高级检索

煤及燃煤产物中稀土元素的分布赋存特征研究进展

邢艳阳, 丁华, 白向飞, 何金

邢艳阳,丁 华,白向飞,等. 煤及燃煤产物中稀土元素的分布赋存特征研究进展[J]. 煤炭科学技术,2024,52(3):269−282. DOI: 10.12438/cst.2023-1165
引用本文: 邢艳阳,丁 华,白向飞,等. 煤及燃煤产物中稀土元素的分布赋存特征研究进展[J]. 煤炭科学技术,2024,52(3):269−282. DOI: 10.12438/cst.2023-1165
XING Yanyang,DING Hua,BAI Xiangfei,et al. Research progress on the distribution and occurrence characteristics of rare earth elements in coal and coal-fired products[J]. Coal Science and Technology,2024,52(3):269−282. DOI: 10.12438/cst.2023-1165
Citation: XING Yanyang,DING Hua,BAI Xiangfei,et al. Research progress on the distribution and occurrence characteristics of rare earth elements in coal and coal-fired products[J]. Coal Science and Technology,2024,52(3):269−282. DOI: 10.12438/cst.2023-1165

煤及燃煤产物中稀土元素的分布赋存特征研究进展

基金项目: 

国家自然科学基金重点资助项目(42030807)

详细信息
    作者简介:

    邢艳阳: (1999—),女,山西原平人,硕士研究生。E-mail:xingyy0721@163.com

    通讯作者:

    丁华: (1980—),女,黑龙江鸡西人,研究员,硕士。E-mail:briccding@126.com

  • 中图分类号: P618.7

Research progress on the distribution and occurrence characteristics of rare earth elements in coal and coal-fired products

Funds: 

National Natural Science Foundation of China (42030807)

  • 摘要:

    稀土元素因其特殊的性质被广泛用于永磁、冶金、储氢材料等领域,消费量逐年递增。我国是稀土元素储量大国,至2020年我国稀土元素矿产量在世界占比逐年下降,近几年有所回升,但仍需要寻找和开发其他可作为稀土元素供应源的材料。煤作为一种有机矿产,形成过程中可富集稀土元素。深入认识煤中稀土元素含量及赋存状态对后续研究其燃烧产物中稀土元素赋存和提取回收具有重要意义。国内外学者分时代、地区、煤级研究煤中稀土元素含量,对煤及其燃烧产物中的稀土元素赋存状态研究进行总结,并初步认识到我国煤及其燃烧产物中的稀土元素分布赋存特征。目前研究表明,中国煤中的平均稀土元素含量是世界煤中的平均稀土元素含量的两倍;晚二叠世时期煤中稀土元素相对富集;煤中稀土元素主要以硅酸盐态存在。稀土元素性质稳定,经过燃烧后可在燃煤产物中明显富集,主要富集在非磁性的细飞灰颗粒中。对于煤中稀土元素含量的统计应综合考虑样品来源矿区的覆盖率、样品处理方式、微量元素测试方式等因素,以提高统计数据的代表性和准确性。综合直接观测、表征测试方法、逐级化学提取法及数理统计方法以推测得到较为可靠的赋存状态。我国煤炭消费量可观,能源供应以火力发电为主,燃煤产物产量巨大,煤中稀土元素至燃煤产物中可得到几十倍的富集,探明电厂燃煤产物中稀土元素富集分布规律,结合其提取的难易程度提出对应的回收工艺,以实现对燃煤产物资源化利用。

    Abstract:

    Rare earth elements are widely used in permanent magnet, metallurgy, hydrogen storage materials and other fields due to their special properties, and their consumption is increasing year by year. China is a big country with rare earth element reserves. By 2020, China's rare earth element mineral production in the world accounted for a decline year by year, and has rebounded in recent years, but it is necessary to find and develop other materials that can be used as a supply source of rare earth elements. Coal, as a kind of organic mineral, can enrich rare earth elements during its formation. Deeply recognizing the content and occurrence state of rare earth elements in coal is of great significance for the subsequent research on the occurrence, extraction and recovery of rare earth elements in combustion products. Scholars at home and abroad studied the content of rare earth elements in coal by era, region and coal grade, and the research on the occurrence state of rare earth elements in coal and its combustion products was summarized to clearly understand the distribution characteristics of rare earth elements in coal and its combustion products in China. Current research shows that the average rare earth element content in China's coal is twice the average rare earth element content in coal in the world. Late Permian period coal is relatively rich in rare earth elements. Rare earth elements in coal mainly exist in Portland state. The properties of rare earth elements are stable, and the coal can be enriched several times to tens of times in the combustion products after combustion, mainly in the non-magnetic fine fly ash particles. In order to improve the representativeness and accuracy of statistical data, factors such as the coverage rate of coal mining area, sample processing method and trace element testing method should be comprehensively considered in the statistics of rare earth elements content in coal. Direct observation, characterization test methods, stepwise chemical extraction methods and mathematical statistical methods were synthesized to obtain a more reliable occurrence state. China has a considerable amount of coal consumption, with the main energy supply being thermal power generation. The production of coal-fired products is huge, and rare earth elements in coal can be enriched dozens of times in coal-fired products. The distribution pattern of rare earth elements in coal-fired products of power plants is explored, and corresponding recovery processes are proposed based on the difficulty of extraction, in order to achieve the resource utilization of coal-fired products.

  • 从不同角度对深部煤层气进行定义,一般认为处于地应力状态和(或)含气量“临界深度”之下的煤层气资源及其赋存状态和开发地质条件,属于深部煤层气范畴[1]。依据此定义,沁水盆地深煤层界定在750 m以深,在此深度以深,煤层气成藏特征开始发生转换[2]。21世纪以来,全国已开展五次煤层气资源评价,2 000 m以浅的煤层气资源量为30.05万亿m3,居世界第3位[3-5],而1 000~2 000 m范围内的煤层气资源量达到了18.87万亿m3[6],深部煤层气勘探开发将煤层气开发深度领域扩大了2~3倍,具备了整个煤层气行业跨越式发展的资源基础条件。目前深部煤层气的开发主要采用直井/水平井+大规模压裂的模式体系。近年来,业内许多企业在深部煤层气区块运用该开发模式均获得了高产。中石油煤层气公司大宁-吉县区块二叠系太原组的8+9号煤层垂深达到了2 100 m,煤层厚度4~12 m,吉深6-7平01井水平段长1 000 m,压裂11段,单段液量近3 000 m3,砂量350 m3,施工排量达到18 m3/min,投产后最高气量突破10万m3/d[7];中石化延川南区块某井区煤层埋深约1 280 m,平均压裂14段,排量介于18~22 m3/min,平均单段注入液量为2 646 m3,加砂量248 m3,单井日产气量介于2.5~5.5万m3/d,其中水平井3-P11井产量突破5万m3/d[8];中联煤层气公司临兴区块 “深煤一号”水平井完钻井深超过3 200 m,水平段长度接近1 000 m,压裂8段,累计注入液量超17 000 m3,加砂量超2 100 m3,投产后最终测试产量为6万m3/d[9]。但鉴于不同区块深部煤储层地质特征的差异性,水平井采用单一的完井技术势必会造成部分区块工程效果不理想、储层动用程度低、单井产能低、稳产周期短、长期低效或者不产气等问题[10]

    沁水盆地在中浅部煤层气开发[11]、煤矿区煤层气开发中均取得了成功,而对于超过1 000 m埋深的煤层气开发近几年刚起步。申建等[12]分析了沁水盆地不同深度条件下储层参数的变化规律,开展了CO2注入煤层增产效应的数值模拟研究,认为深部煤储层CO2封存优势显著,实现深部煤层气采收率显著增加,必须保证一定的CO2注入量;杨燕青等[13]利用地震相控反演技术,采用厚度标定、有效储层厚度分析、多尺度边缘检测和岩性识别等方法,对沁水盆地和顺横岭深部煤层气区块储层空间分布、煤层厚度、含气性、储层特性等进行了预测;申鹏磊等[14]在总结前期沁水盆地深部煤层气水平井地质导向实践经验的基础上,提出了集测井、定向、录井技术于一体的地质导向技术,最大限度优化水平井井眼轨迹,提高靶点着陆准确度和水平段煤层钻遇率,同时在分析了深部煤层气各种压裂技术后,自主研发了常规油管带压压裂新技术,试验效果显著,有效拓展了储层改造途径。

    笔者在前人对煤层气开发井完井技术研究的基础上,深入沁水盆地深部煤层气开发井钻完井现场,通过跟踪分析,总结出在不同地质和工程条件下的深部煤层气开发井完井技术,同时针对深部煤层U型开发井组中的生产直井提出新的完井技术,该技术能够满足当下业内主流的大规模压裂作业,裂缝监测显示压裂效果显著,有利于形成规模性缝网系统,经后期排采实践,产气效果显著,具有良好的推广前景。

    与浅部煤储层相比,深部煤储层有其相对独立的地质特征[15]。以沁水盆地中东部深部煤储层为例,储层内煤体结构以碎裂结构和碎裂−碎粒结构为主,煤质热演化程度高,渗透率平均为0.08 × 10−15~0.11 × 10−15 m2,属低渗−特低渗储层,孔隙度为3.12%,孔隙类型以微孔为主,含气饱和度介于51.97%~123.88%,局部为过饱和状态[16],富含部分游离气。煤岩割理、裂隙较发育(图1),煤层顶底板封盖能力较好。此外,区块尺度上断裂较为发育,受之影响煤储层小微构造也普遍发育,煤层地应力高且非均质性强,可改造性较差。

    图  1  沁水盆地横岭区块探8井深部煤岩心
    Figure  1.  Deep coal cores from Tan 8 well in Hengling Block, Qinshui Basin

