高级检索

一面四巷瓦斯抽采对采空区遗煤自燃影响数值模拟研究

姜延航, 周露函, 韩明旭, 王丽新

姜延航,周露函,韩明旭,等. 一面四巷瓦斯抽采对采空区遗煤自燃影响数值模拟研究[J]. 煤炭科学技术,2024,52(S1):62−69. DOI: 10.12438/cst.2023-0980
引用本文: 姜延航,周露函,韩明旭,等. 一面四巷瓦斯抽采对采空区遗煤自燃影响数值模拟研究[J]. 煤炭科学技术,2024,52(S1):62−69. DOI: 10.12438/cst.2023-0980
JIANG Yanhang,ZHOU Luhan,HAN Mingxu,et al. Numerical simulation study on the effect of gas extraction in one face and four lanes on the spontaneous combustion of coal remains in the mining area[J]. Coal Science and Technology,2024,52(S1):62−69. DOI: 10.12438/cst.2023-0980
Citation: JIANG Yanhang,ZHOU Luhan,HAN Mingxu,et al. Numerical simulation study on the effect of gas extraction in one face and four lanes on the spontaneous combustion of coal remains in the mining area[J]. Coal Science and Technology,2024,52(S1):62−69. DOI: 10.12438/cst.2023-0980

一面四巷瓦斯抽采对采空区遗煤自燃影响数值模拟研究

详细信息
    作者简介:

    姜延航: (1996—),男,辽宁凤城人,硕士。E-mail:1205068586@qq.com

  • 中图分类号: TD712; TD752

Numerical simulation study on the effect of gas extraction in one face and four lanes on the spontaneous combustion of coal remains in the mining area

  • 摘要:

    为研究高瓦斯易自燃煤层不同瓦斯治理条件下采空区自燃“三带”及温度场分布变化规律,结合某高瓦斯易自燃工作面的实际条件,构建了“一面四巷”采空区自然发火物理模型,将程序升温试验得到的煤样氧化耗氧参数和放热参数应用到数值模拟中,分别研究了不同供风量、低抽流量及高抽流量对采空区自燃“三带”及温度场分布的影响,定量分析了氧化带最大宽度、氧化带面积和采空区最高温度点等参数随供风量、低抽流量及高抽流量的变化规律。结果表明:在模拟测试范围内,提高供风量、低抽流量及高抽流量均会造成采空区漏风量增多,不利于采空区遗煤自燃防治;最高温度点变化不明显(仅在1 K范围内变化),高抽流量变化对采空区氧化带宽度和面积及最高温度的影响大于供风量和低抽流量;氧化带最大宽度随供风量增大而增加,采空区最高温度和氧化带面积随供风量增加而减小,供风量从1 600 m3/min增加到1 900 m3/min时,氧化带最大宽度增加了2 m(74~76 m),最高温度降低了0.1 K(315.38~315.28 K),氧化带面积减小了180.08 m2(8 669.49~8 489.41 m2);氧化带最大宽度随低抽流量增大而增加,采空区最高温度和氧化带面积均随抽采流量增大而增加,低抽流量从200 m3/min增加到300 m3/min时,氧化带最大宽度增加了2 m(75~77 m),最高温度升高了0.152 K(315.340~315.492 K),氧化带面积扩大了51.56 m2(8 553.79~8 605.35 m2)。高抽流量从80 m3/min增加到240 m3/min时,氧化带最大宽度保持在75 m,最高温度升高了0.76 K(315.13~315.89 K)。

    Abstract:

