动地裂缝水平距离1~2 m处地上植被所特有物种数为2;Ⅲ—距采动地裂缝不同距离以及对照区幼苗库和地上植被之间物种交集数量;S—幼苗库;V—地上植被

    Figure  8.   Collection of seedling bank and aboveground vegetation species composition at different distances from mining ground fissure

    表  1   距采动地裂缝不同距离地上植被及环境因子特征

    Table  1   Characteristics of aboveground vegetation and environmental factors at different distances from the mining ground fissure

    距地裂缝距离 AVED/ (株·m−2) AVEC/% AVEB/(g·m−2) SCC/% SCT/cm LLC/% LLT/cm LLB/(g·m−2)
    0~1 m 91.87±9.54a 26.00±3.21c 67.86±9.52c 27.00±2.82a 0.31±0.02a 20.81±3.26a 0.77±0.16a 101.63±18.75ab
    1~2 m 98.34±6.78a 32.14±3.09bc 80.57±9.83b 12.18±2.47a 0.28±0.02a 18.71±3.73a 0.78±0.10a 82.35±9.91b
    2~5 m 62.51±7.22b 46.20±6.60ab 92.25±7.83b 20.10±4.54a 0.18±0.03a 25.60±2.22a 0.51±0.10a 131.73±28.18ab
    对照区 64.11±11.33b 52.77±7.31a 119.82±8.03a 17.89±2.30a 0.13±0.02b 27.22±7.18a 0.45±0.03a 163.90±19.01a
      注:AVED: 地上植被密度;AVEC: 地上植被盖度;AVEB: 地上植被生物量;SCC: 土壤结皮盖度;SCT: 土壤结皮厚度;LLC:枯落物层盖度;LLT:枯落层厚度;LLB:枯落物层生物量;CK:对照区;表中数据均采用平均值±标准差;不同小写字母表示同一测定指标下,距采动地裂缝不同水平距离地上植被及环境因子差异显著(P < 0.05),下同。
    下载: 导出CSV

    表  2   距采动地裂缝不同距离土壤理化性质特征

    Table  2   Physicochemical characteristics of soil at different distances from mining ground fissure

    距地裂缝距离 有机质含量/(g·kg−1) 土壤含水量/% 速效钾含量/(mg·kg−1) 速效磷含量/(mg·kg−1) 速效氮 (mg·kg−1) 容重/(g·cm−3)
    0~1 m 1.14±0.11b 8.33±0.79b 127.69±7.69c 0.65±0.11b 30.71±2.55b 1.09±0.05b
    1~2 m 1.49±0.10b 9.09±0.42a 113.56±5.13c 0.37±0.02c 38.89±2.52a 1.23±0.06b
    2~5 m 2.38±0.11a 9.72±0.39a 157.93±3.87b 1.17±0.10a 39.18±2.92a 1.37±0.03a
    对照区 2.68±0.24a 9.34±0.26a 178.50±4.43a 1.19±0.06a 33.49±1.56a 1.23±0.02a
    下载: 导出CSV

    表  3   生态环境因子解释的重要性排序和显著性检验

    Table  3   Importance ranking and significance test of ecological environment factor explanation

    因子 SCC AVEC LLC AVEB SM SOM
    距地裂缝0~1 m 解释度% 25.9 19 19.1 21 12.6 0.9
    F 4.2 3.8 5.3 12.6 42.7 4.4
    P 0.002 0.012 0.008 0.002 0.002 0.016
    因子 SM LLT LLC AVEB SOM LLB
    距地裂缝1~2 m 解释度% 31.5 27.4 9.8 7.5 6.6 6.1
    F 4.1 5.3 2.2 1.9 1.9 2.2
    P 0.008 0.002 0.06 0.134 0.168 0.138
    因子 SM SCT AVEC AVEB LLC SCC
    距地裂缝2~5 m 解释度% 22.9 14.3 13.3 10.7 9.6 8.4
    F 2.4 1.6 1.6 1.4 1.3 1.2
    P 0.03 0.116 0.046 0.354 0.386 0.384
    因子 LLC SCT AVEC SCC SOM AVEB
    对照区 解释度% 19.9 20.4 17.3 16.5 12.2 8.1
    F 1.7 2.1 2 2.5 2.7 2.9
    P 0.028 0.036 0.048 0.062 0.052 0.098
    下载: 导出CSV