    目前研究区深部煤层气主要采用地质工程一体化的开发模式。前期对煤储层及含气赋存特征进行研究,查明区域内煤层气富集和成藏规律,并进行了资源量的评估,然后通过三维地震对区域内煤层形态和构造特征进行精细解释,结合勘探井获取的储层特征参数开展有利区的预测。开发井型主要以直井和水平井,或二者相结合为主,包括L型水平井、川字型水平井组、U型对接井组、多分支水平井组等类型。常规直井完井工艺较为简单,而水平井完井结构复杂多变,根据区块储层物性、电性、含气性和裂隙性及后期储层改造工艺的不同而进行完井技术优选。

    武乡南和和顺横岭煤层气勘查区块位于沁水盆地中东部,沁水复向斜的东部,总体以近北北东向的褶皱发育为主(图2)。武乡南区块整体为北北东走向、向西倾斜的单斜构造,在此基础上发育次一级的小褶皱,地层倾角平均3°~8°,中小断层密集,区内主要发育3号和15号煤层,平均埋深14001850 m,厚度为1.6~4.0 m,煤体结构以碎裂−碎粒煤为主(图3);和顺横岭区块以褶皱发育为主,地层倾角变化明显,局部倾角可达11°~18°稳定发育煤层为15号煤,深度1 550~2 200 m,煤层平均厚度5~6 m,煤体结构以碎粒型为主(图4)。通过前期综合评价,分别圈定有利区进行勘探开发。

    图  2  沁水盆地构造纲要
    Figure  2.  Outline map of structure of Qinshui Basin
    图  3  武乡南区块煤层气勘查开发部署
    Figure  3.  Deployment map of coalbed methane exploration and development in Wuxiang South Block
    图  4  和顺横岭区块煤层气勘查开发部署
    Figure  4.  Deployment map of coalbed methane exploration and development in Heshun Hengling block

    两个区块内共实施三维地震(面元:20 m×20 m)197.2 km2,控制断层(≥5 m)421条,查明陷落柱(直径≥50~60 m)78个;完钻煤层气水平井63口,获取煤岩芯样308个,各类煤质、水质和气样等检测化验达975次。较为典型的煤层气井,采用套管完井和水泥浆固井技术,例如,CN-36-1井,3号煤层垂深1 455 m,水平段长810 m,压裂9段,投产65 d开始见气,最高气产量突破8100 m3/d,后因产气通道不稳定,气量衰减较快;HL-L-02井,15号煤层垂深1 703 m,水平段长760 m,投产160 d开始见气,最高气量为7 600 m3/d,目前正在稳定排采。(图5

    图  5  沁水盆地深部煤层气井生产曲线
    Figure  5.  Production curves of deep coalbed methane well in the Qinshui Basin

    常规单层套管完井是目前深部煤层气开发普遍采用的完井技术,有2种技术类型:

    1)三开水平井套管完井。一开采用ø311.2 mm钻头,钻至稳定基岩,下入ø273.1 mm表层套管;二开采用ø241.5 mm钻头,钻至目的层着陆,下入ø193.7 mm技术套管;三开采用ø171.5 mm钻头在煤层中钻进,水平段下入ø139.7 mm的生产套管至井口。此种完井技术施工工艺成熟,对煤储层适应性强。煤层的力学性质、煤体结构决定了井眼稳定性,加之钻井工程方面水平段轨迹的平滑度是影响套管是否能成功下入井底的关键。若后期煤储层改造选用连续油管底封拖动压裂工艺,施工排量普遍较低(排量一般不超过8 m3/min),叠加地应力后套管也不易变形,此时三开套管可以不利用水泥封固;若后期煤储层改造选择采用泵送桥塞−套管注入方式,需要满足中、大规模压裂时(排量超过12 m3/min),为降低套管变形的风险、保证压裂效果和生产期井筒抽采运行的稳定,三开套管应进行水泥封固(图6)。

    图  6  水平井三开井身结构示意
    Figure  6.  Schematic diagram of three-opening structure of the horizontal well

    2)二开水平井套管完井。一开采用ø311.2 mm钻头,钻至稳定基岩,下入ø244.5 mm表层套管;二开采用ø215.9 mm钻头钻至目的层着陆后,继续水平段钻进至完钻,下入ø139.7 mm的套管串至井口(图7)。其中二开套管串需选用分级箍、封隔器、可打捞式堵塞器等工具对造斜段进行固井,避免水平煤层段在压裂施工时高压压裂液以套管与井壁之间环空为通道返出井口,造成安全事故,同时可有效预防煤储层上部地层因长时间裸露引起的井壁坍塌对煤层造成的伤害和污染。这种完井技术可有效地减少施工周期和节约投资,但仅适用于煤层气开发阶段,且煤储层上覆地层较为稳定,且不含含水层或含弱含水层的地质条件。

    图  7  水平井二开井身结构示意
    Figure  7.  Schematic diagram of two-opening structure of the horizontal well

    常规单层套管完井是目前业内常用的完井技术,沁水盆地和顺横岭和武乡南深部煤层气开发区块采用该技术完井的占比为90%以上。开发区内主力煤层之一为太原组的15号煤,煤层连续稳定发育,厚度为3.5~7.0 m,深度1 400~2 200 m,受构造运动影响,煤层起伏较大,幅度大于10 m的褶曲平均3~5条/km2,区内上覆地层总体较为稳定,但局部含有较强含水层。常规单层套管完井技术可以配套不同开次的钻井及不同的压裂改造工艺,应用范围广泛。

    裸眼/筛管完井技术通常用于煤体结构完整、煤层渗透性强的储层条件,例如沁水盆地南部的潘庄区块[17]。对于深部煤层而言,针对水敏性强的煤储层或煤层顶、底板含强含水层,且压裂会与之沟通造成“淹井”时,通常采用水平段裸眼完井或筛管完井技术,井型可为L型井、羽状多分支水平井等。

    水平井裸眼完井技术一开采用ø311.2 mm钻头钻至稳定基岩,下入ø244.5 mm表层套管;二开采用ø215.9 mm钻头钻进,着陆目的煤层后,下入ø177.5 mm技术套管;三开采用ø152.4 mm钻头在煤层中钻进至终孔完井(图8)。裸眼完井适用于煤层结构稳定、钻井过程中不易垮塌的区域,主要优点是避免了水泥浆侵入对煤储层的污染,同时减少了水平段套管的费用。但是,因井眼水平段裸露,后期排采过程中,井壁浸泡时间过长容易失稳而坍塌,造成有效水平段减少,降低煤层气稳产周期。

    图  8  水平井裸眼完井井身结构示意
    Figure  8.  Schematic diagram of open hole completion of the horizontal well

    水平井筛管完井技术一开采用ø425.4 mm钻头钻至稳定基岩,下入ø377.2 mm表层套管;二开采用ø311.2 mm钻头钻进,着陆目的煤层后,下入ø244.5 mm技术套管;三开采用ø215.9 mm钻头在煤层中钻进至设计井深,下入ø114.3 mm筛管总成(图9)。下入的筛管总成管柱结构从井底向上依次为:引鞋+盲管+密封筒+筛管+悬挂器[18]

    图  9  水平井筛管完井井身结构示意
    Figure  9.  Schematic diagram of screen tube completion of the horizontal well

    在筛管入井过程中,为了防止遇阻,可在其内部采用冲管串进行水流循环洗井作业,冲洗井筒内煤粉和钻屑至地面,确保筛管下入的流畅性和安全性。这种完井技术的主要优点是,由于水平段采用大口径、小筛管的井身结构,完钻后井壁的自然坍塌可形成井筒径向长距离的洞穴和扩展出更多微裂缝,从而更加增大了流体的渗流面积。由于全井筒口径偏大,对钻井设备钻进参数的选择和人员素质提出了较高的要求。

    裸眼/筛管完井技术因其本身的完井结构无法满足后期压裂改造,对于深部煤储层低渗、高地应力的地质条件,其应用范围受到限制。目前仅在构造简单、渗透率较高异常的深部煤储层局部区域配合羽状多分支水平井应用,沁水盆地深部煤储层应用井数不到10口,其较多应用在浅部煤储层。

    在水平井三开套管完井中,按照预先设定的分段压裂距离,随生产套管下入多个带不同尺寸球座的滑套和封隔器,待所有封隔器座封后进行正常套管试压,后期通过投球打开指定滑套进行压裂(图10)。这种完井技术可省去后期储层改造时的射孔作业,适用于稳定性较高的煤层,缺点主要有:① 无法保证所有封隔器的座封;② 受球座内径的制约,井筒有效过流面积减小,压裂排量受限;③ 由于水平段没有固井,压裂时,压裂液可能通过套管与井壁之间环空沟通相邻压裂段,影响压裂效果。为了避免上述缺点,通常选用某种智能滑套,这种滑套是通过智能夹筒的计数记忆功能来实现指定滑套打开,同时水平段可正常进行固井,满足后期大规模压裂对井筒的需求(图11)。

    图  10  水平井套管+滑套完井井身结构示意
    Figure  10.  Schematic diagram of casing + sliding casing completion of the horizontal well
    图  11  水平井套管+智能滑套完井井身示意结构
    Figure  11.  Schematic diagram of casing + intelligent sliding casing completion of the horizontal well

    这种完井技术对井轨迹的平滑度和井筒的稳定程度要求很高,适用于稳定不易坍塌的煤储层。多年来在沁水盆地中至浅层煤层气开发中应用较多,后因井下工具多,工具失效概率大而影响了其进一步应用。近年来智能滑套也停留在数口井的试验阶段。但这不失为完井提供了另一种思路,而一体化工具的改进是这种完井技术的发展方向。

    综上所述,以上3种完井技术应用条件和特点各有不同(表1),虽然不同完井技术对于煤层气产量的高低直接影响不大,但其是钻井和后期压裂、排采的重要衔接工序,完井技术的匹配和适应性决定了整个井筒的质量、裂缝扩展程度所需的压裂规模大小、排采设备及工艺的选用等,间接制约了煤层气产量。

