高级检索

半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响

杜华栋, 谢姗姗, 毕银丽, 刘研, 孙浩, 刘云龙

杜华栋,谢姗姗,毕银丽,等. 半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响[J]. 煤炭科学技术,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455
引用本文: 杜华栋,谢姗姗,毕银丽,等. 半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响[J]. 煤炭科学技术,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455
DU Huadong,XIE Shanshan,BI Yinli,et al. Influence of mining ground fissures development on seedling bank and seedling establishment factors in semi-arid mining area[J]. Coal Science and Technology,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455
Citation: DU Huadong,XIE Shanshan,BI Yinli,et al. Influence of mining ground fissures development on seedling bank and seedling establishment factors in semi-arid mining area[J]. Coal Science and Technology,2024,52(2):350−362. DOI: 10.12438/cst.2023-1455

半干旱矿区采动地裂缝发育对幼苗库及其建植因子影响

基金项目: 

国家重点研发计划资助项目(2022YFF1303303)

详细信息
    作者简介:

    杜华栋: (1982—),陕西华州人,副教授,博士。E-mail:dddhhhddd@126.com

  • 中图分类号: Q948; X171.4

Influence of mining ground fissures development on seedling bank and seedling establishment factors in semi-arid mining area

Funds: 

National Key Research and Development Program of China (2022YFF1303303)

  • 摘要:

    半干旱矿区煤炭井工开采引起的地表塌陷,造成水土流失强度增加以及植被生境损害等一系列生态干扰,其中采动地裂缝发育对坡面幼苗库特征及建植的影响仍有待深入研究。本文首先探明了榆神府矿区距采动地裂缝不同距离(0~1 m、1~2 m和2~5 m)幼苗库密度、组成和多样性特征,再结合土壤因子、地上植被群落及枯落物特征揭示裂缝发育造成影响幼苗建植的环境因子在空间上的差异性,最后采用物种相似性模型探究了裂缝发育区幼苗库对地上植被自然更新的影响。结果表明:①在未有裂缝发育的对照区,幼苗库组成以多年生草本为主(占比57%),裂缝发育后距地裂缝0~1 m和1~2 m范围,多年生草本比例分别下降至30%和35%,但一年生草本占比较对照区分别增加了28%和25%;与对照区相比0~1 m和1~2 m幼苗密度分别显著增加了92%和68%,幼苗库Margalef丰富度指数、Shannon-Wiener多样性指数和Simpson优势度指数分别增加了42%和24%、62%和40%、33%和18%,但Pielou均匀度相较于对照区分别降低了55%和38%;而距裂缝2~5 m范围,幼苗库生活型组成、密度和多样性与对照区已无显著性差异,因此裂缝发育对幼苗库特征影响范围在2 m范围之内。②地表裂缝发育后,距地裂缝0~1 m和1~2 m范围影响裂缝幼苗建植的相同因子包括土壤含水量、土壤有机质含量和枯落物厚度,但0~1 m范围除上述影响因子外还包括枯落物盖度、土壤结皮盖度与厚度、地上植被盖度与生物量等因子;随着距裂缝距离增加,距裂缝2~5 m范围限制幼苗建植的关键因子减少且与对照区相似,主要包括土壤含水量、地上植被盖度和枯落物盖度。③距地裂缝0~1 m和1~2 m以一年生为主的幼苗库物种组成与以多年生为主的地上植被物种相似性较低仅为0.42和0.48,加之一年生植物对植物群落演替促进能力较弱,因此可以得出受裂缝干扰较大的0~2 m范围幼苗库对植被群落恢复贡献有限,故该范围生态恢复中应在自然恢复的基础上,适当考虑人工植被建设以促进矿区塌陷地植被恢复进程,提高该区植被群落多样性和稳定性。随水平距离的增大,距裂缝2~5 m范围和对照区幼苗库与地上植被物种组成相似性接近,分别为0.67和0.68,表明裂缝发育后2~5 m范围植物群落恢复潜力并未受到影响,通过自然更新即可保证该区植被恢复。

    Abstract:

    In semi-arid areas, underground coal mining could cause ecological and environmental problems such as surface subsidence, which can increase soil erosion intensity and damage vegetation habitats. In these ecological damages, the effect of mining ground fissures development on the seedling banks still needs to be studied further for its important role in plant restoration. In this study, the density, composition, and diversity characteristics of seedling banks were clarified at different horizontal distances (0-1 m, 1-2 m, and 2-5 m) from the mining ground fissuresin the Yushenfu mining area. Then the spatial variability of driving factors affecting seedling establishment were explored by combining soil factors, aboveground vegetation communities and litters characterization. Finally, the species similarity model was used to explore the effects of seedling banks on the natural vegetation regeneration in different areas from the ground fissures. The results showed that: ① In the control site without fissures development, the composition of the seedling bank was dominated by perennial grasses (57%), but after fissures development, the proportion of perennial herbs decreased to 30% and 35% in the 0-1 m and 1-2 m area from the fissures, respectively. Compared with the control sites, the seedling density increased significantly by 92% and 68% in 0-1 m and 1-2 m area, the Margalef richness index, Shannon-Wiener diversity index, and Simpson dominance index of the seedling bank increased by 42% and 24%, 62% and 40%, and 33% and 18%, but Pielou evenness index was reduced by 55% and 38%, respectively. However, there were no significant differences in the composition, density and diversity of seedling bank in 2-5 m area from the ground fissures compared to the control area. Therefore, the impact of ground fissures development on the characteristics of the seedling bank was within the range of 2 meters. ② After the development of ground fissures, the same factors affected seedling establishment were soil moisture content, soil organic matter content and litter thickness in the 0-1 m and 1-2 m areas from the ground fissures. In addition to the above factors, seedling establishing factors in 0-1 m area also included litter cover, soil crust cover and thickness, aboveground vegetation cover and biomass. With increasing distance from ground fissures, the key factors limiting seedling establishment were reduced in the 2-5 m area, and were similar to those in the control area, which included soil moisture content, aboveground vegetation cover, and litter cover. ③ In 0-1 m and1-2 m areas from ground fissures, the annual herbaceous species composition were less similar to that of above-ground vegetation species which dominated by the perennial herbs, the species similarity is only 0.42 and 0.48, respectively. Considering the weak contribution of annuals to plant community succession, it can be concluded that the contribution of the seedling bank is limited for vegetation restoration with in the 0-2 m areas from the ground fissures which is greatly disturbed by the fissure. In the 2-5 m area and control area, the species similarity between the seedling bank and aboveground vegetation was 0.67 and 0.68, which indicate that the recovery potential of the vegetation community is not affected by the development of ground fissures in this area.