    In order to study the “three zones” of spontaneous combustion in gob under different gas treatment conditions of high gas prone to spontaneous combustion and the change law of temperature field distribution, combined with the actual conditions of a high gas prone to spontaneous combustion working surface, a physical model of spontaneous ignition in goaf with “one face and four lanes” was constructed. The oxidation oxygen consumption and heat release parameters of coal samples obtained from temperature programmed experiment were applied to numerical simulation. The influence of different air supply, low and high pumping flow on the “three zones” of spontaneous combustion and temperature field distribution in goaf was studied. The variation of parameters such as maximum width of oxidation zone, area of oxidation zone and maximum temperature point of goaf with air supply, low and high pumping flow was quantitatively analyzed. The results show that in the range of simulation test, increasing air supply, low pumping flow and high pumping flow will cause the increase of air leakage in goaf, which is not conducive to the prevention and control of spontaneous combustion of coal left in goaf. The maximum temperature point does not change significantly (only within the range of 1K), and the influence of the change of high pumping flow rate on the width and area of the oxidation zone and the maximum temperature of the goaf is greater than that of the air supply volume and low pumping flow rate. The maximum width of oxidation zone increases with the increase of air supply, and the maximum temperature of goaf and the area of oxidation zone decrease with the increase of air supply. When the air supply increases from 1600 m3/min to 1900 m3/min, the maximum width of oxidation zone increases by 2 m (74−76 m), and the maximum temperature decreases by 0.1 K (315.38−315.28 K). The oxidation zone area decreased by 180.08 m2 (8 669.49−8 489.41 m2). The maximum width of oxidation zone increases with the increase of low extraction flow rate, the maximum temperature of goaf and the area of oxidation zone increase with the increase of extraction flow rate. When the low extraction flow rate increases from 200 m3/min to 300 m3/min, the maximum width of oxidation zone increases by 2 m (75−77 m). The maximum temperature increased by 0.152 K (315.34−315.492 K), and the oxidation zone area expanded by 51.56 m2 (8 553.79−8 605.35 m2). When the high pumping rate increased from 80 m3/min to 240 m3/min, the maximum width of the oxidation zone remained at about 75 m, and the maximum temperature increased by 0.76 K (315.13−315.89 K).

  • 图  1   三维物理模型

    Figure  1.   3D physical model

    图  2   不同供风量下采空区自燃“三带”及温度场分布

    Figure  2.   Distribution of spontaneous combustion "three zones" and temperature field in goaf under different air supply volume

    图  3   不同低抽流量下采空区自燃“三带”及温度场分布

    Figure  3.   Distribution of spontaneous combustion “three zones” and temperature field in goaf under different low pumping flow rates

    图  4   不同高抽流量下采空区自燃“三带”及温度场分布

    Figure  4.   Distribution of spontaneous combustion “three zones” and temperature field in goaf under different high pumping flow rates

    表  1   采空区模型几何参数

    Table  1   Geometric parameters of goaf model

    部位 巷道规格(X×Y×Z)/m×m×m
    工作面 8×200.3×2.8
    采空区 200×200.3×75
    进风巷 30×5×3.2
    回风巷 30×4.6×3.2
    高抽巷 38×2.6×2.7
    低抽巷 38×4×2.8
    下载: 导出CSV

    表  2   模拟参数设定

    Table  2   Simulation parameter settings

    序号 初始及边
    界条件
    参数设定 序号 初始及边
    界条件
    参数设定
    1 求解器 压力基隐式
    求解器
    7 煤导热系数 0.9 W/(m·K)
    2 湍流模型 k-ε双方程
    模型
    8 遗煤密度 1 410 kg/m3
    3 能量 打开 9 遗煤比热容 1 200 J /(kg·K)
    4 时间 稳态 10 组分方程
    收敛指标
    10−5
    5 采空区固壁 无滑移 11 能量收敛指标 10−6
    6 组分运输模型 methane-air 12 其他参数
    收敛指标
    10−6
    下载: 导出CSV

    表  3   不同供风量下采空区氧化带范围和最高温度

    Table  3   Oxidation zone range and maximum temperature of goaf under different air supply

    供风量/
    (m3·min−1
    进风侧 中部 回风侧 采空区
    最高温
    度/K
    范围/m 宽度/m 范围/m 宽度/m 范围/m 宽度/m
    1 600 107~181 74 24~60 36 58~104 46 315.38
    1 750 112~187 75 20~56 36 49~82 33 315.34
    1 900 117~193 76 16~53 37 33~53 20 315.28
    下载: 导出CSV