    表  4   幼苗库与地上植被物种相似性

    Table  4   Species similarity between seedling bank and aboveground vegetation

    植被类型 幼苗库 地上植被
    水平距离 对照区 水平距离 对照区
    0~1 m 1~2 m 2~5 m 0~1 m 1~2 m 2~5 m
    幼苗库 0~1 m 1
    1~2 m 0.71 1
    2~5 m 0.57 0.75 1
    对照区 0.53 0.59 0.82 1
    地上植被 0~1 m 0.42 0.53 0.69 0.62 1
    1~2 m 0.38 0.48 0.59 0.64 0.69 1
    2~5 m 0.37 0.53 0.67 0.57 0.56 0.7 1
    对照区 0.33 0.44 0.59 0.68 0.65 0.73 0.76 1
    下载: 导出CSV
  • [1]

    ZENG Wei,HUANG Zhen,WU Yun,et al. Experimental investigation on mining-induced strain and failure characteristics of rock masses of mine floor[J]. Geomatics Natural Hazards Risk,2020,11(1):491−509.

    [2]

    MI Jiaxin,YANG Yongjun,HOU Huping,et al. The long-term effects of underground mining on the growth of tree,shrub,and herb communities in arid and semiarid areas in China[J]. Land Degradation and Development,2021,32(3):1412−1425.

    [3]

    LIU Hui,DENG Kazhong,ZHU Xiaojun,et al. Effects of mining speed on the developmental features of mining-induced ground fis sures[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):6297−6309. doi: 10.1007/s10064-019-01532-z

    [4] 俞龙生,李 卫,许铭宇,等. 赤霉素浸种对2种矿区修复先锋植物种子萌发和幼苗生长的影响[J]. 生态环境学报,2022,31(11):2225−2233.

    YU Longsheng,LI Wei,XU Mingyu,et al. Effect of gibberellin soaking on seed germination and seedling growth of two pioneer plants for ecological restoration in mining areas[J]. Ecology and Environmental Sciences,2022,31(11):2225−2233.

    [5] 姚丽霞,王进鑫,党倩楠,等. 西北干旱荒漠区排矸平台不同配置与保育模式重建植被生态能值分析[J]. 生态学报,2020,40(23):8729−8742.

    YAO Lixia,WANG Jinxin,DANG Qiannan,et al. Ecological emegy analysis of vegetation reconstruction based on different configuration and conservation models of waste dump platform in arid desert area of northwest China[J]. Acta Ecologica Sinica,2020,40(23):8729−8742.

    [6]

    WANG Bo,LIU Jing,WANG Chenglong,et al. Effects of drawing damage on root growth and soil reinforcement of hippophae rham noides in a coal mining subsidence area[J]. International Journal of Phytoremediation,2022,24(4):409−419. doi: 10.1080/15226514.2021.1950119

    [7] 李禹凝,王金满,张雅馥,等. 干旱半干旱煤矿区土壤水分研究进展[J]. 土壤,2023,55(3):494−502.

    LI Yuning,WANG Jinman,ZHANG Yafu,et al. Soil sater in arid and semi-arid mining areas:a review [J]. Soils,2023,55(3):494−502.

    [8]

    CHEN Guangjie,GUO Junting,SONG Ziheng,et al. Soil water transport and plant water use patterns in subsidence fracture zone due to coal mining using isotopic labeling[J]. Environmental Earth Sciences,2022,81(11):1−8.