  • 井工煤炭开采过程会引起地表塌陷、地下水渗漏等一系列地质灾害[1],这些地质损害会造成水土流失、植被破坏、生态功能退化等生态环境问题[2-3]。为了促进人与自然的和谐发展,矿区生态修复是至关重要的,而植被恢复则是修复和重建矿区生态系统的有效手段之一[4]

    植被可作为表征矿区生态环境变化的综合指示器[5],能反映采动损伤对生态环境变化的影响。采矿活动首先会加剧植被生境破碎化,其产生的采动地裂缝在短期内会直接拉伤植被根系[6],影响植被对土壤中的水分和养分的吸收,从而造成植被生长发育缓慢甚至死亡[7],另外地裂缝发育还会引发土壤侵蚀加快、水分入渗率增大[8]、地表蒸腾作用增强等现象,导致土壤水分养分流失、干旱程度增加[9],间接加深矿区植被损害的程度,造成植被群落自然演替进程缓慢[10],因此植被恢复是矿区生态重建在关键点,而植被自然恢复过程中幼苗能否存活又是植被自然更新的关键因素之一[11]。幼苗库是指一定面积的样地群落中小于某一高度的所有植物幼苗的总和[12],这个阶段是植物个体生长最为脆弱、死亡率最高、对环境变化最为敏感的时期[13],幼苗影响植株的后续生长,对植被更新具有筛选作用[14],直接影响地上植被群落的组成、结构、动态变化和物种多样性维持。而决定幼苗建植的因子既包括参与和决定植物生长的土壤指标,如水分、养分等[15],还包括地表温度湿度、光照强度等微气象因子[16],此外对上述土壤和微气象因子具有间接影响的植物群落结构[17]、地表枯落物[18]以及土壤结皮[19]等地上植被特征也参与了幼苗建植过程。但采动地裂缝会加剧生态脆弱区环境恶化,由此推断采动地裂缝发育对幼苗建植也存在一定负面影响[20],进而影响植被的自然恢复进程和人工植被修复策略的制定。近些年来,在矿区扰动区有关幼苗库及其建植的研究已受到广泛关注[21],目前研究主要集中在矿区露天开采排土场或矸石山复垦区域[22],而针对煤炭井工开采产生的地裂缝这种干扰环境下幼苗库特征研究还较为薄弱,对于采动地裂缝如何影响幼苗组成及其建植机理还有待进一步研究,只有探明采动地裂缝对幼苗库影响,才能准确判定矿区地表裂缝产生后植被损害机理、自然更新能力及恢复进程,进而制定相应的生态损伤预防策略与修复措施。

    以半干旱榆神府矿区塌陷裂缝地为研究对象,研究距裂缝不同距离植被自然恢复条件下幼苗库密度、物种组成、多样性特征,结合土壤理化性质测定探明采动地裂缝影响幼苗建植的内在机理,同时通过幼苗库与地上植被关系分析探究塌陷裂缝对植物群落更新及演替的影响,以期为矿区塌陷地植被恢复措施的制定提供科学依据。

    榆神府矿区位于鄂尔多斯煤盆地中部(E 109.13°~110.67°, N 38.50°~39.47°)(图1),处于陕北黄土高原与毛乌素沙漠南缘接壤地带,由风沙地貌及黄土丘陵地貌组成[23],属荒漠−半荒漠生态系统。矿区气候为温带干旱半干旱大陆性季风气候,草原气候区,年平均气温8 ℃,年平均降水量不到500 mm,年平均蒸发量约2000 mm,土壤类型以风沙土和黄绵土为主。灌丛是矿区的优势植被群落。其植被种类有兴安胡枝子(Lespedeza davurica)、远志(Polygala tenuifolia)、长芒草(Stipa bungeana)、华北白前(Vincetoxicum mongolicum)、沙蒿(Artemisia desertorum)、和柠条(Caragana korshinskii)等。

    图  1  研究区域位置
    Figure  1.  Spatial distribution of sampling points

    榆神府矿区是我国西部重要的原煤生产基地,煤炭储量丰富,具有煤层厚、埋深浅的特点[24]。煤炭开采方式以井工开采为主,采用综合机械化长壁式开采工艺[25]。因此随着煤炭的大量开采,煤层上覆岩层会发生冒落、产生裂隙和弯曲等不同程度的采动损害,地表形成塌陷并出现大量裂缝[26],使得地表植被生长和水文循环受到干扰,加剧土壤质量退化和土地荒漠化。榆神府井工煤炭开采引起地表塌陷后地表裂缝主要包括台阶型、挤压隆起型、滑动型和拉张型裂缝4种类型[24],研究区内以拉张型裂缝分布最普遍且裂缝宽度以0~0.1 m占比较大,约占总数的50%以上[27-28],因此本文选取榆神府矿区黄土塌陷地分布最广且宽度为0~0.1 m的拉张型裂缝为研究对象。

    已有研究表明采动地裂缝主要影响两侧水平距离0~2 m内的土壤性质[29-30],而植被生长发育与土壤性质显著相关,并且通过笔者多年在研究区对裂缝周边植物群落组成与覆盖度的监测,裂缝发育后对植物群落影响范围约为2 m。因此本研究为进一步探究地表裂缝发育对幼苗库组成和多样性的影响范围及程度,采用样带和样方相结合的方法进行植被调查和土壤样品采集,分别沿距塌陷裂缝水平距离0~1 m、1~2 m、2~5 m设置采样带Ⅰ、Ⅱ、Ⅲ(图2a和2b),进行幼苗库与地上植被调查(图2c)、土壤样品采集(图2d),每个样地的每种距离至少保证5组重复,同时在裂缝发育采样区附近,选择具有类似地形条件,地质条件(如坡度、坡长)和相似植物群落的未塌陷区作为对照区,每种类型样地至少保证9组样地重复。

    图  2  野外采样样地示意
    Figure  2.  Illustration of field sampling plot

    每个样地在距采动地裂缝0~1 m、1~2 m、2~5 m范围以及对照区分别设置5个50 cm × 50 cm的样方进行幼苗库调查[31],记录样方里幼苗物种组成、数量、高度、生长状况等,同时分别记录土壤结皮和枯落物的盖度和厚度,并收集枯落物带回实验室80 ℃烘干24 h后称重(表1)。

    表  1  距采动地裂缝不同距离地上植被及环境因子特征
    Table  1.  Characteristics of aboveground vegetation and environmental factors at different distances from the mining ground fissure
    距地裂缝距离 AVED/ (株·m−2) AVEC/% AVEB/(g·m−2) SCC/% SCT/cm LLC/% LLT/cm LLB/(g·m−2)
    0~1 m 91.87±9.54a 26.00±3.21c 67.86±9.52c 27.00±2.82a 0.31±0.02a 20.81±3.26a 0.77±0.16a 101.63±18.75ab
    1~2 m 98.34±6.78a 32.14±3.09bc 80.57±9.83b 12.18±2.47a 0.28±0.02a 18.71±3.73a 0.78±0.10a 82.35±9.91b
    2~5 m 62.51±7.22b 46.20±6.60ab 92.25±7.83b 20.10±4.54a 0.18±0.03a 25.60±2.22a 0.51±0.10a 131.73±28.18ab
    对照区 64.11±11.33b 52.77±7.31a 119.82±8.03a 17.89±2.30a 0.13±0.02b 27.22±7.18a 0.45±0.03a 163.90±19.01a
      注:AVED: 地上植被密度;AVEC: 地上植被盖度;AVEB: 地上植被生物量;SCC: 土壤结皮盖度;SCT: 土壤结皮厚度;LLC:枯落物层盖度;LLT:枯落层厚度;LLB:枯落物层生物量;CK:对照区;表中数据均采用平均值±标准差;不同小写字母表示同一测定指标下,距采动地裂缝不同水平距离地上植被及环境因子差异显著(P < 0.05),下同。
    下载: 导出CSV 
    | 显示表格

    在距地裂缝0~1 m、1~2 m、2~5 m范围以及对照区进行幼苗库调查后,再布置3个1 m × 1 m的样方进行植被特征调查[32],用以分析幼苗对地上植被更新的贡献。统计样方内出现的植物种类和数量,并对其盖度、高度等进行测量记录。采用刈割法剪下样方内的主要植物地上部分,带回实验室后80 ℃烘干24 h后称重,测定植物群落地上生物量,地裂缝发育不同距离地表植被群落特征见表1