    表  4   不同供风量下采空区自燃“三带”面积

    Table  4   Area of spontaneous combustion “three zones” in goaf under different air supply volume

    供风量/
    (m3·min−1
    散热带 氧化带 窒息带
    面积/m2 占比/% 面积/m2 占比/% 面积/m2 占比/%
    1 600 9 021.23 22.55 8 669.49 21.67 22 309.28 55.77
    1 750 9 025.59 22.56 8 553.79 21.38 22 420.62 56.05
    1 900 9 144.36 22.86 8 489.41 21.22 22 366.23 55.92
    下载: 导出CSV

    表  5   不同低抽流量下采空区氧化带范围和最高温度

    Table  5   Oxidation zone range and maximum temperature of goaf under different low pumping flow rates

    低抽流量/
    (m3·min−1
    进风侧 中部 回风侧 采空区最
    高温度/K
    范围/m 宽度/m 范围/m 宽度/m 范围/m 宽度/m
    200 112~187 75 20~56 36 49~82 33 315.34
    250 113~189 76 20~57 37 52~87 35 315.41
    300 114~191 77 20~59 39 53~88 35 315.492
    下载: 导出CSV

    表  6   不同低抽流量下采空区自燃“三带”面积

    Table  6   Area of spontaneous combustion "three zones" in goaf under different low pumping flow rates

    低抽流量/
    (m3·min−1
    散热带 氧化带 窒息带
    面积/m2 占比/% 面积/m2 占比/% 面积/m2 占比/%
    200 9 025.59 22.56 8 553.79 21.38 22 420.62 56.05
    250 9 329.79 23.32 8 573.4 21.43 22 096.81 55.24
    300 9 505.42 23.76 8 605.35 21.51 21 889.23 54.72
    下载: 导出CSV

    表  7   不同高抽流量下采空区氧化带范围和最高温度

    Table  7   Oxidation zone range and maximum temperature of goaf under different high pumping flow rates

    不同高抽流量/
    (m3·min−1
    进风侧 中部 回风侧 采空区最
    高温度/K
    范围/m 宽度/m 范围/m 宽度/m 范围/m 宽度/m
    80 108~182 75 13~47 34 34~53 19 315.13
    160 112~187 75 20~56 36 49~82 33 315.34
    240 116~191 75 28~68 40 63~111 48 315.89
    下载: 导出CSV

    表  8   不同高抽流量下采空区自燃“三带”面积

    Table  8   Area of spontaneous combustion "three zones" in goaf under different high pumping flow rates

    不同高抽流量/
    (m3·min−1
    散热带 氧化带 窒息带
    面积/m2 占比/% 面积/m2 占比/% 面积/m2 占比/%
    80 8073.67 20.18 8113.88 20.28 23812.45 59.53
    160 9025.59 22.56 8553.79 21.38 22420.62 56.05
    240 9964.82 24.91 8867.32 22.17 21167.86 52.92
    下载: 导出CSV
  • [1] 黄靖维,任万兴,康增辉. 不同条件下燃煤颗粒物的粒径分布研究[J]. 煤矿安全,2022,53(7):58−63.

    HUANG Jingwei,REN Wanxing,KANG Zenghui. Study on particle size distribution of coal combustion under different conditions[J]. Safety in Coal Mines,2022,53(7):58−63.

    [2] 桑乃文. 东庞矿21219工作面瓦斯与煤自燃复合灾害防治技术优化模拟研究[D]. 徐州:中国矿业大学,2020.

    SANG Naiwen. Study on optimal simulation of compound disaster prevention and control technology of gas and coal spontaneous combustion in 21219 working face of Dongpang coal mine[D]. Xuzhou:China University of Mining and Technology,2020.

    [3] 李胜,毕慧杰,罗明坤,等. 高瓦斯综采工作面顶板走向高抽巷布置研究[J]. 煤炭科学技术,2017,45(7):61−67.

    LI Sheng,BI Huijie,LUO Kunming,et al. Study on high level gas drainage gateway layout along roof strike in high gassy mechanized coal mining face[J]. Coal Science and Technology,2017,45(7):61−67.