    表  1  深部煤层气井三类完井方式差异性对比
    Table  1.  Comparison of differences in three completion methods for deep coalbed methane wells
    完井技术 优点 缺点 适用地质条件 施工数量/口
    常规单层套管完井 工艺成熟,安全稳定;二开完井技术可节约成本、降低施工周期 不利于降本增效;二开完井技术对钻井轨迹要求高;受非煤段完井工具影响大 对任何煤储层均适用;二开完井技术特别适用于开发阶段煤层及其纵向地层稳定 235
    裸眼/筛管完井 避免了水泥浆污染,裸眼完井可节约套管费用 水平段裸露,后期井眼易垮塌;难以进行二次改造 煤体结构完整、渗透性极强 8
    套管+滑套完井 节约压裂前射孔费用;工艺具有特定的发展和改进方向 对井轨迹平滑度和井筒稳定要求高;受井下工具质量规格影响大;不能实现全通径,不利于压裂改造 煤储层稳定、不易垮塌 2
    下载: 导出CSV 
    | 显示表格

    采用U型对接井组进行深部煤层气开发时,工程井通常采用常规的三开套管完井井身结构,而生产直井井身结构为:一开井眼尺寸ø311.2 mm,配合ø244.5 mm的表层套管;二开井眼尺寸ø215.9 mm,配合ø177.8 mm生产套管。为了水平煤层段的对接,生产井目的煤层段采用ø177.8 mm玻璃钢套管,并在对接前进行套管磨铣和煤层掏穴(图12)。

    图  12  U型对接井组井身结构示意
    Figure  12.  Schematic diagram of well structure of U-shaped docking well group

    由于煤层小微构造发育、煤层易垮塌及工程质量管理等主客观因素,U型对接井组在钻完井施工中经常达不到预期效果,主要表现为有时工程井水平段达不到设计长度,不能够延伸到生产井,或者水平段方位与生产井相对方位出现较大偏差,最终导致工程井与生产井对接失败。在后期储层改造中,未对接成功的工程井可以按照类似单一水平井完井方式进行压裂作业。但是这种施工方式舍弃了原有的生产井,造成巨大的施工成本,且产气效果难以预料。

    如果将生产井继续使用,因目的煤层已“掏穴”,且套管抗压强度低,后期针对生产井压裂时也无法达到安全施工的条件。目前通常采用以下几种解决和补救措施:

    1)改变生产井压裂工艺,将光套管压裂改变为油管压裂,由原套管承压转化为油管承压压裂,这种方法简单,能够达到压裂施工压力要求,但油管内径小,无法提高压裂施工排量,达不到大排量体积压裂改造煤层的目的,同时油管串在煤层顶板以上稳定层位须安装封隔器,以将油套环空进行封隔,但压裂施工后,封隔器位置以下套管易出现变形,影响后期煤层气下泵排采。

    2)在生产井ø177.8 mm套管中下入ø127 mm套管+滑套+封隔器的管柱,压裂前封隔器座封,并投球打开滑套,然后进行正常压裂。这种工艺的特点是套管串结构繁琐,井下小组、构件多,容易发生质量事故;适配的滑套和封隔器规格特殊,需要定制;封隔器座封后没有相应的验封措施;滑套存在无法打开的风险;压裂过程中两层套管之间环空极易发生串压的安全事故。

    3)在生产井ø177.8 mm套管中下入ø127 mm套管至已掏穴煤层,并进行水泥固井。这种方法可以满足大排量压裂对井筒承压能力的要求,但在固井作业时,掏穴段可能形成“大肚子”水泥墩,影响后续射孔的穿透性和压裂流体压力的有效传递,减弱储层改造效果,同时水泥粉粒可能堵塞产气通道以影响产气。

    在对比研究不同规格套管的匹配关系后,提出新型双套管完井技术。该技术是在原生产井完井结构中继续下入ø127 mm第三级套管,第三级套管的管串组合由下至上依次为套管、筛管、球座、封隔器、分级箍、套管至井口(图13)。

    图  13  新型双套管完井技术井身结构示意
    Figure  13.  Schematic diagram of well structure of double casing completion technology

    该新型双套管完井技术主要工艺流程为:

    1)对生产井进行通洗井,通洗至已掏穴煤层以下井底,保证井筒畅通。

    2)下刮削器刮削ø177.8 mm套管内壁至遇阻位置,起出刮削管柱。

    3)按照ø127 mm套管+筛管+球座+封隔器+分级箍+ø127 mm套管的顺序组合套管串,依次入井,并确保筛管段与掏穴煤层段位置相吻合。

    4)封隔器座封且验封合格。

    5)投球憋压,打开分级箍旁通阀。

    6)通过ø127 mm套管向井内注入水泥浆,水泥浆通过分级箍旁通阀从ø127 mm第三级套管和ø177.8 mm生产套管之间环空返出地面。

    7)用清水顶替水泥浆,理想状态为井筒内和封隔器以下环形空间内无水泥浆液。

    8)侯凝48 h,下入钻头清扫井筒内残留水泥,并对井筒进行试压30 MPa,稳压15 min为合格。

    9)试压合格后,磨铣井筒内球座。

    该完井技术既保证了煤层顶板以上井眼的密封性,使井筒抗压强度大大增加,又使掏穴煤层段免受水泥的污染,提高煤层段渗透性。其主要优势在于能够满足高压力下的大规模体积压裂改造储层目标的实现。

    据统计,目前沁水盆地和顺横岭和武乡南深部煤层气区块有U型对接井组27组,对接成功率为70.37%。同时,对于U型井组,为了保证工程井水平煤层段钻进和对接施工的连续性,一般优先施工生产直井,而深部煤储层微小构造发育导致的低对接成功率,又促使水平工程井无法正常施工,2个区块内尚有已完钻而未对接的生产直井45口,这些对接失败的和已完钻未对接的生产直井都可应用该完井技术进行改造。虽然该完井技术是在深部煤层气U型井组中的生产直井内研发的,但完井思路和完井井身结构对于直井和水平井在不同的生产阶段发生套管变形后的井筒改造也具有较大适用性,具有良好的推广前景。

    和顺横岭煤层气勘查区块HL−U−01 V井为一口掏穴生产直井,掏穴煤层为15号煤层,煤层垂深1 566.45~1 571.70 m,煤层厚度范围内全部掏穴,技术测量煤层洞穴最大直径达到475 mm。该区域煤质为无烟煤,碎裂−碎粒型煤体结构,含有1~3层夹矸,测试煤层破裂压力48.73 MPa,属典型的深部高应力区煤层。该井生产套管为ø177.8 mm、J55钢级的无缝钢管,抗压强度30.06 MPa。在采用新型双层套管完井技术中,选用直径127 mm,P110钢级的套管串组合,配合TF-105 MPa套管头,整体抗压强度达到了96 MPa。采用活性水压裂施工时(图14),当前置液刚注入煤层后,由于掏穴影响,施工压力波动幅度较大,短时间后压力达到稳定状态,说明形成了较为平直的水力裂缝[19]。该井压裂效果明显,最高施工压力为57.7MPa,排量达到16 m3/min,累计压裂液2759.23 m3、加砂300.03 m3,全程无间断安全完成了大排量、大规模的储层改造作业。

    图  14  HL-U-01 V井压裂施工曲线
    Figure  14.  Fracturing construction curves of HL−U−01 V well

    地面微地震监测显示该井压裂裂缝扩展范围广、沟通面积大,且裂缝形态复杂[20]。从压裂1/5时间开始,即压裂液注入约570 m3,地面微地震监测能量开始增加(图15a);至2/5时间,压裂液注入约1060 m3,裂缝形态雏形逐渐形成,东西翼裂缝长度扩展明显(图15b);至3/5时间,压裂液注入约1600 m3,网状裂缝开始形成(图15c);至4/5时间,压裂液注入约2150 m3,网状裂缝连成一片,形态基本形成,主裂缝及次级裂缝方位明显(图15 d);压裂结束后,裂缝延伸扩展结束,整体走向为东—西向,北西向也存在一条明显裂缝(图15e)。两翼裂缝扩展尺寸近似,东翼缝长150 m,方位NE102°,西翼缝长160 m,方位NW58°和NW110°(图15f)。

    图  15  HL−U−01 V井压裂裂缝时间累积成像及裂缝方位统计
    Figure  15.  Time accumulation imaging of hydraulic fractures and fracture orientation statistical diagram of HL−U−01 V well

    目前该井已进入排采期的气水两相流阶段(图16),产气量约3000 m3/d,产水量在10 m3/d上下波动,套管压力和井底流压保持平稳。此外,另一口与该完井方式相同的生产井累计产水1826 m3,见套井底流压6.8 MPa,且套管压力持续增高,具有较好的产气潜力[21]

    图  16  HL−U−01 V井生产曲线
    Figure  16.  Production curves of HL−U−01 V well

    1)沁水盆地深部煤层气储层具有煤质热演化程度高、碎裂−碎粒型煤体结构、低−特低渗透率、局部过饱和等特征。因煤层顶底板封盖性好,地应力高且非均质性较强,发展出与之匹配的完井工艺技术。

    2) 沁水盆地深部煤层气开发井的完井技术主要有常规单层套管完井、裸眼/筛管完井、套管+滑套完井等,每种完井技术均适用于不同的地质和工程条件。常规单层套管完井技术可按钻井开次分为三开结构和二开结构,三开结构完井成熟,储层适用性强,但成本较高,二开结构完井适用于稳定的上覆地层和微弱含水层的地质条件;裸眼/筛管完井技术适用于煤体结构完整,煤层渗透性高的地质条件,井壁易坍塌、排采阶段维护和修井困难是这种井身结构的软肋;套管+滑套完井技术可以节约射孔费用,但井内管串组合复杂从而对操作水平要求较高,较小的内径同样限制了大规模压裂的实施。