    在距地裂缝0~1 m、1~2 m、2~5 m范围以及对照区进行幼苗库调查后,再随机各选择10位点进行土壤样品采集,用以分析地裂缝发育后影响幼苗建植的机理。土壤理化性质测定结果见表2,首先在取样点附近使用标准环刀测定土壤容重(BD);用水分钻取样装铝盒带回实验室用烘干法测定土壤水分含量(SM);采集表层0~20 cm土壤样品充分混匀后分装入布袋中,在实验室自然风干去除碎片和植物根系后过筛用于测定化学性质[33],其中土壤有机质(SOM)采用重铬酸钾容量法测定;土壤速效氮(AN)含量采用1 mol/L氯化钾浸提,AA3连续流动分析仪测定;土壤速效磷(AP)含量采用0.5 mol/L碳酸氢钠浸提−钼锑抗比色法测定;土壤速效钾(AK)含量采用1 mol/L (pH 7.0)乙酸铵浸提−火焰光度法测定。

    表  2  距采动地裂缝不同距离土壤理化性质特征
    Table  2.  Physicochemical characteristics of soil at different distances from mining ground fissure
    距地裂缝距离 有机质含量/(g·kg−1) 土壤含水量/% 速效钾含量/(mg·kg−1) 速效磷含量/(mg·kg−1) 速效氮 (mg·kg−1) 容重/(g·cm−3)
    0~1 m 1.14±0.11b 8.33±0.79b 127.69±7.69c 0.65±0.11b 30.71±2.55b 1.09±0.05b
    1~2 m 1.49±0.10b 9.09±0.42a 113.56±5.13c 0.37±0.02c 38.89±2.52a 1.23±0.06b
    2~5 m 2.38±0.11a 9.72±0.39a 157.93±3.87b 1.17±0.10a 39.18±2.92a 1.37±0.03a
    对照区 2.68±0.24a 9.34±0.26a 178.50±4.43a 1.19±0.06a 33.49±1.56a 1.23±0.02a
    下载: 导出CSV 
    | 显示表格

    1)幼苗库和地上植被密度均为单位面积所包含的个体数量。

    2)幼苗库和地上植被物种多样性采用以下指数计算[34-35]

    Margalef丰富度指数:

    $$ R=(S-1) / \ln {N} $$ (1)

    Shannon-Wiener多样性指数:

    $$ H=-\sum\left(P_{i} \ln P_{i}\right) $$ (2)

    Simpson优势度指数:

    $$ D=1-\sum P_{i}^{2} $$ (3)

    Pielou均匀度指数:

    $$ E=H / \ln S $$ (4)

    式中:S为幼苗库物种总数;Pi为物种i的相对丰度,即第i个物种个体数占所有个体总数的比例;N为幼苗库所有物种个体总数。

    3)物种相似性。采用 Sorenson 相似性系数测度各样地地上植被之间、幼苗库之间及地上植被与幼苗库之间物种组成的相似性[36],其计算公式为:

    $$ S_{c}=2 a /(b+c) $$ (5)

    式中:bc分别为幼苗库或地上植被中出现的物种数;a为幼苗库之间或与其地上植被的共有物种数。

    4)数据处理与分析工具。通过SPSS 24.0软件采用单因素方差分析法(one-way ANOVA)检验距离采动地裂缝不同距离幼苗库特征。地上植被、环境因子特征和幼苗密度特征均采用平均值 ± 标准差(SD),差异显著水平设定在P = 0.05。通过Canoco5.0软件采用典范对应分析(Canonical Correspondence Analusis, CCA)将幼苗库特征与环境因子结合,探究采动地裂缝发育影响幼苗建植的驱动因子[37]。Mantel test是对两个矩阵相关关系的检验,可以反映两个不同总体之间的相关关系,本研究通过R语言4.3.1 采用Mantel test来进一步探讨单个环境因子与幼苗库之间的关系[38]

    随距地裂缝水平距离的增加幼苗库密度呈现先减少后稳定的变化趋势(图3),在0~1 m范围幼苗密度最大,为96株/m2。在距地裂缝0~1 m和1~2 m范围的幼苗密度均显著高于对照区(P < 0.05),两者相比较于对照区幼苗密度分别增加了92%、68%。随水平距离的增大,在2~5 m处幼苗密度相比较于0~1 m和1~2 m分别显著下降了65%、44%(P < 0.05),而2~5 m处幼苗密度相比较于对照区仅增加了16%,且并未表现出显著性差异(P > 0.05)。

    图  3  距采动地裂缝不同距离幼苗库密度特征
    Figure  3.  Seedling bank density characteristics at different distances from mining ground fissure

    从幼苗库生活型组成上看,研究区幼苗类型以草本植物为主(图4),随水平距离增大,一、二年草本幼苗占比逐渐减小,而多年生草本和灌木幼苗占比增大。在距地裂缝0~1 m和1~2 m处幼苗库生活型组成结构相似,一年生草本幼苗占比均超过30%,显著高于对照区(P < 0.05),在2~5 m处的一年生草本幼苗占比下降至15%,与对照区并无显著性差异(P > 0.05)。多年生草本和灌木(包括小灌木、亚灌木、灌木)幼苗在0~1 m和1~2 m处占比均显著低于对照区(P < 0.05),而2~5 m则与对照区无显著性差异(P > 0.05)。

    图  4  距采动地裂缝不同距离幼苗库生活型组成特征
    Figure  4.  Characteristics of life-form composition of seedling bank at different distances from mining ground fissure

    距地裂缝0~1 m和1~2 m范围幼苗库的Margalef丰富度指数、Shannon-Wiener多样性指数和Simpson优势度指数相比较对照区,依次显著增大了42%和24%、62%和40%、33%和18%(P < 0.05)(图5),而2~5 m范围的幼苗库与对照区相比无显著性差异(P > 0.05)。在距裂缝0~1 m和1~2 m范围幼苗库的Pielou均匀度指数均显著低于对照区(P < 0.05),分别降低了55%和38%,表明在0~1 m和1~2 m幼苗库多样性最大但物种组成不均匀,且2~5 m与对照区幼苗Pielou均匀度也无显著差异(P > 0.05)。

    图  5  距采动地裂缝不同距离幼苗库多样性特征
    Figure  5.  Diversity characteristics of seedling bank at different distances from mining ground fissure

    为探究幼苗库群落结构与环境因子之间的关系,对距地裂缝不同水平距离幼苗库群落与生态环境因子之间关系进行CCA排序分析,CCA排序图前两轴解释的环境变量分别为62.25%、72.96%、47.97%、50.51%。采动地裂缝发育后,距地裂缝0~1 m(图6a表3),显著影响幼苗库群落结构的环境因子较多,有土壤结皮盖度、地上植被盖度与生物量、枯落物盖度、土壤含水量、有机质含量。随距离增大,影响1~2 m范围幼苗库群落结构的环境因子减少(图6b表3),幼苗分布主要与土壤含水量、枯落物厚度显著相关。而在2~5 m范围幼苗群落结构仅受土壤含水量和地上植被盖度显著影响(图6c表3),并且幼苗物种分布格局与未有裂缝发育的对照区相似(图6d表3),在对照区幼苗分布则主要受枯落物盖度和土壤结皮盖度以及地上植被盖度影响。