    [9]

    ZHANG Kai,YANG Kai,WU Xingtong,et al. Effects of underground coal mining on soil spatial water content distribution and plant growth type in northwest China[J]. ACS Omega,2022,7(22):18688−18698. doi: 10.1021/acsomega.2c01369

    [10]

    Bohrer S L,Limb R F,Daigh A L,et al. Fine and coarse-scale patterns of vegetation diversity on reclaimed surface nine-land over a 40-year chronosequence[J]. Environmental Management,2017,59(3):431−439. doi: 10.1007/s00267-016-0795-y

    [11] 葛芳红. 黄土丘陵沟壑区斑块化植被格局对植物更新的影响[D]. 西安:陕西师范大学,2019.

    GE Fanghong. Effects of patchy vegetation pattern on plant regeneration in loess hilly-gully region[D]. Xi’an: Shannxi Normal University,2019.

    [12] 苏 嫄,焦菊英,王巧利,等. 黄土丘陵沟壑区不同侵蚀环境下幼苗库及其与地上植被的关系[J]. 草业学报,2013,22(5):154−164.

    SU Yuan,JIAO Juying,WANG Qiaoli,et al. Seedling banks and their relationship with the standing vegetation under different erosion environments in the hill-gully Loess Plateau region[J]. Acta Prataculturae Sinica,2013,22(5):154−164.

    [13]

    ZHANG Xiaoyue,NI Xiangyin,HEDENEC P,et al. Litter facilitates plant development but restricts seedling establishment during vegetation regeneration[J]. Functional Ecology,2022,36(12):3134−3147.

    [14] 闫 琰,姚 杰,张新娜,等. 吉林蛟河不同演替阶段针阔混交林木本植物幼苗空间分布与年际动态[J]. 生态学报,2016,36(23):7644−7654.

    YAN Yan,YAO Jie,ZHANG Xinna,et al. Spatial distribution and interannual dynamics of tree seedlings at different successional stages in a conifer and broad-leaved mixed forest in Jiaohe,Jilin Province,China[J]. Acta Ecologica Sinica,2016,36(23):7644−7654.

    [15]

    CASALINI A I,BISIGATO A J. Geomorphology and soils control vegetation heterogeneity through differential species establishment at an arid ecotone[J]. Journal of Arid Environments,2017,147(dec.):83−89.

    [16]

    Ncise W,Daniels C W,Nchu F. Effects of light intensities and varying watering intervals on growth,tissue nutrient content and antifungal activity of hydroponic cultivated Tulbaghia violacea L. under greenhouse conditions[J]. Heliyon,2020,6(5):e03906. doi: 10.1016/j.heliyon.2020.e03906

    [17] 宗小天,焦菊英,吴多洋,等. 陕北安塞不同林龄刺槐林下幼苗更新的动态变化特征[J]. 水土保持研究,2022,29(2):287−295, 303.

    ZONG Xiaotian,JIAOJuying,WU Duoyang,et al. Dynamic characteristics of seeding regeneration in robinia pseudoacacia plantations with different ages in Ansai County of Northern Shaanxi Province[J]. Research of Soil and Water Conservation,2022,29(2):287−295, 303.

    [18]

    PARRY M L, BELLAIRS S M, LU Ping. Improved native understorey establishment in mine waste rock in Australia’s wet-dry tropics[J]. Australian Journal of Botany. 2022, 70(3): 248−262.

    [19]

    GAO Yanhong,JLA Rongliang,LIU Yanping,et al. Biocrust and sand burial together promote annual herb community assembly in an arid sandy desert area[J]. Plant and Soil,2023,491(1/2):645−663. doi: 10.1007/s11104-023-06142-z

    [20]

    ZHU Shichen,ZHENG Hongxiang,LIU Wenshen,et al. Plant-Soil feedbacks for the restoration of degraded mine lands:a review[J]. Frontiers in Microbiology,2021,12:751794.

    [21]

    MARCA N R ,LÓPEZ R P,NAOKI K. Effect of shade and precipitation on germination and seedling establishment of dominant plant species in an Andean arid region,the Bolivian Prepuna[J]. Plos one,2021,16(3):e0248619.