    3)针对U型井组中生产井没有被对接成功或后期排采效果不理想,自主开发出新型套管完井技术,该技术的优点主要是目的煤层顶板以上采用了水泥封固,配合高抗压、较大内径套管,使井筒能够满足高施工压力的大规模压裂,同时煤层段选用筛管,节约了射孔费用,还可有效避免排采阶段地层坍塌掩埋井筒煤层段。应用该完井技术,压裂排量可达16 m3/min,施工加砂300 m3以上,压裂效果显著。目前已改造的生产直井产气量达3000 m3/d。另外,研究区对接井中30%失败的生产直井和已完钻未对接的生产直井均可应用该技术进行完井,同时直井和水平井在不同的生产阶段发生套管变形后的井筒重塑也具有适用性,推广前景良好。

    4)沁水盆地深部煤层气前期开发中,均进行了不同井型的试验和推广,主要为直井、水平井和U型井组,各种井型在不同区块均取得了局部良好的效果,但由于水平井和U型井组在钻完井过程中,工艺繁琐且环环相扣,暴露出的问题也较多,本文研究的完井工艺适用于前期钻井,同时为后期压裂改造工艺提供更多的选择空间。

  • 图  1   各聚煤期煤中稀土元素分布模式

    Figure  1.   Distribution pattern of rare earth elements in coal in each polycoal period

    图  2   稀土元素在燃煤电厂质量平衡分布[81]

    Figure  2.   Balanced mass distribution of rare earth elements in coal-fired power plants[81]

    图  3   燃煤产物中稀土元素赋存状态

    Figure  3.   Mode of occurrence of rare earth elements in coal fusion products

    表  1   中国各学者煤中稀土元素含量统计结果

    Table  1   Statistical results of rare earth element content in coal by Chinese scholars

    来源文献 TANG & HUANG[14] 赵志根[15] 任德贻[16] DAI[19] DAI[20]
    各元素平
    均含量/
    (μg·g−1
    La 18 (0.59~126.5)/17.791 (0.21~118)/26.09 (1.19~350)/25.78 22.5
    Ce 35 (1.18~259.5)/35.055 (2.35~225)/49.82 (2.54~459)/49.11 46.7
    Pr 3.8 (0.15~28.197)/3.758 (0.8~43.9)/5.47 6.42
    Nd 15 (0.67~120.0)/15.025 (0.06~87.7)/22.06 (1.91~169)/21.5 22.3
    Sm 3 (0.2~18.3)/3.01 (0.08~19.3)/4.09 (0.79~27.36)/4.3 4.07
    Eu 0.65 (0.049~3.509)/0.65 (0.02~2.54)/0.72 (0.09~0.87)/0.65 0.84
    Gd 3.4 (0.259~19.339)/3.37 (0.82~20.3)/3.7 4.65
    Tb 0.52 (0.049~3.51)/0.517 (0.03~2.4)/0.58 (0.12~3.7)/0.67 0.62
    Dy 3.1 (0.269~25.101)/3.141 (0.68~12.8)/3.13 3.74
    Ho 0.73 (0.059~6.46)/0.731 (0.14~2.57)/0.67 0.96
    Er 2.1 (0.129~19.471)/2.081 (0.39~7.48)/1.86 1.79
    Tm 0.34 (0.019~3.651)/0.335 (0.05~1.14)/0.27 0.64
    Yb 2 (0.10~22.079)/1.975 (0.05~20.15)/1.78 (0.35~17.2)/2.12 2.08
    Lu 0.32 (0.019~3.528)/0.323 (0.01~30.2)/0.52 (0.03~3)/0.3 0.38
    Y 9 (1.21~79.1)/18.17 18.2
    Sc 4 (0.12~18.3)/5.81 4.38
    轻稀土 78.85 102.83
    重稀土 22.11 37.44
    合计 100.96 (4.51~451.4)/111.47 140.27
    样品数 110 110 127 1250 392
      注:数据格式为(最小值~最大值)/平均值。
    下载: 导出CSV

    表  2   中国、朝鲜、土耳其、美国、北亚和世界煤中稀土元素的平均含量

    Table  2   Average content of rare earth elements in coal in China, North Korea, Turkey, the United States and the world

    国家 中国[19] 朝鲜[21] 土耳其[21] 美国[22] 北亚[23] 世界[24]






    量/
    (μg·g−1)
    La 25.8 14.5 21.1 12.0 14.7 11.0
    Ce 49.1 27.2 39.2 21.0 31.4 23.0
    Pr 5.5 2.9 4.7 2.4 3.5
    Nd 21.5 11.1 16.9 9.5 12.0
    Sm 4.3 2.3 3.2 1.7 3.1 2.0
    Eu 0.7 0.5 0.8 0.4 0.8 0.5
    Gd 3.7 1.4 3.0 1.8 2.7
    Tb 0.7 0.3 0.5 0.3 0.5 0.3
    Dy 3.1 2.0 2.4 1.9 2.1
    Ho 0.7 0.4 0.5 0.4 0.5
    Er 1.9 1.1 1.4 1.0 0.9
    Tm 0.3 0.3 0.2 0.2 0.3
    Yb 2.1 1 1.4 1.0 1.5 1.0
    Lu 0.3 0.2 0.1 0.3 0.2
    Y 18.2 7.2 12.8 8.5 8.4
    Sc 4.9 7.9 4.2 3.9
    轻稀土 106.8 59.9 88.9 48.8 54.7
    重稀土 30.9 17.4 27.2 17.5 17.7
    合计 137.7 77.3 116.0 66.29 52.3 72.4
    下载: 导出CSV

    表  3   各稀土元素在不同聚煤期煤中平均含量及含量范围

    Table  3   Content of each rare earth element in coal in different coal-forming periods

    时代 E~N[25-27] J[28-31] T3[32] P2[33-39] C1−P1[40-51]
    各元素平均
    含量/
    (μg·g−1
    La (2.29~82.93)/22.235 (1.25~104)/24.65 (9.70~59.36)/29.69 (6.13~193.29)/51.81 (0.31~57.72)/17.80
    Ce (5.46~166.63)/53.18 (2.73~196)/46.91 (21.63~131.08)/66.35 (18.94~490)/185.21 (0.808~93.64)/34.47
    Pr (0.58~16.44)/4.875 (0.34~22.6)/5.68 (2.41~12.81)/6.77 (1.5~65)/9.07 (0.122~8.97)/3.74
    Nd (2.23~65.5)/18.965 (1.44~55.36)/22.9 (10.42~52.88)/28.59 (6.07~304)/34.49 (0.6~31.72)/13.81
    Sm (0.43~13.95)/3.815 (0.37~16.7)/4.77 (2.33~10.23)/5.64 (1.44~81)/26.63 (0.16~5.88)/2.59
    Eu (0.12~2.14)/0.685 (0.08~4.79)/0.91 (0.43~2.20)/1.14 (0.3~14)/0.85 (0.05~1.18)/0.54
    Gd (0.43~14.63)/3.865 (0.37~14.3)/4.65 (2.55~10.16)/6.07 (1.69~64)/22.74 (0.17~5.35)/2.47
    Tb (0.07~1.8)/0.525 (0.09~14.3)/1.38 (0.27~1.26)/0.74 (0.1~9)/1.04 (0.16~0.82)/0.42
    Dy (0.37~9.57)/2.965 (0.33~13.29)/4.27 (1.54~6.72)/4.33 (1.69~46)/6.73 (0.13~5.15)/2.40
    Ho (0.08~1.53)/0.535 (0.07~3.14)/0.9 (0.26~1.14)/0.78 (0~8)/1.37 (0.02~4.91)/0.49
    Er (0.25~4.35)/1.555 (0.2~11.25)/2.58 (0.84~3.53)/2.41 (1.06~20)/4.18 (0.08~3.15)/1.40
    Tm (0.03~0.6)/0.21 (0.05~1.81)/0.38 (0.09~0.48)/0.31 (0.1~4.21)/0.62 (0.01~2.67)/0.22
    Yb (0.25~3.93)/1.415 (0.18~12.71)/2.52 (0.78~3.23)/2.13 (1.01~27.62)/4.38 (0.06~3.07)/1.39
    Lu (0.04~0.55)/0.2 (0.04~2.07)/0.45 (0.09~0.46)/0.3 (0.1~4.2)/1.14 (0.01~2.67)/0.21
    Sc (3.7~5.4)/4.55
    Y (2.17~19.7)/7.35 (14~216)/111.00 (11.2~21)/16.78
    总计 (14.79~384.55)/118.705 (8.8~465.9)/142.03 (56.11~287.02)/155.25 (33.4~1380)/398.24 (4.94~497.98)/92.30
    样品数 28 66 10 97 247
    下载: 导出CSV

    表  4   中国五大赋煤区中煤中稀土元素含量

    Table  4   Rare earth element content in coal in China’s five major coal-bearing areas