    图  6  距采动地裂缝不同距离幼苗库与环境因子CCA排序图
    红色箭头代表环境因子,蓝色三角形代表幼苗物种分布注: 物种名称:A1—牻牛儿苗Erodium stephanianum;A2—草木樨Melilotus suaveolens;A3—兴安胡枝子Lespedeza davurica;A4—猪毛蒿Artemisia scoparia;A5—獐牙菜Swertia bimaculata;A6—苦荬菜Ixeris polycephala;A7—地锦Parthenocissus tricuspidata;A8—拐轴鸦葱Lipschitzia divaricata;A9—阿尔泰狗娃花Aster altaicus;A10—茵陈蒿Artemisia capillaris;A11—远志Polygala tenuifolia;A12—长芒草Stipa bungeana;A13—猪毛菜Salsola collina;A14—蒙古蒿Artemisia mongolica;A15—糙叶黄芪Astragalus scaberrimus;A16—乳浆大戟Euphorbia esula;A17—斜茎黄芪Astragalus laxmannii;A18—狗尾草Setaria viridis;A19—华北白前Vincetoxicum mongolicum;A20—柠条Caragana korshinskii;A21—二色补血草Limonium bicolor;A22—朝阳隐子草Cleistogenes hackelii;A23—茭蒿Artemisia giraldii;A24—狭叶米口袋Gueldenstaedtia stenophylla;A25—赖草Leymus secalinus;A26—野胡萝卜Daucus carota;A27—野葱Allium chrysanthum;A28—紫筒草Stenosolenium saxatile;A29—苦苣菜Sonchus oleraceus;A30—芦苇Phragmites australis;A31—棘豆Oxytropis glabra;A32—苜蓿Medicago sativa;A33—百里香Thymus mongolicus;A34—异叶败酱Patrinia heterophylla;A35—北京隐子草Cleistogenes hancei;A36—青蒿Artemisia caruifolia;A37—白莲蒿 Artemisia stechmanniana.环境因子:AVEC—地上植被盖度;AVEB—地上植被生物量;SCC—土壤结皮盖度;SCT—土壤结皮厚度;LLC—枯落物层盖度;LLT—枯落层厚度;LLB—枯落物层生物量;SOM—土壤有机质;SM—土壤含水量;AK—土壤速效钾;AP—土壤速效磷;AN—土壤速效氮;BD—土壤容重。下同
    Figure  6.  CCA of seedling bank and environmental factors at different distances from mining ground fissure
    表  3  生态环境因子解释的重要性排序和显著性检验
    Table  3.  Importance ranking and significance test of ecological environment factor explanation
    因子 SCC AVEC LLC AVEB SM SOM
    距地裂缝0~1 m 解释度% 25.9 19 19.1 21 12.6 0.9
    F 4.2 3.8 5.3 12.6 42.7 4.4
    P 0.002 0.012 0.008 0.002 0.002 0.016
    因子 SM LLT LLC AVEB SOM LLB
    距地裂缝1~2 m 解释度% 31.5 27.4 9.8 7.5 6.6 6.1
    F 4.1 5.3 2.2 1.9 1.9 2.2
    P 0.008 0.002 0.06 0.134 0.168 0.138
    因子 SM SCT AVEC AVEB LLC SCC
    距地裂缝2~5 m 解释度% 22.9 14.3 13.3 10.7 9.6 8.4
    F 2.4 1.6 1.6 1.4 1.3 1.2
    P 0.03 0.116 0.046 0.354 0.386 0.384
    因子 LLC SCT AVEC SCC SOM AVEB
    对照区 解释度% 19.9 20.4 17.3 16.5 12.2 8.1
    F 1.7 2.1 2 2.5 2.7 2.9
    P 0.028 0.036 0.048 0.062 0.052 0.098
    下载: 导出CSV 
    | 显示表格

    通过Mantel test检验探究裂缝发育区单个环境因子与幼苗建植的关系,结果表明在距地裂缝0~1 m和1~2 m 范围(图7a图7b),显著影响幼苗建植的共同因子有土壤含水量、有机质含量以及枯落物厚度(P < 0.05),而在0~1 m范围显著影响幼苗建植因子较多,还包括土壤结皮盖度、厚度、地上植被盖度、生物量(P < 0.05)。随距离的增大,在2~5 m范围和对照区影响幼苗建植的生态因子相似(图7c和7d),两范围共同显著影响幼苗建植的因子有土壤含水量、枯落物盖度(P < 0.05),且在2~5 m的地上植被盖度和对照区的地上生物量亦是显著影响各自范围幼苗建植的显著因子(P < 0.05)。

    图  7  距采动地裂缝不同距离环境因子与幼苗库之间相关热图
    Figure  7.  Heat map of correlation between environmental factors and seedling bank at different distances

    幼苗库与地上植被之间物种相似性随距离地裂缝水平距离增大而逐渐增大(表4)。在距地裂缝0~1 m时幼苗库与地上植被之间的物种相似性最低,仅为0.42,并且此范围幼苗库与其他范围地上植物物种相似性也较低。随水平距离增大,在1~2 m幼苗与地上植被之间的物种相似性系数略微增大但依然低于未干扰区。而在距地裂缝2~5 m范围,幼苗库与此地上植被之间物种相似性较高两者之间的相似性系数接近对照区,并且其与对照区地上植被的物种相似性也较高。

    表  4  幼苗库与地上植被物种相似性
    Table  4.  Species similarity between seedling bank and aboveground vegetation
    植被类型 幼苗库 地上植被
    水平距离 对照区 水平距离 对照区
    0~1 m 1~2 m 2~5 m 0~1 m 1~2 m 2~5 m
    幼苗库 0~1 m 1
    1~2 m 0.71 1
    2~5 m 0.57 0.75 1
    对照区 0.53 0.59 0.82 1
    地上植被 0~1 m 0.42 0.53 0.69 0.62 1
    1~2 m 0.38 0.48 0.59 0.64 0.69 1
    2~5 m 0.37 0.53 0.67 0.57 0.56 0.7 1
    对照区 0.33 0.44 0.59 0.68 0.65 0.73 0.76 1
    下载: 导出CSV 
    | 显示表格

    进一步分析地上植被和幼苗库共发现56个物种(图8)。其中有4个物种是所有样地共有物种,为远志、长芒草、猪毛蒿等。而在距地裂缝0~1 m幼苗库特有物种仅为芦苇,地上植被特有物种数为2种,为紫云英和地构叶。距地裂缝1~2、2~5 m以及对照区幼苗库无特有物种,但1~2 m地上植被特有物种有兴安胡枝子和银柴胡,2~5m为黑沙蒿、菊叶委陵菜和桃叶鸦葱等,对照区地上植被特有物种为佛子茅和鹅绒藤。

    图  8  距采动地裂缝不同距离幼苗库与地上植被物种组成集合图
    注:Ⅰ—幼苗库和地上植被总物种数;Ⅱ—距采动地裂缝水平距离1~2 m处地上植被所特有物种数为2;Ⅲ—距采动地裂缝不同距离以及对照区幼苗库和地上植被之间物种交集数量;S—幼苗库;V—地上植被
    Figure  8.  Collection of seedling bank and aboveground vegetation species composition at different distances from mining ground fissure