    [22]

    LEWANDROWSKI W,STEVENS J C,WEBBER B L,et al. Global change impacts on arid zone ecosystems:Seedling establishment processes are threatened by temperature and water stress[J]. Ecology and Evolution,2021,11(12):8071−8084. doi: 10.1002/ece3.7638

    [23] 范立民,马万超,常波峰,等. 榆神府矿区地下水水化学特征及形成机理[J]. 煤炭科学技术,2023,51(1):383−394.

    FAN Limin,MA Wanchao,CHANG Bofen,et al. Hydrochem-ical characteristics and formation mechanism of groundwater in Yushenfu Mining Area[J]. Coal Science and Technology,2023,51(1):383−394.

    [24] 谢晓深,侯恩科,冯 栋,等. 榆神府矿区采煤地表裂缝发育规律及特征[J]. 工程科学学报,2023,45(1):44−53.

    XIE Xiaoshen,HOU Enke,FENG Dong,et al. Development law and characteristics of surface cracks caused by coal miningin Yushenfu mining area[J]. Chinese Journal of Engineering,2023,45(1):44−53.

    [25] 王双明,申艳军,孙 强,等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报,2020,2(4):5−19.

    WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Engineering,2020,2(4):5−19.

    [26] 王双明,杜华栋,王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报,2017,42(1):17−26.

    WANG Shuangming,DU Huadong,WANG Shengquan. Analysis of damage process and mechanism for plant community and soilproperties at northern Shenmu subsidence mining area[J]. Journal of China Coal Society,2017,42(1):17−26.

    [27] 苗彦平,谢晓深,陈小绳,等. 浅埋煤层开采地表裂缝发育规律及机理研究[J]. 煤矿安全,2022,53(4):209−215.

    MIAO Yanping,XIE Xiaoshen,CHEN Xiaosheng,et al. Development law and mechanism of surface cracks caused by shallow coal seam mining[J]. Safety in Coal Mines,2022,53(4):209−215.

    [28] 王双明,侯恩科,谢晓深,等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术,2021,49(1):19−31.

    WANG Shuangming,HOU Enke,XIE Xiaoshen,et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Science and Technology,2021,49(1):19−31.

    [29] 琚成远, 浮耀坤, 陈 超, 等. 神南矿区采煤沉陷裂缝对土壤表层含水量的影响[J]. 煤炭科学技术,2022,50(4):309−316.

    JU Chengyuan, FU Yaokun, CHEN Chao, et al. Influence of coal mining subsidence cracks on soil surface water content in Shennan Mining Area[J]. Coal Science and Technology,2022,50(4):309−316.

    [30] 台晓丽,胡振琪,陈 超. 风沙区采煤沉陷裂缝对表层土壤含水量的影响[J]. 中国煤炭,2016,42(8):113−117.

    TAI Xiaoli,HU Zhenqi,CHEN Chao. Effect of mining subsidence fissure on moisture of surface soil in aeolian sand area[J]. China Coal,2016,42(8):113−117.

    [31] 葛芳红,刘红岩,赵富王,等. 黄土丘陵区植物间正相互作用对幼苗更新的影响[J]. 草业学报,2019,28(10):134−143.

    GE Fanghong,LIU Hongyan,ZHAO Fuwang,et al. Effects of positive plant interactions on seedling regeneration in the hill-gully region of the Loess Plateau[J]. Acta Prataculturae Sinica,2019,28(10):134−143.

    [32] 王 宁. 黄土丘陵沟壑区植被自然更新的种源限制因素研究[D]. 中国科学院研究生院,2013.

    WANG Ning. The limiting factors in vegetation recruitment in the hilly−gullied region of the Loess Plateau: on species resources aspect[D]. Chinese Academy of Sciences and Ministry of Education,2013.

    [33] 拜梦童,杜华栋,范鹏辉,等. 黄土沟壑区采煤塌陷地不同土地利用类型土壤性质损害特征[J]. 土壤通报,2022,53(5):1029−1037.

    BAI Mengtong,DU Huadong,FAN Penghui,et al. Damage characteristics of soil properties in different land use types under mining subsidence areas in Loess Hilly Area[J]. Chinese Journal of Soil Science,2022,53(5):1029−1037.