    聚煤区 矿区/煤田/地区 稀土元素平均含量/(μg·g−1) 样品数 参考文献
    东北赋煤区 二连盆地 397 17 [50]
    胜利煤田 83 57 [53]
    霍林河煤田 94 65 [53]
    伊敏煤田 42 8 [53]
    大雁煤田 82 3 [53]
    华北赋煤区 鄂尔多斯盆地西缘 (5.57~288.89)/120.76 15 [45]
    河东煤田 (70.03~202.52)/135.72 10 [46]
    黄县盆地 (14.79~222.78)/65.02 9 [27]
    峰峰矿区 (22.60~453.90)/99.4 32 [48]
    新安煤田 (46.33~177.93)/76.64 10 [51]
    陈家山煤矿 (8.80~465.90)/98.2 8 [29]
    大屯矿区 (5.66~155.07)/55.21 6 [42]
    淮北煤田 (45.01~122.97)/81.95 11 [40]
    淮南煤田 (86.00~143.00)/112 371 [54]
    华南赋煤区 湖北黄石矿区 (28.90~405.10)/136.1 7 [41]
    重庆钟梁山和磨心坡煤矿 (39.80~648.00)/200.5 6 [41]
    江西乐平矿区 (58.00~85.40)/75.3 3 [41]
    贵州六盘水矿区 (34.60~457.00)/99.9 22 [41]
    凯里煤矿 (388.00~1380.00)/874 7 [34]
    正安春雷煤矿 (62.10~1296.70)/550 4 [39]
    洪塘煤矿 (73.93~146.45)/106.86 6 [36]
    合山矿区 (84.35~296.36)/194.16 4 [37]
    万福矿区 (220.30~314.73)/267.515 2 [38]
    西北赋煤区 五彩湾矿区 30 20 [55]
    阜康矿区 5 22 [55]
    淖毛湖矿区 103 2 [55]
    焉耆盆地 (11.00~240.00)/98.51 16 [56]
    木里矿区 231.33 18 [55]
    聚乎更矿区 (5.23~55.79)/23.01 20 [31]
    鱼卡五彩煤矿 83 10 [55]
    石灰沟矿区 (19.88~378.56)/154.3 16 [30]
    滇藏赋煤区 临沧矿区 (101.92~375.96)/223.62 11 [25]
    临沧矿区 (17.34~305.91)/101.91 8 [26]
    下载: 导出CSV

    表  5   不同变质程度煤中稀土元素平均含量

    Table  5   Average content of rare earth elements in coal with different degrees of metamorphism

    煤种 无烟煤 贫煤 瘦煤 焦煤 肥煤 气煤 褐煤
    各元素平均含量/
    (μg·g−1)
    La 27.2 11.01 11.96 12.94 21.1 32.74 5.5
    Ce 54.9 20.21 22.66 25.04 42.4 66.31 11.00
    Pr 5.79 2.14 2.30 2.61 4.8 7.14 1.28
    Nd 20.9 7.75 7.94 9.43 18.1 25.49 4.92
    Sm 4.10 1.37 1.43 1.63 3.8 5.17 0.89
    Eu 0.75 0.25 0.28 0.32 0.7 0.94 0.20
    Gd 3.90 1.59 1.63 1.84 4.1 5.6 0.82
    Tb 0.60 0.20 0.23 0.28 0.6 0.82 0.15
    Dy 3.44 1.27 1.46 1.89 3.7 4.96 0.83
    Ho 0.70 0.24 0.27 0.40 0.7 0.93 0.16
    Er 2.03 0.75 0.78 1.26 2.1 2.66 0.49
    Tm 0.28 0.10 0.11 0.17 0.3 0.37 0.08
    Yb 1.77 0.74 0.78 1.28 1.9 2.48 0.49
    Lu 0.25 0.10 0.10 0.18 0.3 0.33 0.07
    Y 17.7 28.2 1.76
    轻稀土 113.6 42.7 46.6 52.0 90.8 137.8 23.8
    重稀土 30.67 4.99 5.36 7.30 41.90 18.15 4.85
    合计 144.3 47.7 51.9 59.3 132.7 155.9 28.7
    各组质量分数/% 轻稀土 78.75 89.54 89.68 87.68 68.43 88.36 83.10
    重稀土 21.25 10.46 10.32 12.32 31.57 11.64 16.90
    关键稀土 31.47 21.42 20.59 22.24 40.24 22.36 29.11
    下载: 导出CSV

    表  6   煤中稀土元素可能出现的赋存状态[63]

    Table  6   Possible states of occurrence of rare earth elements in coal[63]

    赋存状态 确定度 出现可能性 备注
    原生元素 极低 无报告
    硫化物 极低 无报告
    硒化物和碲化物 极低 无报告
    卤化物 极低 无报告
    氧化物 无报告
    含羟基的氢氧化物和氧化物 极低 无报告
    碳酸盐 极高 不常见 CaY2(CO3)4•6(H2O);
    (Ce, La)2(CO3)3•8(H2O); Ce(CO3)F
    硫酸盐 极高 常见
    磷酸盐 极高 丰富 独居石(La, Ce, Nd)PO4;磷钇矿YPO4;磷灰石;纤磷钙铝石组
    硅酸盐 极高 常见 黏土矿物、锆石
    有机化合物/有机结合态 极高 丰富 低阶煤
    水溶态/空隙水 极低 无报告
    其他(铬酸盐、钒酸盐、砷酸盐) 极低 无报告
    下载: 导出CSV

    表  7   西南晚二叠纪煤中稀土元素与灰分、全硫相关系数

    Table  7   Correlation coefficients of rare earth elements with ash and total sulfur in late Permian coal in Southwest China

    元素 REY La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
    灰分 0.671 0.706 0.577 0.731 0.716 0.721 0.693 0.736 0.731 0.710 0.730 0.741 0.761 0.699 0.742
    全硫 −0.590 −0.391 −0.482 −0.611 −0.630 −0.697 −0.701 −0.655 −0.717 −0.671 −0.631 −0.666 −0.664 −0.669 −0.734
    下载: 导出CSV

    表  8   不同电厂燃煤产物含量分布最高的粒度级

    Table  8   Highest particle size grade with the highest distribution of coal-fired products in different power plants

    电厂 锅炉类型(炉膛温度) 含量分布最高的
    粒度级/μm
    参考文献
    邯郸发电厂 煤粉燃烧炉(1300 ℃) <23 [84]
    黔西发电厂 煤粉燃烧炉(1500 ℃) <5 [85]
    重庆发电厂 煤粉燃烧炉
    12001400 ℃)
    38~25 [86]
    准格尔电厂 循环流化床锅炉
    (800~900 ℃)
    <10 [87]
    盘北发电厂 循环流化床锅炉
    (800~900 ℃)
    <10 [87]
    下载: 导出CSV
  • [1] 洪广言. 稀土化学导论[M]. 北京:科学出版社,2014.
    [2] 赵志根,唐修义. 中国煤中的稀土元素[J]. 中国煤田地质,2002(S1):71−75.

    ZHAO Zhigen,TANG Xiuyi. Rare-earth elements in coal of China[J]. Coal Geology of China,2002(S1):71−75.

    [3] 代 涛,高天明,文博杰. 元素视角下的中国稀土供需格局及平衡利用策略[J]. 中国科学院院刊,2022,37(11):1586−1594.

    DAI Tao,GAO Tianming,WEN Bojie. China’s rare earth supply and demand patte and balanced utilization strategy from perspective of elements[J]. Bulletin of Chinese Academy of Sciences,2022,37(11):1586−1594.

    [4] 张双全. 煤化学[M]. 江苏:中国矿业大学出版社,2019.
    [5]

    SEREDIN V V,FINKELMAN R B. Metalliferous coals:A review of the main genetic and geochemical types[J]. International Journal of Coal Geology,2008,76(4):253−289. doi: 10.1016/j.coal.2008.07.016

    [6] 倪嘉缵,洪广言. 中国科学院稀土研究五十年[M]. 北京:科学出版社,2005.
    [7]

    DAI S F,FINKELMAN R B. Coal as a promising source of critical elements:Progress and future prospects[J]. International Journal of Coal Geology,2018,186:155−164. doi: 10.1016/j.coal.2017.06.005

    [8]

    SEREDIN V V,DAI S. Coal deposits as potential alternative sources for lanthanides and yttrium[J]. International Journal of Coal Geology,2012,94:67−93. doi: 10.1016/j.coal.2011.11.001

    [9]

    GAUSTAD G, WILLIAMS E, LEADER A. Rare earth metals from secondary sources: Review of potential supply from waste and byproducts[J]. Resources, Conservation and Recycling, 2021, 167:105213.

    [10]

    ERNEST J M Report on rare earth elements from coal and coal byproducts[EB/OL]. United States Department of Energy,2017-1/2023-8-6.

    [11] 曹雅丽. 消费结构优化 电力供应凸显绿色低碳[N]. 中国工业报,2022-02-16(T0B).
    [12] 姚多喜,支霞臣,王 馨. 煤及其燃烧产物飞灰和底灰中稀土元素地球化学特征及集散规律[J]. 地球化学,2003,32(5):491−500.

    YAO Duoxi,ZHI Xiachen,WANG Xin. Geochemical feature and laws of concentration and dispersion of rare earth elements between coals and their fly and bottom ashes[J]. Geochimica,2003,32(5):491−500.

    [13] 吴国强,汪 涛,张永生,等. 燃煤电厂煤及其燃烧产物中稀土元素富集规律研究[J]. 中国电机工程学报,2020,40(6):1963−1972.

    WU Guoqiang,WANG Tao,ZHANG Yongsheng,et al. Study on the enrichment of rare earth elements between coals and their by-products at coal-fired power plants[J]. Proceedings of the CSEE,2020,40(6):1963−1972.

    [14] 唐修义,黄文辉. 中国煤中微量元素[M]. 北京:商务印书馆,2004.
    [15] 赵志根,唐修义,李宝芳. 淮北煤田煤的稀土元素地球化学[J]. 地球化学,2000,29(6):578−583.

    ZHAO Zhigen,TANG Xiuyi,LI Baofang. Geochemistry of rare earth elements of coal in Huaibei Coalfield[J]. Journal of Earth Science,2000,29(6):578−583.

    [16] 任德贻,赵峰华,代世峰,等. 煤的微量元素地球化学[M]. 北京:科学出版社,2006.
    [17] 白向飞. 中国煤中微量元素分布赋存特征及其迁移规律试验研究[D]. 北京:煤炭科学研究总院,2003.