    众多研究表明采煤塌陷后产生的地表裂缝会造成植被生境破碎化,从而导致植被密度和多样性降低[39-40],但本研究发现在距地裂缝0~1 m和1~2 m范围幼苗密度和多样性均显著大于未有裂缝发育的对照区,从地上植被调查数据分析造成以上结果的主因是裂缝发育使周边原有的优势物种受到损伤甚至死亡,形成的土壤裂隙为其他拓殖强的种子繁殖物种(如一年生物种)入侵和定植创造了机会[41],因此在距裂缝水平0~1 m以及1~2 m范围草本群落占比增大,同时先锋草本植被的成功建植可以有效地促进生态系统的恢复和可持续发展。此外,在0~2 m范围裂缝发育造成原有地上优势植物部分干枯,使得地表枯落物蓄积量增加,可以有效减少短时间内地表土壤水分的蒸发、削弱淋溶作用对土壤的影响[42],并且枯落物被分解后还会加快土壤养分循环[43],这均有利于一年生植物种子萌发和幼苗前期建植。然而在0~1 m范围地表结皮较多且厚度大,这会影响幼苗扎根发育,并且土壤含水量受裂缝显著影响,这都可能会对幼苗成功建植存在一定限制。随水平距离增加至2~5 m时幼苗库密度和多样性均减小至与对照区幼苗特征一致,此范围与对照区影响幼苗建植的共同因子为枯落物盖度、地上植被盖度和土壤含水量。枯落物盖度相对较高,可有效降低地表温度和短时间减少水分蒸发,提高土壤养分,有利于幼苗前期建植,同时地裂缝对2~5 m范围地上多年生草本和灌木损害较小,植被群落结构复杂,稳定性较高,地上植被盖度较大可有效降低地表温度、减小土壤侵蚀和增加土壤肥力等[44]

    综上分析,距裂缝不同距离幼苗库特征及其影响因素不同,在采煤引起地表裂缝发育地生态恢复过程中,应采取针对性的措施促进幼苗成功建植,如距裂缝0~2 m范围生态恢复过程中先锋草本植被的建植应以自然恢复为主,其在群落演替初期可在自然条件下完成建植,但为促进矿区植被恢复进程,可以考虑人工补播乡土物种种子、增加土壤水分养分含量等措施,促进裂缝对种子库干扰较大范围的幼苗建植率。

    在距裂缝0~1 m和1~2 m范围幼苗物种组成以草本植物为主,其中一年生先锋植物占比较大,但幼苗与地上植被物种相似性均较低,表明裂缝发育后对该范围植被生境干扰较大,严重影响植被更新过程。虽然裂缝发育初期生物种具有种子个体小、数量多、易萌发出苗,可快速进入新的生境定居的特点[45],但部分幼苗在生长过程中死亡,成功建植并发育成为成熟植株较为困难,对采煤裂缝范围植被群落自然修复和更新演替贡献有限,而距裂缝0~2 m范围内又是塌陷裂缝损害植被的主要范围,是生态修复治理的关键点。因此在地裂缝发育初期可人工播撒阿尔泰狗娃花、长芒草、猪毛蒿等本土物种,其易存活,在成功建植后可有效增加地上植被生物量、减少裸地面积、降低地裂缝周边土壤侵蚀程度,对植物群落后期恢复具有积极作用。此外,距裂缝0~2 m范围内可在裂缝充填后栽种对林下幼苗影响较大的灌木,灌木成功建植后会增加地表覆盖度、降低地表温度等改善微环境,以增加幼苗成功建植机率,进而促进裂缝干扰区植物群落多样性和稳定性。与0~2 m相比,在距裂缝2~5 m范围幼苗库与地上植被物种相似度较高,并且地上植被特有物种数较多,表明该范围幼苗库与地上植被物种相互贡献率相对较高,幼苗大概率可生长发育至成熟植被。且由此范围幼苗建植主要机理可以得出,地表多年生物种和灌木为幼苗的建植提供了较优的微环境,如较高的植被覆盖度以及稳定的植被群落结构,这种生境有利于幼苗存活,因此该区在裂缝干扰后通过植被自然更新即可保障地上植物群落稳定。

    由以上裂缝发育后对不同空间位置幼苗库组成和建植影响可以得出,裂缝发育对幼苗库的影响主要在距离裂缝0~2 m范围,在这一范围植被恢复过程中应考虑通过人工植被恢复措施(如人工灌木群落构建、补播乡土物种种子和土壤性状改良等)以保障幼苗库建植,实现采煤裂缝区植被干扰后的持续更新,而在2~5 m处应以自然恢复为主,通过植被自然更新即可实现植被恢复,同时防止其他的人为干扰活动进一步破坏植被的自然恢复过程。

    1)井工采煤引起的地表裂缝发育,使得幼苗库生活型组成由对照区以多年生草本为主转变为裂缝发育区以一二年生草本植物为主,且距裂缝水平距离0~1 m和1~2 m的幼苗库密度、物种多样性都显著大于对照区,而在距裂缝2~5 m上述幼苗库特征与对照区已无显著变化。

    2)距裂缝0~1 m和1~2 m范围影响裂缝幼苗建植的共同因子包括土壤含水量、有机质含量和枯落物厚度,而在0~1 m范围除上述因子外还包括枯落物盖度、土壤结皮盖度、厚度、地上植被盖度、生物量;随距地裂缝水平距离增大,距裂缝2~5 m范围影响幼苗建植的因子与对照区相似,主要包括土壤水分、地上植被盖度和枯落物盖度。

    3)距采动地裂缝水平距离0~1 m和1~2 m幼苗库对地上植被群落恢复贡献有限,为加快裂缝区植被恢复速度,在自然恢复的基础上,可通过人工灌木群落构建和土壤水分养分改善,以增加幼苗建植率进而促进该区植被恢复。而2~5 m范围的幼苗库与地上植被的物种相似性相对较高,限制幼苗建植因子与未受裂缝干扰区类似,该区幼苗库的自然更新可保证植被群落的稳定性。

  • 图  1   研究区域位置

    Figure  1.   Spatial distribution of sampling points

    图  2   野外采样样地示意

    Figure  2.   Illustration of field sampling plot

    图  3   距采动地裂缝不同距离幼苗库密度特征

    Figure  3.   Seedling bank density characteristics at different distances from mining ground fissure

    图  4   距采动地裂缝不同距离幼苗库生活型组成特征

    Figure  4.   Characteristics of life-form composition of seedling bank at different distances from mining ground fissure

    图  5   距采动地裂缝不同距离幼苗库多样性特征

    Figure  5.   Diversity characteristics of seedling bank at different distances from mining ground fissure