    [34]

    VILLÉGER S,MASON N,MOUILLOT D. New multidimensional functional diversity indices for a multifaced framework in functional ecology[J]. Ecology,2008,89(8):2290−2301. doi: 10.1890/07-1206.1

    [35]

    JIA Fengqin,Tashpolat TIYIP,WU Nan,et al. Characteristics of soil seed banks at different geomorphic positions within the longitudinal sand dunes of the Gurbantunggut Desert,China[J]. Journal of Arid Land,2017,9(3):355−367. doi: 10.1007/s40333-017-0055-x

    [36]

    HOPFENSPERGER K N. A review of similarity between seed bank and standing vegetation across ecosystems[J]. Oikos,2007,116(9):1438−1448. doi: 10.1111/j.0030-1299.2007.15818.x

    [37]

    YOUSAF A,SHABBIR R,JABEEN A,et al. Linkage between herbaceous vegetation and soil characteristics along rawal dam islamabad[J]. Journal of Soil Science and Plant Nutrition,2016,16(1):88−100.

    [38]

    SOMERS K M,JACKSON D A. Putting the Mantel test back together again[J]. Ecology,2022,103(10):e3780 doi: 10.1002/ecy.3780

    [39]

    MOHSENI N,SEPEHR A,HOSSEINZADEH S R,et al. Variations in spatial patterns of soil–vegetation properties over subsidence-related ground fissures at an arid ecotone in northeastern Iran[J]. Environmental Earth Sciences,2017,76(6):1−13.

    [40]

    MI Jiaxia, YANG Yongjun, HOU Huping,et al. Impacts of ground fissures on soil properties in an underground mining area on the Loess Plateau, China[J]. Land,2022,11(2):162−174. doi: 10.3390/land11020162

    [41] 周 莹,贺 晓,徐 军,等. 半干旱区采煤沉陷对地表植被组成及多样性的影响[J]. 生态学报,2009,29(8):4517−4525. doi: 10.3321/j.issn:1000-0933.2009.08.060

    ZHOU Ying,HE Xiao,XU Jun,et al. Effects of coal mining subsidence on vegetation composition and plant diversity in Semi-Arid Region[J]. Acta Ecologica Sinica,2009,29(8):4517−4525. doi: 10.3321/j.issn:1000-0933.2009.08.060

    [42]

    DENG Wenping,ZHENG Xiling,XIAO Shengsheng,et al. Effects of leaf type,litter mass and rainfall characteristics on the interception storage capacity of leaf litter based on process simulation[J]. Journal of Hydrology,2023,624:129943. doi: 10.1016/j.jhydrol.2023.129943

    [43]

    SUN Zhaolin,TIAN Peng,ZHAO Xuechao,et al. Temporal shifts in the explanatory power and relative importance of litter traits in regulating litter decomposition[J]. Forest Ecosystems,2022,9(6):755−763.

    [44]

    CUI Guangshuai,Pugnaire F I,LIU Yang,et al. Shrub-mediated effects on soil nitrogen determines shrub-herbaceous interactions in drylands of the Tibetan Plateau[J]. Frontiers in Plant Science,2023,14:1137365. doi: 10.3389/fpls.2023.1137365

    [45]

    SHI Yafei; WANG Zengru; XU Bingxin,et al. Rainfall amount determines annual herb controls over soil seed bank and its similarity with vegetation in the Tengger Desert[J]. Ecological Processes,2022,11(1):1−11. doi: 10.1186/s13717-021-00352-y

  • 期刊类型引用(1)

    1. 杨继东, 仝艳军. 深部突出矿井采空区瓦斯地面井高效抽采技术. 工矿自动化. 2025(06) 百度学术

    其他类型引用(0)

图(8)  /  表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  22
  • PDF下载量:  30
  • 被引次数: 1
出版历程
  • 收稿日期:  2023-10-11
  • 网络出版日期:  2024-02-27
  • 刊出日期:  2024-02-22

目录

    /

    返回文章
    返回