    BAI Xiangfei. The distributions,modes of occurrence and volatility of trace elements in coals of China[D]. Beijing:China Coal Research Institute,2003.

    [18] 白向飞,李文华,陈亚飞,等. 中国煤中微量元素分布基本特征[J]. 煤质技术,2007,14(1):1−4.

    BAI Xiangfei,LI Wenhua,CHEN Yafei,et al. The general distributions of trace elements in Chinese coals[J]. Coal Quality Technology,2007,14(1):1−4.

    [19] 代世峰,任德贻,李 丹,等. 贵州大方煤田主采煤层的矿物学异常及其对元素地球化学的影响[J]. 地质学报,2006,80(4):589−597,617.

    DAI Shifeng,REN Deyi,LI Dan,et al. Mineralogical Anomalies and Their Influences on Elemental Geochemistry of the Main Workable Coal Beds from the Dafang Coalfield,Guizhou,China[J]. Acta Geologica Sinica,2006,80(4):589−597,617.

    [20]

    DAI S,REN D,CHOU C L,et al. Geochemistry of trace elements in Chinese coals:A review of abundances,genetic types,impacts on human health,and industrial utilization[J/OL]. International Journal of Coal Geology,2012,94:3−21.

    [21]

    ZHANG W,REZAEE M,BHAGAVATULA A,et al. A review of the occurrence and promising recovery methods of rare earth elements from coal and coal by-products[J]. International Journal of Coal Preparation and Utilization,2015,35(6):295−330. doi: 10.1080/19392699.2015.1033097

    [22]

    FINKELMAN R B. Trace and minor elements in coal[M]. Organic geochemistry:principles and applications. Boston,MA:Springer US,1993:593−607.

    [23]

    ARBUZOV S I,CHEKRYZHOV I Y,FINKELMAN R B,et al. Comments on the geochemistry of rare-earth elements (La,Ce,Sm,Eu,Tb,Yb,Lu) with examples from coals of north Asia (Siberia,Russian far East,North China,Mongolia,and Kazakhstan)[J]. International Journal of Coal Geology,2019,206:106−120. doi: 10.1016/j.coal.2018.10.013

    [24]

    KETRIS M P,YUDOVICH Y E. Estimations of Clarkes for Carbonaceous biolithes:World averages for trace element contents in black shales and coals[J]. International Journal of Coal Geology,2009,78(2):135−148. doi: 10.1016/j.coal.2009.01.002

    [25] 陈柯婷. 西南地区煤中稀土元素的地球化学对比研究[D]. 淮南:安徽理工大学,2017.

    CHEN Keting. Geochemistry of rare earth elements in the coals from southwestern China[D]. Huainan:Anhui University of Science and Technolog,2017.

    [26] 熊树斌,李杨浩,瞿 亮,等. 云南临沧大田河锗煤矿床稀土元素地球化学特征[J]. 矿物学报,2018,38(3):313−320.

    XIONG Shubin,LI Yanghao,QU Liang,et al. Geochemical characteristics of rare earth elements in Ge-bearing coals from Datianhe Coal Mine,Lincang County,Yunnan Province,China[J]. Acta Mine Ralogica Sinica,2018,38(3):313−320.

    [27] 马小敏. 黄县盆地古近系煤中元素地球化学特征及其沉积环境指示意义[J]. 科学技术与工程,2019,19(24):46−55. doi: 10.3969/j.issn.1671-1815.2019.24.007

    MA Xiaomin. Geochemistry characteristics and sedimentary environment indicating significances of elements in paleogene coal from Huangxian Basin[J]. Science Technology and Engineering,2019,19(24):46−55. doi: 10.3969/j.issn.1671-1815.2019.24.007

    [28] 孔洪亮,曾荣树,庄新国,等. 辽宁省北票煤田煤中稀土元素地球化学特征[J]. 地质科技情报,2002,21(2):75−79.

    KONG Hongliang,ZENG Rongshu,ZHUANG Xinguo,et al. Geochemistry of rare earth elements of coal in beipiao coalfield[J]. Geological Science and Technology Information,2002,21(2):75−79.

    [29] 杨 磊,刘池洋,李洪英. 陈家山矿煤中微量元素和稀土元素地球化学特征[J]. 煤田地质与勘探,2008,36(2):10−14.

    YANG Lei,LIU Chiyang,LI Hongying. Geochemistry of trace elements and rare earth elements of coal in Chenjiashan coal mine[J]. Coal Geology & Exploration,2008,36(2):10−14.

    [30] 肖 林,张佳为,周建飞,等. 青海石灰沟矿区克鲁克组煤中稀土元素地球化学特征[J]. 煤炭学报,2018,43(S2):505−512.

    XIAO Lin,ZHANG Jiawei,ZHOU Jianfei,et al. Geochemistry characteristics of rare earth elements in the Keluke Formation coal from Shihuihou Area,Qinghai[J]. Journal of China Coal Society,2018,43(S2):505−512.

    [31] 霍 婷,刘世明,祁文强,等. 青海木里煤田聚乎更矿区煤中稀土元素地球化学特征及其对成煤环境的指示[J]. 地质通报,2020,39(7):995−1005.

    HUO Ting,LIU Shiming,QI Wenqiang,et al. Geochemistry characteristics and indicative significance of rare earth elements in coal from Juhugeng coal district the Muli coalfield in Qinghai Province[J]. Geological Bulletin of China,2020,39( 7):995−1005.

    [32] 曹吉阳,姚多喜,胡永发. 攀枝花大宝顶煤矿18号煤层稀土元素地球化学特征[J]. 安徽理工大学学报(自然科学版),2016,36(2):11−15.

    CAO Jiyang,YAO Duoxi,HU Yongfa. Geochemistry of rare earth elements of 18# coal seam in Dabaoding Mine from Panzhihua[J]. Journal of Anhui University of Science and Technology( Natural Science),2016,36(2):11−15.

    [33] 张江义,帅 琴,胡圣虹,等. 贵州西南煤区数个煤样的稀土元素地球化学特征[J]. 稀土,2010,31(4):81−84.

    ZHANG Jiangyi,SHUAI Qin,HU Shenghong,et al. Geochemistry of rare earth elements of several coal samples in southestern Guizhou[J]. Chinese Rare Earths,2010,31(4):81−84.

    [34] 吴艳艳,秦 勇,易同生. 贵州凯里梁山组高硫煤中稀土元素的富集及其地质成因[J]. 地质学报,2010,84(2):280−285. doi: 10.1111/j.1755-6724.2010.00086.x

    WU Yanyan,QIN Yong,YI Tongsheng. Enrichment of rare earth elements in high sulfur coal of Liangshan formation from Kaili,Guizhou,China and geological origin[J]. Acta Geologica Sinica,2010,84(2):280−285. doi: 10.1111/j.1755-6724.2010.00086.x

    [35] 徐良才,黄立衡,汪成钵. 洪塘矿区二叠系乐平组官山段煤及泥岩稀土元素特征[J]. 能源技术与管理,2016,41(S1):25−29.
    [36] 胡小娟,夏小进,黄 懿,等. 洪塘煤矿煤中微量和稀土元素的地球化学特征[J]. 江西煤炭科技,2019,26(1):11−14.

    HU Xiaojuan,XIA Xiaojin,HUANG Yi,et al. Geochemistry of trace elements and rare earth elements of coal in Hongtang coal mine of Jiangxi Province[J]. Jiangxi Coal Science & Technology,2019,26(1):11−14.

    [37] 张卫国,杨建业,石 媛. 广西合山超高有机硫煤中稀土元素特征[J]. 稀土,2019,40(2):49−56.

    ZHANG Weiguo,YANG Jianye,SHI Yuan. Characteristics of Rare Earth Elements in Super High Organic Sulfur Coal in Guangxi[J]. Chinese rare earth,2019,40(2):49−56.

    [38] 朱士飞,曹 泊,王 佟,等. 广西上林县万福矿区煤中稀土元素地球化学特征[J]. 中国煤炭地质,2020,32(9):64−69.

    ZHU Shifei,CAO Bo,WANG Tong,et al. Geochemical Features of Coal REE in Wanfu Coalmine Area,Shanglin County,Guangxi[J]. Coal Geology of China,2020,32(9):64−69.

    [39] 杨林健,聂 坤. 贵州正安春雷煤矿煤的地球化学特征分析[J]. 西部探矿工程,2020,32(10):173−176,180.
    [40] 黄文辉,杨 起,汤达祯,等. 华北晚古生代煤的稀土元素地球化学特征[J]. 地质学报,1999,73(4):360−369.

    HUANG Wenhui,YANG Qi,TANG Dazhen,et al. Geochemistry of rare earth elements in lake paleozoic coals in the north China[J]. Acta Geologica Sinica,1999,73(4):360−369.

    [41] 杜美霞,庄新国. 华南地区晚二叠世煤的稀土元素特征[J]. 地质科技情报,2006,25(2):52−56.

    DU Meixia,ZHUANG Xinguo. Analysis on the Characters of Rare-Earth Element in the Late Permi an Coal fro m South China[J]. Geological Science and Technology Information,2006,25(2):52−56.

    [42] 姜尧发,王西勃,赵 蕾. 大屯矿区太原组煤中稀土元素的赋存特征[J]. 煤炭科学技术,2006,34(1):73−75.

    JIANG Yaofa,WANG Xibo,ZHAO Lei. Distribution characteristics of rare-earth element in coal of Taiyuan Group in Datun Mining Area[J]. Coal Science and technology. 2006,34(1):73−75.

    [43] 邹建华,刘 东,田和明,等. 内蒙古阿刀亥矿晚古生代煤的微量元素和稀土元素地球化学特征[J]. 煤炭学报,2013,38(6):1012−1018.