    图  6   距采动地裂缝不同距离幼苗库与环境因子CCA排序图

    红色箭头代表环境因子,蓝色三角形代表幼苗物种分布注: 物种名称:A1—牻牛儿苗Erodium stephanianum;A2—草木樨Melilotus suaveolens;A3—兴安胡枝子Lespedeza davurica;A4—猪毛蒿Artemisia scoparia;A5—獐牙菜Swertia bimaculata;A6—苦荬菜Ixeris polycephala;A7—地锦Parthenocissus tricuspidata;A8—拐轴鸦葱Lipschitzia divaricata;A9—阿尔泰狗娃花Aster altaicus;A10—茵陈蒿Artemisia capillaris;A11—远志Polygala tenuifolia;A12—长芒草Stipa bungeana;A13—猪毛菜Salsola collina;A14—蒙古蒿Artemisia mongolica;A15—糙叶黄芪Astragalus scaberrimus;A16—乳浆大戟Euphorbia esula;A17—斜茎黄芪Astragalus laxmannii;A18—狗尾草Setaria viridis;A19—华北白前Vincetoxicum mongolicum;A20—柠条Caragana korshinskii;A21—二色补血草Limonium bicolor;A22—朝阳隐子草Cleistogenes hackelii;A23—茭蒿Artemisia giraldii;A24—狭叶米口袋Gueldenstaedtia stenophylla;A25—赖草Leymus secalinus;A26—野胡萝卜Daucus carota;A27—野葱Allium chrysanthum;A28—紫筒草Stenosolenium saxatile;A29—苦苣菜Sonchus oleraceus;A30—芦苇Phragmites australis;A31—棘豆Oxytropis glabra;A32—苜蓿Medicago sativa;A33—百里香Thymus mongolicus;A34—异叶败酱Patrinia heterophylla;A35—北京隐子草Cleistogenes hancei;A36—青蒿Artemisia caruifolia;A37—白莲蒿 Artemisia stechmanniana.环境因子:AVEC—地上植被盖度;AVEB—地上植被生物量;SCC—土壤结皮盖度;SCT—土壤结皮厚度;LLC—枯落物层盖度;LLT—枯落层厚度;LLB—枯落物层生物量;SOM—土壤有机质;SM—土壤含水量;AK—土壤速效钾;AP—土壤速效磷;AN—土壤速效氮;BD—土壤容重。下同

    Figure  6.   CCA of seedling bank and environmental factors at different distances from mining ground fissure

    图  7   距采动地裂缝不同距离环境因子与幼苗库之间相关热图

    Figure  7.   Heat map of correlation between environmental factors and seedling bank at different distances

    图  8   距采动地裂缝不同距离幼苗库与地上植被物种组成集合图

    注:Ⅰ—幼苗库和地上植被总物种数;Ⅱ—距采动地裂缝水平距离1~2 m处地上植被所特有物种数为2;Ⅲ—距采动地裂缝不同距离以及对照区幼苗库和地上植被之间物种交集数量;S—幼苗库;V—地上植被

    Figure  8.   Collection of seedling bank and aboveground vegetation species composition at different distances from mining ground fissure

    表  1   距采动地裂缝不同距离地上植被及环境因子特征

    Table  1   Characteristics of aboveground vegetation and environmental factors at different distances from the mining ground fissure

    距地裂缝距离 AVED/ (株·m−2) AVEC/% AVEB/(g·m−2) SCC/% SCT/cm LLC/% LLT/cm LLB/(g·m−2)
    0~1 m 91.87±9.54a 26.00±3.21c 67.86±9.52c 27.00±2.82a 0.31±0.02a 20.81±3.26a 0.77±0.16a 101.63±18.75ab
    1~2 m 98.34±6.78a 32.14±3.09bc 80.57±9.83b 12.18±2.47a 0.28±0.02a 18.71±3.73a 0.78±0.10a 82.35±9.91b
    2~5 m 62.51±7.22b 46.20±6.60ab 92.25±7.83b 20.10±4.54a 0.18±0.03a 25.60±2.22a 0.51±0.10a 131.73±28.18ab
    对照区 64.11±11.33b 52.77±7.31a 119.82±8.03a 17.89±2.30a 0.13±0.02b 27.22±7.18a 0.45±0.03a 163.90±19.01a
      注:AVED: 地上植被密度;AVEC: 地上植被盖度;AVEB: 地上植被生物量;SCC: 土壤结皮盖度;SCT: 土壤结皮厚度;LLC:枯落物层盖度;LLT:枯落层厚度;LLB:枯落物层生物量;CK:对照区;表中数据均采用平均值±标准差;不同小写字母表示同一测定指标下,距采动地裂缝不同水平距离地上植被及环境因子差异显著(P < 0.05),下同。
    下载: 导出CSV

    表  2   距采动地裂缝不同距离土壤理化性质特征

    Table  2   Physicochemical characteristics of soil at different distances from mining ground fissure

    距地裂缝距离 有机质含量/(g·kg−1) 土壤含水量/% 速效钾含量/(mg·kg−1) 速效磷含量/(mg·kg−1) 速效氮 (mg·kg−1) 容重/(g·cm−3)
    0~1 m 1.14±0.11b 8.33±0.79b 127.69±7.69c 0.65±0.11b 30.71±2.55b 1.09±0.05b
    1~2 m 1.49±0.10b 9.09±0.42a 113.56±5.13c 0.37±0.02c 38.89±2.52a 1.23±0.06b
    2~5 m 2.38±0.11a 9.72±0.39a 157.93±3.87b 1.17±0.10a 39.18±2.92a 1.37±0.03a
    对照区 2.68±0.24a 9.34±0.26a 178.50±4.43a 1.19±0.06a 33.49±1.56a 1.23±0.02a
    下载: 导出CSV

    表  3   生态环境因子解释的重要性排序和显著性检验

    Table  3   Importance ranking and significance test of ecological environment factor explanation

    因子 SCC AVEC LLC AVEB SM SOM
    距地裂缝0~1 m 解释度% 25.9 19 19.1 21 12.6 0.9
    F 4.2 3.8 5.3 12.6 42.7 4.4
    P 0.002 0.012 0.008 0.002 0.002 0.016
    因子 SM LLT LLC AVEB SOM LLB
    距地裂缝1~2 m 解释度% 31.5 27.4 9.8 7.5 6.6 6.1
    F 4.1 5.3 2.2 1.9 1.9 2.2
    P 0.008 0.002 0.06 0.134 0.168 0.138
    因子 SM SCT AVEC AVEB LLC SCC
    距地裂缝2~5 m 解释度% 22.9 14.3 13.3 10.7 9.6 8.4
    F 2.4 1.6 1.6 1.4 1.3 1.2
    P 0.03 0.116 0.046 0.354 0.386 0.384
    因子 LLC SCT AVEC SCC SOM AVEB
    对照区 解释度% 19.9 20.4 17.3 16.5 12.2 8.1
    F 1.7 2.1 2 2.5 2.7 2.9
    P 0.028 0.036 0.048 0.062 0.052 0.098
    下载: 导出CSV

    表  4   幼苗库与地上植被物种相似性

    Table  4   Species similarity between seedling bank and aboveground vegetation

    植被类型 幼苗库 地上植被
    水平距离 对照区 水平距离 对照区
    0~1 m 1~2 m 2~5 m 0~1 m 1~2 m 2~5 m
    幼苗库 0~1 m 1
    1~2 m 0.71 1
    2~5 m 0.57 0.75 1
    对照区 0.53 0.59 0.82 1
    地上植被 0~1 m 0.42 0.53 0.69 0.62 1
    1~2 m 0.38 0.48 0.59 0.64 0.69 1
    2~5 m 0.37 0.53 0.67 0.57 0.56 0.7 1
    对照区 0.33 0.44 0.59 0.68 0.65 0.73 0.76 1
    下载: 导出CSV
  • [1]

    ZENG Wei,HUANG Zhen,WU Yun,et al. Experimental investigation on mining-induced strain and failure characteristics of rock masses of mine floor[J]. Geomatics Natural Hazards Risk,2020,11(1):491−509.

    [2]

    MI Jiaxin,YANG Yongjun,HOU Huping,et al. The long-term effects of underground mining on the growth of tree,shrub,and herb communities in arid and semiarid areas in China[J]. Land Degradation and Development,2021,32(3):1412−1425.