    ZOU Jianhua,LIU Dong,TIAN Heming,et al. Geochemistry of trace and rare earth elements in the Late Paleozoic Coal from Adaohai Mine,Inner Mongolia[J]. Journal of China Coal Society,2013,38(6):1012−1018.

    [44] 刘 贝,黄文辉,敖卫华,等. 沁水盆地晚古生代煤中稀土元素地球化学特征[J]. 煤炭学报,2015,40(12):2916−2926.

    LIU Bei,HUANG Wenhui,AO Weihua,et al. Geochemistry characteristics of rare earth elements in the late Paleozoic coal from Qinshui Basin[J]. Journal of China Coal Society,2015,40(12):2916−2926.

    [45] 秦国红,邓丽君,刘 亢,等. 鄂尔多斯盆地西缘煤中稀土元素特征[J]. 煤田地质与勘探,2016,44(6):8−14.

    QIN Guohong,DENG Lijun,LIU Kang,et al. Characteristic of rare earth elements in coal in western margin of Ordos basin[J]. Coal Geology & Exploration,2016,44(6):8−14.

    [46] 林龙斌. 河东煤田北部主采煤中稀土元素地球化学特征[J]. 中国煤炭地质,2018,30(11):18−23.

    LIN Longbing. REE Geochemical Features of Main Mineable Coal Seams in Northern Hedong Coalfield[J]. Coal Geology of China,2018,30(11):18−23.

    [47] 刘大锐,高桂梅,池君洲,等. 准格尔煤田黑岱沟露天矿煤中稀土及微量元素的分配规律[J]. 地质学报,2018,92(11):2368−2375.

    LIU Darui,GAO Guimei,CHI Junzhou,et al. Distribution rule of rare earth and trace elements in the Heidaigou Openpit Coal Mine in the Junggar Coal Field[J]. Acta Geologica Sinica,2018,92(11):2368−2375.

    [48] 魏迎春,华芳辉,何文博,等. 峰峰矿区2号煤中微量元素富集特征差异性研究[J]. 煤炭学报,2020,45(4):1473−1487.

    WEI Yingchun,HUA Fanghui,HE Wenbo,et al. Difference of trace elements characteristics of No. 2 coal in Fengfeng mining area[J]. Journal of China Coal Society,2020,45(4):1473−1487.

    [49] 刘蔚阳,樊景森,王金喜,等. 宁武煤田煤中稀土元素地球化学特征研究[J]. 煤炭科学技术,2020,48(4):237−245.

    LIU Yuyang,FAN Jingsen,WANG Jinxi,et al. Study on geochemical characteristics of rare earth elements from coal in Ningwu Coalfield[J]. Coal Science and Technology,2020,48(4):237−245.

    [50]

    HUANG Shaoqing,NING Shuzheng,ZHANG Jianqiang,et al. REE characteristics of the coal in the Erlian Basin,Inner Mongolia,China,and its economic value[J]. China Geology,2021,4(2):256−265.

    [51] 袁铎恩,边家辉,刘紫璇,等. 华北板块南缘早二叠世煤中微量元素赋存特征及主控机制[J]. 地质科技通报,2023,42(5):138−149.

    YUAN Duoen,BIAN Jiahui,LIU Zixuan,et al. Occurrence characteristics and main control mechanism of trace elements in Early Permian coal on the southern margin of North China Plate[J]. Bulletin of Geological Science and Technology,2023,42(5):138−149.

    [52]

    DAI S,GRAHAM I T,WARD C R. A review of anomalous rare earth elements and yttrium in coal[J]. International Journal of Coal Geology,2016,159:82−95. doi: 10.1016/j.coal.2016.04.005

    [53] 宁树正,吴国强,邓小利,等. 中国煤中金属元素矿产资源[M]. 北京:科学出版社,2019.
    [54] 吴 盾,孙若愚,刘桂建. 淮南朱集井田二叠纪煤中稀土元素地球化学特征及其地质解释[J]. 地质学报,2013,87(8):1158−1166. doi: 10.3969/j.issn.0001-5717.2013.08.010

    WU Dun,SUN Ruoyu,LIU Guijian. Characterization of REE geochemistry of the Permian Coals from the ZhujiCoal Mine,Huainan Coalfield and Its Geological Implication[J]. Acta Geologica Sinica,2013,87(8):1158−1166. doi: 10.3969/j.issn.0001-5717.2013.08.010

    [55] 曹 泊,朱士飞,秦云虎,等. 煤中稀土元素研究现状及展望[J]. 煤炭科学技术,2022,50(4):181−194.

    CAO Bo,ZHU Shifei,QIN Yunhu,et al. Research status and prospect of rare earth elements in coal[J]. Coal Science and Technology,2022,50(4):181−194.

    [56] 吴朝东,徐友灵,郭召杰,等. 新疆焉耆盆地侏罗系煤层地球化学特征和古环境意义[J]. 自然科学进展,2006,16(2):199−206.
    [57] 代世峰,任德贻,邵龙义,等. 黔西晚二叠世煤地球化学性质变异及特殊组构的火山灰成因[J]. 地球化学,2003,32(3):239−247.

    DAI Shifeng,REN Deyi,SHAO Longyi,et al. Variation of coal geochemistry and special textures of Late Permian coalsin the western Guizhou Province and their volcanic origin[J]. Geochimica,2003,32(3):239−247.

    [58] 宁树正,黄少青,朱士飞,等. 中国煤中金属元素成矿区带[J]. 科学通报,2019,64(24):2501−2513.

    NING Shuzheng,HUANG Shaoqing,ZHU Shifei,et al. Mineralization zoning of coal-metal deposits in China. Chinese Science Bulletin,2019,64(24):2501−2513.

    [59] 董国文,徐 芃,姚多喜,等. 云、贵、川地区不同变质程度煤中稀土元素含量研究[J]. 三明学院学报,2007,24(2):175−179.

    DONG Guowen,XU Peng,YAO Duoxi,et al. Geochemistry of ree in different ranks of Yunnan,Guizhou and Chongqing Coal[J]. Journal of Sanming University,2007,24(2):175−179.

    [60] 杨建业. 镧系元素地球化学效应方程参数之科学意义初探:以山西晚古生代太原组8号煤层不同煤级的煤为例[J]. 煤炭学报,2019,44(7):2197−2205.

    YANG Jianye. Regression equation of geochemical effect of lanthanide and preliminary study on scientific significance of its parameters:an example of different types from No. 8 coal seam,Shanxi Province,China[J]. Journal of China Coal Society,2019,44(7):2197−2205.

    [61] 李大华,唐跃刚,陈 坤,等. 重庆煤中稀土元素的地球化学特征研究[J]. 中国矿业大学学报,2005,34(3):312−317. doi: 10.3321/j.issn:1000-1964.2005.03.011

    LI Dahua,TANG Yuegang,CHEN Kun,et al. Research on geochemistry of rare earth elements in coals from Chongqing,China[J]. Journal of China University of Mining & Technology,2005,34(3):312−317. doi: 10.3321/j.issn:1000-1964.2005.03.011

    [62]

    FINKELMAN R B. The origin,occurrence,and distribution of the inorganic constituents in low-rank coals[C]//Proceedings of the Basic Coal Science Workshop. US Department of Energy,Houston,TX. 1982:69−90.

    [63]

    DAI S,FINKELMAN R B,FRENCH D,et al. Modes of occurrence of elements in coal:A critical evaluation[J]. Earth-Science Reviews,2021,222:103815. doi: 10.1016/j.earscirev.2021.103815

    [64]

    LIN R,BANK T L,ROTH E A,et al. Organic and inorganic associations of rare earth elements in central Appalachian coal[J]. International Journal of Coal Geology,2017,179:295−301. doi: 10.1016/j.coal.2017.07.002

    [65] 代世峰,任德贻,李生盛. 煤及顶板中稀土元素赋存状态及逐级化学提取[J]. 中国矿业大学学报,2002,31(5):12−16.

    DAI Shifeng,REN Deyi,LI Shengsheng. Occurrence and sequential chemical extraction of rare earth element in coals and seam roofs[J]. Journal of China University of Mining & Technology,2002,31(5):12−16.

    [66] 刘东娜,周安朝,常泽光. 大同煤田 8 号原煤及风化煤中常量元素和稀土元素地球化学特征[J]. 煤炭学报,2015,40(2):422−430.

    LIU Dongna,ZHOU Anchao,CHANG Zeguang. Geochemistry characteristics of major and rare earth elements in No. 8 raw and weathered coal from Taiyuan Formation of Datong coalfield[J]. Journal of China Coal Society,2015,40(2):422−430.

    [67] 杨建业. 煤中稀土元素几个奇特的地球化学现象—以渭北中级煤为例[J]. 煤炭学报,2014,39(S2):476−483.

    YANG Jianye. Several special geochemical phenomena of rare earth elements in coal:A case study of middle rank coal in Weibei[J]. Journal of China Coal Society,2014,39(S2):476−483.

    [68] 杨瑞林,白 燕. 应用能谱-扫描电镜和X射线衍射技术研究原煤伴生矿物中稀土和放射性元素赋存形式[J]. 岩矿测试,2019,38(4):382−393.

    YANG Ruilin BAI Yan. The occurrence of rare earth and radioactive elements in the associated minerals with raw coal by EDX-SEM and XRD[J]. Rock and Mineral Analysis,2019,38(4):382−393.

    [69]

    ESKENAZY G M. Aspects of the geochemistry of rare earth elements in coal:an experimental approach[J]. International Journal of Coal Geology,1999,38(3−4):285−295. doi: 10.1016/S0166-5162(98)00027-5

    [70]

    WANG W,QIN Y,SANG S,et al. Geochemistry of rare earth elements in a marine influenced coal and its organic solvent extracts from the Antaibao mining district,Shanxi,China[J]. International Journal of Coal Geology,2008,76(4):309−317. doi: 10.1016/j.coal.2008.08.012

    [71]

    ARBUZOV S I,MASLOV S G,FINKELMAN R B,et al. Modes of occurrence of rare earth elements in peat from western Iberia[J]. Journal of Geochemical Exploration,2018,184:40−48. doi: 10.1016/j.gexplo.2017.10.012

    [72]

    FINKELMAN R B,PALMER C A,WANG P. Quantification of the modes of occurrence of 42 elements in coal[J]. International Journal of Coal Geology,2018,185:138−160. doi: 10.1016/j.coal.2017.09.005

    [73]

    HOWER J C,GROPPO J G,JOSHI P,et al. Distribution of lanthanides,yttrium,and scandium in the pilot-scale beneficiation of fly ashes derived from eastern Kentucky coals[J]. Minerals,2020,10(2):105. doi: 10.3390/min10020105

    [74]

    HONAKER R Q,ZHANG W,WERNER J,et al. Enhancement of a process flowsheet for recovering and concentrating critical materials from bituminous coal sources[J]. Mining Metallurgy & Exploration,2020,37(1):3−20.

    [75] 刘桂建,彭子成,杨萍玥,等. 煤中微量元素在燃烧过程中的变化[J]. 燃料化学学报,2001,29(2):119−123.

    LIU Guijian,PENG Zicheng,YANG Pingyue,et al. Changes of trace elements in coal during combustion[J]. Journal of Fuel Chemistry and Technology,2001,29(2):119−123.

    [76]

    ZHANG W,NOBLE A,YANG X,et al. A Comprehensive review of rare earth elements recovery from coal-related materials[J]. Minerals,2020,10(5):451. doi: 10.3390/min10050451

    [77]

    HOWER J C,QIAN D,BRIOT N J,et al. Nano-scale rare earth distribution in fly ash derived from the combustion of the fire clay coal,kentucky[J]. Minerals,2019,9(4):206. doi: 10.3390/min9040206

    [78]

    HOWER J C,CANTANDO E,EBLE C F,et al. Characterization of stoker ash from the combustion of high-lanthanide coal at a kentucky bourbon distillery[J]. International Journal of Coal Geology,2019,213:103260. doi: 10.1016/j.coal.2019.103260

    [79]

    HOWER J C,GROPPO J G. Rare earth-bearing particles in fly ash carbons:examples from the combustion of eastern kentucky coals[J]. Energy Geoscience,2021,2(2):90−98. doi: 10.1016/j.engeos.2020.09.003

    [80]

    MARDON S M,HOWER J C. Impact of coal properties on coal combustion by-product quality:Examples from a Kentucky power plant[J]. International Journal of Coal Geology,2004,59(3/4):153−169.

    [81] 付 彪,姚 洪,罗光前,等. 燃煤电厂稀土元素的迁移转化与提取技术[J]. 洁净煤技术,2022,28(10):145−159.

    FU Biao,YAO Hong,LUO Guangqian,et al. Partitioning behavior and extraction technologies of rare earth elements in coal-fired power plants[J]. Clean Coal Technology,2022,28( 10):145−159.

    [82]

    WU G,SHI N,WANG T,et al. Enrichment and occurrence form of rare earth elements during coal and coal gangue combustion[J]. Environmental Science and Pollution Research,2022,29(29):44709−44722. doi: 10.1007/s11356-022-18852-5

    [83]

    LI Z,LI X,ZHANG L,et al. Partitioning of rare earth elements and yttrium (REY) in five coal-fired power plants in Guizhou,Southwest China[J]. Journal of Rare Earths,2020,38(11):1257−1264. doi: 10.1016/j.jre.2019.12.013

    [84]

    HU Y,MA J,WANG J,et al. Differentiation of rare earth elements in coal combustion products from the handan power plant,Hebei Province,China[J]. Sustainability,2023,15(4):3420. doi: 10.3390/su15043420

    [85]

    WU L,MA L,HUANG G,et al. Distribution and speciation of rare earth elements in coal fly ash from the Qianxi Power Plant,Guizhou Province,Southwest China[J]. Minerals,2022,12(9):1089. doi: 10.3390/min12091089

    [86]

    XU F,QIN S,LI S,et al. Distribution,occurrence mode,and extraction potential of critical elements in coal ashes of the Chongqing Power Plant[J]. Journal of Cleaner Production,2022,342:130910. doi: 10.1016/j.jclepro.2022.130910

    [87] 潘金禾. 粉煤灰中稀土元素赋存机制及富集提取研究[D]. 徐州:中国矿业大学,2021.

    PAN Jinhe. Study on the enrichment,extraction and mechanism of occurrence of rare earth elements in coal fly ash[D]. Xuzhou:China University of Mining and Technology,2021.

    [88]

    SHAO P,HOU H,WANG W,et al. Geochemistry and mineralogy of fly ash from the high-alumina coal,Datong Coalfield,Shanxi,China[J]. Ore Geology Reviews,2023,158:105476. doi: 10.1016/j.oregeorev.2023.105476

    [89]

    LI C,ZHOU C,LI W,et al. Enrichment of critical elements from coal fly ash by the combination of physical separations[J]. Fuel,2023,336:127156. doi: 10.1016/j.fuel.2022.127156

    [90]

    DAI S F,ZHAO L,PENG S P,etal. Abundances and distribution of minerals and elements in high-alumina coal fly ash from the Jungar Power Plant,Inner Mongolia,China[J]. International Journal of Coal Geology,2010,81(4):320−332. doi: 10.1016/j.coal.2009.03.005

    [91]

    BLISSETT R S,SMALLEY N,ROWSON N A. An investigation into six coal fly ashes from the United Kingdom and Poland to evaluate rare earth element content[J]. Fuel,2014,119:236−239. doi: 10.1016/j.fuel.2013.11.053

    [92] 吴国强,汪 涛,王家伟,等. 煤和煤矸石及其燃烧产物中稀土元素赋存形态研究[J]. 燃料化学学报,2020,48(12):1498−1505. doi: 10.1016/S1872-5813(20)30094-3

    WU Guoqiang WANG Tao WANG Jiawei,et al. Occurrence forms of rare earth elements in coal and coal gangue and their combustion products[J]. Journal of Fuel Chemistry and Technology,2020,48(12):1498−1505. doi: 10.1016/S1872-5813(20)30094-3

    [93] 秦身钧,徐 飞,崔 莉,等. 煤型战略关键微量元素的地球化学特征及资源化利用[J]. 煤炭科学技术,2022,50(3):1−38.

    QIN Shenjun,XU Fei,CUI Li,et al. Geochemistry characteristics and resource utilization of strategically critical trace elements from coal-related resources[J]. Coal Science and Technology,2022,50(3):1−38.

    [94] 侯霖莉, 吴 松, 易建洲, 等. 基于机器学习的绿泥石微量元素判别矿床类型[J/OL]. 地球科学: 1−24.[2028-08-10].http://kns.cnki.net/kcms/detail/42.1874.p.20230912.1324.002.html.

    HOU Linli, WU Song, YI Jianzhou, et al. Discriminating deposit types using chlorite trace elements based on machine learning[J/OL]. Earth Science: 1−24.[2028-08-10].http://kns.cnki.net/kcms/detail/42.1874.p.20230912.1324.002.html.

    [95] 牟力言,刘春湘,陈 敏,等. 基于机器学习识别中微量元素与我国七大片区产地稻米镉、砷的富集规律[J]. 农业环境科学学报,2023,42(10):2165−2174.

    MOU Liyan,LIU Chunxiang,CHEN Min,et al. Enrichment patterns of cadmium and arsenic in rice from seven major regions in China based on machine learning recognition of minor and trace elements[J]. Journal of Agro-Environment Science,2023,42(10):2165−2174.

    [96] 王祖林,韩 硕,康俊杰,等. 基于双向深度学习的电站锅炉SCR脱硝系统入口NOx浓度预测[J]. 自动化与仪表,2021,36(1):82−87.

    WANG Zulin,HAN Shuo,KANG Junjie,et al. Pridiction of NOx concentration at the inlet of SCR denitration system of utility boiler based on bidirectional deep learning[J]. Automation & Instrumentation,2021,36(1):82−87.

    [97] 邵良杉,毕圣昊,王彦彬,等. 基于ISSA-ELM的煤与瓦斯突出危险等级预测[J]. 中国安全生产科学技术,2023,19(9):76−82.

    SHAO Liangshan,BI Shenghao,WANG Yanbin,et al. Prediction of coal and gas outburst risk level based on ISSA-ELM[J]. Journal of Safety Science and Technology,2023,19(9):76−82.

    [98] 洪 瑾,甘成势,刘 洁. 基于机器学习的洋岛玄武岩主量元素预测稀土元素[J]. 地学前缘,2019,26(4):45−54.

    HONG Jin,GAN Chenshi,LIU Jie. Prediction of REEs in OlB by major elements based on machine learning[J]. Earth Science Frontiers,2019,26(4):45−54.

  • 期刊类型引用(2)

    1. 霍超,郭海晓,王蕾,谢志清,潘海洋,徐强,张争光,王丹凤,王丹丹. 双碳背景下中国深部煤层气勘探开发研究进展. 科学技术与工程. 2025(14): 5705-5720 . 百度学术
    2. 郭广山,刘彦成,赵刚,陈朝晖,李陈,康丽芳,王宇川,王佳楠. 神府南区深部煤层气水平井产能地质-工程主控因素. 煤田地质与勘探. 2025(05): 65-80 . 百度学术

    其他类型引用(1)

图(3)  /  表(8)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  16
  • PDF下载量:  41
  • 被引次数: 3
出版历程
  • 收稿日期:  2023-08-13
  • 网络出版日期:  2024-03-19
  • 刊出日期:  2024-03-24

目录

/

返回文章
返回