    [3]

    LIU Hui,DENG Kazhong,ZHU Xiaojun,et al. Effects of mining speed on the developmental features of mining-induced ground fis sures[J]. Bulletin of Engineering Geology and the Environment,2019,78(8):6297−6309. doi: 10.1007/s10064-019-01532-z

    [4] 俞龙生,李 卫,许铭宇,等. 赤霉素浸种对2种矿区修复先锋植物种子萌发和幼苗生长的影响[J]. 生态环境学报,2022,31(11):2225−2233.

    YU Longsheng,LI Wei,XU Mingyu,et al. Effect of gibberellin soaking on seed germination and seedling growth of two pioneer plants for ecological restoration in mining areas[J]. Ecology and Environmental Sciences,2022,31(11):2225−2233.

    [5] 姚丽霞,王进鑫,党倩楠,等. 西北干旱荒漠区排矸平台不同配置与保育模式重建植被生态能值分析[J]. 生态学报,2020,40(23):8729−8742.

    YAO Lixia,WANG Jinxin,DANG Qiannan,et al. Ecological emegy analysis of vegetation reconstruction based on different configuration and conservation models of waste dump platform in arid desert area of northwest China[J]. Acta Ecologica Sinica,2020,40(23):8729−8742.

    [6]

    WANG Bo,LIU Jing,WANG Chenglong,et al. Effects of drawing damage on root growth and soil reinforcement of hippophae rham noides in a coal mining subsidence area[J]. International Journal of Phytoremediation,2022,24(4):409−419. doi: 10.1080/15226514.2021.1950119

    [7] 李禹凝,王金满,张雅馥,等. 干旱半干旱煤矿区土壤水分研究进展[J]. 土壤,2023,55(3):494−502.

    LI Yuning,WANG Jinman,ZHANG Yafu,et al. Soil sater in arid and semi-arid mining areas:a review [J]. Soils,2023,55(3):494−502.

    [8]

    CHEN Guangjie,GUO Junting,SONG Ziheng,et al. Soil water transport and plant water use patterns in subsidence fracture zone due to coal mining using isotopic labeling[J]. Environmental Earth Sciences,2022,81(11):1−8.

    [9]

    ZHANG Kai,YANG Kai,WU Xingtong,et al. Effects of underground coal mining on soil spatial water content distribution and plant growth type in northwest China[J]. ACS Omega,2022,7(22):18688−18698. doi: 10.1021/acsomega.2c01369

    [10]

    Bohrer S L,Limb R F,Daigh A L,et al. Fine and coarse-scale patterns of vegetation diversity on reclaimed surface nine-land over a 40-year chronosequence[J]. Environmental Management,2017,59(3):431−439. doi: 10.1007/s00267-016-0795-y

    [11] 葛芳红. 黄土丘陵沟壑区斑块化植被格局对植物更新的影响[D]. 西安:陕西师范大学,2019.

    GE Fanghong. Effects of patchy vegetation pattern on plant regeneration in loess hilly-gully region[D]. Xi’an: Shannxi Normal University,2019.

    [12] 苏 嫄,焦菊英,王巧利,等. 黄土丘陵沟壑区不同侵蚀环境下幼苗库及其与地上植被的关系[J]. 草业学报,2013,22(5):154−164.

    SU Yuan,JIAO Juying,WANG Qiaoli,et al. Seedling banks and their relationship with the standing vegetation under different erosion environments in the hill-gully Loess Plateau region[J]. Acta Prataculturae Sinica,2013,22(5):154−164.

    [13]

    ZHANG Xiaoyue,NI Xiangyin,HEDENEC P,et al. Litter facilitates plant development but restricts seedling establishment during vegetation regeneration[J]. Functional Ecology,2022,36(12):3134−3147.

    [14] 闫 琰,姚 杰,张新娜,等. 吉林蛟河不同演替阶段针阔混交林木本植物幼苗空间分布与年际动态[J]. 生态学报,2016,36(23):7644−7654.

    YAN Yan,YAO Jie,ZHANG Xinna,et al. Spatial distribution and interannual dynamics of tree seedlings at different successional stages in a conifer and broad-leaved mixed forest in Jiaohe,Jilin Province,China[J]. Acta Ecologica Sinica,2016,36(23):7644−7654.

    [15]

    CASALINI A I,BISIGATO A J. Geomorphology and soils control vegetation heterogeneity through differential species establishment at an arid ecotone[J]. Journal of Arid Environments,2017,147(dec.):83−89.

    [16]

    Ncise W,Daniels C W,Nchu F. Effects of light intensities and varying watering intervals on growth,tissue nutrient content and antifungal activity of hydroponic cultivated Tulbaghia violacea L. under greenhouse conditions[J]. Heliyon,2020,6(5):e03906. doi: 10.1016/j.heliyon.2020.e03906

    [17] 宗小天,焦菊英,吴多洋,等. 陕北安塞不同林龄刺槐林下幼苗更新的动态变化特征[J]. 水土保持研究,2022,29(2):287−295, 303.

    ZONG Xiaotian,JIAOJuying,WU Duoyang,et al. Dynamic characteristics of seeding regeneration in robinia pseudoacacia plantations with different ages in Ansai County of Northern Shaanxi Province[J]. Research of Soil and Water Conservation,2022,29(2):287−295, 303.

    [18]

    PARRY M L, BELLAIRS S M, LU Ping. Improved native understorey establishment in mine waste rock in Australia’s wet-dry tropics[J]. Australian Journal of Botany. 2022, 70(3): 248−262.

    [19]

    GAO Yanhong,JLA Rongliang,LIU Yanping,et al. Biocrust and sand burial together promote annual herb community assembly in an arid sandy desert area[J]. Plant and Soil,2023,491(1/2):645−663. doi: 10.1007/s11104-023-06142-z

    [20]

    ZHU Shichen,ZHENG Hongxiang,LIU Wenshen,et al. Plant-Soil feedbacks for the restoration of degraded mine lands:a review[J]. Frontiers in Microbiology,2021,12:751794.

    [21]

    MARCA N R ,LÓPEZ R P,NAOKI K. Effect of shade and precipitation on germination and seedling establishment of dominant plant species in an Andean arid region,the Bolivian Prepuna[J]. Plos one,2021,16(3):e0248619.

    [22]

    LEWANDROWSKI W,STEVENS J C,WEBBER B L,et al. Global change impacts on arid zone ecosystems:Seedling establishment processes are threatened by temperature and water stress[J]. Ecology and Evolution,2021,11(12):8071−8084. doi: 10.1002/ece3.7638

    [23] 范立民,马万超,常波峰,等. 榆神府矿区地下水水化学特征及形成机理[J]. 煤炭科学技术,2023,51(1):383−394.

    FAN Limin,MA Wanchao,CHANG Bofen,et al. Hydrochem-ical characteristics and formation mechanism of groundwater in Yushenfu Mining Area[J]. Coal Science and Technology,2023,51(1):383−394.

    [24] 谢晓深,侯恩科,冯 栋,等. 榆神府矿区采煤地表裂缝发育规律及特征[J]. 工程科学学报,2023,45(1):44−53.

    XIE Xiaoshen,HOU Enke,FENG Dong,et al. Development law and characteristics of surface cracks caused by coal miningin Yushenfu mining area[J]. Chinese Journal of Engineering,2023,45(1):44−53.

    [25] 王双明,申艳军,孙 强,等. 西部生态脆弱区煤炭减损开采地质保障科学问题及技术展望[J]. 采矿与岩层控制工程学报,2020,2(4):5−19.

    WANG Shuangming,SHEN Yanjun,SUN Qiang,et al. Scientific issues of coal detraction mining geological assurance and their technology expectations in ecologically fragile mining areas of Western China[J]. Journal of Mining and Strata Control Engineering,2020,2(4):5−19.

    [26] 王双明,杜华栋,王生全. 神木北部采煤塌陷区土壤与植被损害过程及机理分析[J]. 煤炭学报,2017,42(1):17−26.

    WANG Shuangming,DU Huadong,WANG Shengquan. Analysis of damage process and mechanism for plant community and soilproperties at northern Shenmu subsidence mining area[J]. Journal of China Coal Society,2017,42(1):17−26.

    [27] 苗彦平,谢晓深,陈小绳,等. 浅埋煤层开采地表裂缝发育规律及机理研究[J]. 煤矿安全,2022,53(4):209−215.

    MIAO Yanping,XIE Xiaoshen,CHEN Xiaosheng,et al. Development law and mechanism of surface cracks caused by shallow coal seam mining[J]. Safety in Coal Mines,2022,53(4):209−215.

    [28] 王双明,侯恩科,谢晓深,等. 中深部煤层开采对地表生态环境的影响及修复提升途径研究[J]. 煤炭科学技术,2021,49(1):19−31.

    WANG Shuangming,HOU Enke,XIE Xiaoshen,et al. Study on influence of surface ecological environment caused by middle deep coal mining and the ways of restoration[J]. Coal Science and Technology,2021,49(1):19−31.

    [29] 琚成远, 浮耀坤, 陈 超, 等. 神南矿区采煤沉陷裂缝对土壤表层含水量的影响[J]. 煤炭科学技术,2022,50(4):309−316.

    JU Chengyuan, FU Yaokun, CHEN Chao, et al. Influence of coal mining subsidence cracks on soil surface water content in Shennan Mining Area[J]. Coal Science and Technology,2022,50(4):309−316.

    [30] 台晓丽,胡振琪,陈 超. 风沙区采煤沉陷裂缝对表层土壤含水量的影响[J]. 中国煤炭,2016,42(8):113−117.

    TAI Xiaoli,HU Zhenqi,CHEN Chao. Effect of mining subsidence fissure on moisture of surface soil in aeolian sand area[J]. China Coal,2016,42(8):113−117.

    [31] 葛芳红,刘红岩,赵富王,等. 黄土丘陵区植物间正相互作用对幼苗更新的影响[J]. 草业学报,2019,28(10):134−143.

    GE Fanghong,LIU Hongyan,ZHAO Fuwang,et al. Effects of positive plant interactions on seedling regeneration in the hill-gully region of the Loess Plateau[J]. Acta Prataculturae Sinica,2019,28(10):134−143.

    [32] 王 宁. 黄土丘陵沟壑区植被自然更新的种源限制因素研究[D]. 中国科学院研究生院,2013.

    WANG Ning. The limiting factors in vegetation recruitment in the hilly−gullied region of the Loess Plateau: on species resources aspect[D]. Chinese Academy of Sciences and Ministry of Education,2013.

    [33] 拜梦童,杜华栋,范鹏辉,等. 黄土沟壑区采煤塌陷地不同土地利用类型土壤性质损害特征[J]. 土壤通报,2022,53(5):1029−1037.

    BAI Mengtong,DU Huadong,FAN Penghui,et al. Damage characteristics of soil properties in different land use types under mining subsidence areas in Loess Hilly Area[J]. Chinese Journal of Soil Science,2022,53(5):1029−1037.

    [34]

    VILLÉGER S,MASON N,MOUILLOT D. New multidimensional functional diversity indices for a multifaced framework in functional ecology[J]. Ecology,2008,89(8):2290−2301. doi: 10.1890/07-1206.1

    [35]

    JIA Fengqin,Tashpolat TIYIP,WU Nan,et al. Characteristics of soil seed banks at different geomorphic positions within the longitudinal sand dunes of the Gurbantunggut Desert,China[J]. Journal of Arid Land,2017,9(3):355−367. doi: 10.1007/s40333-017-0055-x

    [36]

    HOPFENSPERGER K N. A review of similarity between seed bank and standing vegetation across ecosystems[J]. Oikos,2007,116(9):1438−1448. doi: 10.1111/j.0030-1299.2007.15818.x

    [37]

    YOUSAF A,SHABBIR R,JABEEN A,et al. Linkage between herbaceous vegetation and soil characteristics along rawal dam islamabad[J]. Journal of Soil Science and Plant Nutrition,2016,16(1):88−100.

    [38]

    SOMERS K M,JACKSON D A. Putting the Mantel test back together again[J]. Ecology,2022,103(10):e3780 doi: 10.1002/ecy.3780

    [39]

    MOHSENI N,SEPEHR A,HOSSEINZADEH S R,et al. Variations in spatial patterns of soil–vegetation properties over subsidence-related ground fissures at an arid ecotone in northeastern Iran[J]. Environmental Earth Sciences,2017,76(6):1−13.

    [40]

    MI Jiaxia, YANG Yongjun, HOU Huping,et al. Impacts of ground fissures on soil properties in an underground mining area on the Loess Plateau, China[J]. Land,2022,11(2):162−174. doi: 10.3390/land11020162

    [41] 周 莹,贺 晓,徐 军,等. 半干旱区采煤沉陷对地表植被组成及多样性的影响[J]. 生态学报,2009,29(8):4517−4525. doi: 10.3321/j.issn:1000-0933.2009.08.060

    ZHOU Ying,HE Xiao,XU Jun,et al. Effects of coal mining subsidence on vegetation composition and plant diversity in Semi-Arid Region[J]. Acta Ecologica Sinica,2009,29(8):4517−4525. doi: 10.3321/j.issn:1000-0933.2009.08.060

    [42]

    DENG Wenping,ZHENG Xiling,XIAO Shengsheng,et al. Effects of leaf type,litter mass and rainfall characteristics on the interception storage capacity of leaf litter based on process simulation[J]. Journal of Hydrology,2023,624:129943. doi: 10.1016/j.jhydrol.2023.129943

    [43]

    SUN Zhaolin,TIAN Peng,ZHAO Xuechao,et al. Temporal shifts in the explanatory power and relative importance of litter traits in regulating litter decomposition[J]. Forest Ecosystems,2022,9(6):755−763.

    [44]

    CUI Guangshuai,Pugnaire F I,LIU Yang,et al. Shrub-mediated effects on soil nitrogen determines shrub-herbaceous interactions in drylands of the Tibetan Plateau[J]. Frontiers in Plant Science,2023,14:1137365. doi: 10.3389/fpls.2023.1137365

    [45]

    SHI Yafei; WANG Zengru; XU Bingxin,et al. Rainfall amount determines annual herb controls over soil seed bank and its similarity with vegetation in the Tengger Desert[J]. Ecological Processes,2022,11(1):1−11. doi: 10.1186/s13717-021-00352-y

图(8)  /  表(4)
计量
  • 文章访问数:  94
  • HTML全文浏览量:  22
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-10-11
  • 网络出版日期:  2024-02-27
  • 刊出日期:  2024-02-22

目录

/

返回文章
返回