    [4] 余照阳. 高瓦斯易自燃采空区流场特征及遗煤氧化特性研究[D]. 徐州:中国矿业大学,2018.

    YU Zhaoyang. Flow field characteristics and residual coal oxidation characteristics of highly gassy and spontaneous combustion prone goaf[D]. Xuzhou:China University of Mining and Technology,2018.

    [5] 李润求,施式亮,念其锋,等. 近10年我国煤矿瓦斯灾害事故规律研究[J]. 中国安全科学学报,2011,21(9):143−151. doi: 10.3969/j.issn.1003-3033.2011.09.024

    LI Runqiu,SHI Shiliang,NIAN Qifeng,et al. Research on coalmine gas accident rules in China in recent decade[J]. China Safety Science Journal,2011,21(9):143−151. doi: 10.3969/j.issn.1003-3033.2011.09.024

    [6] 梁运涛,侯贤军,罗海珠,等. 我国煤矿火灾防治现状及发展对策[J]. 煤炭科学技术,2016,44(6):1−6.

    LIANG Yuntao,HOU Xianjun,LUO Haizhu,et al. Development countermeasures and current situation of oal mine fire prevention & extinguishing in China[J]. Coal Science and Technology,2016,44(6):1−6.

    [7] 王德明. 煤矿热动力灾害及特性[J]. 煤炭学报,2018,43(1):137−142.

    WANG Deming. Thermodynamic disaster in coal mine and its characteristics[J]. Journal of China Coal Society,2018,43(1):137−142.

    [8] 周福宝. 瓦斯与煤自燃共存研究(Ⅰ):致灾机理[J]. 煤炭学报,2012,37(5):843−849.

    ZHOU Fubao. Study on the coexistence of gas and coal spontaneous combustion (Ⅰ):disaster mechanism[J]. Journal of China Coal Society,2012,37(5):843−849.

    [9] 张巨峰,施式亮,鲁义,等. 矿井瓦斯与煤自燃共生灾害:耦合关系、致灾机制、防控技术[J]. 中国安全科学学报,2020,30(10):149−155.

    ZHANG Jufeng,SHI Shiliang,LU Yi,et al. Symbiotic disasters of mine gas and coal spontaneous combustion :coupling relationship,disaster mechanism,prevention and control technology[J]. China Safety Science Journal,2020,30(10):149−155.

    [10] 林柏泉,李庆钊,周延. 煤矿采空区瓦斯与煤自燃复合热动力灾害多场演化研究进展[J]. 煤炭学报,2021,46(6):1715−1726.

    LIN Boquan,LI Qingzhao,ZHOU Yan. Research advances about multi-field evolution of coupled thermodynamic disasters in coal mine goaf[J]. Journal of China Coal Society,2021,46(6):1715−1726.

    [11] 李宗翔,吴强,肖亚宁. 采空区瓦斯涌出与自燃耦合基础研究[J]. 中国矿业大学学报,2008(1):38−42.

    LI Zongxiang,WU Qiang,XIAO Yaning. Numerical simulation of coupling mechanism of coal spontaneous combustion and gas Effusion in goaf[J]. Journal of China University of Mining & Technology,2008(1):38−42.

    [12] 张春,题正义,李宗翔. 综放采空区遗煤自燃的三维数值模拟研究[J]. 中国安全科学学报,2013,23(5):15−21.

    ZHANG Chun,TI Zhengyi,LI Zongxiang. Three-dimension numerical simulation of residual coal spontaneous combustion in goaf in fully mechanized caving face[J]. China Safety Science Journal,2013,23(5):15−21.

    [13] 王继仁,张英,黄戈,等. 采空区不同瓦斯抽采方法与自燃合理平衡的数值模拟[J]. 中国安全生产科学技术,2015,11(8):26−32.

    WANG Jiren,ZHANG Ying,HUANG Ge,et al. Numerical simulation on reasonable balance between different gas drainage methods and spontaneous combustion in gob area[J]. Journal of Safety Science and Technology,2015,11(8):26−32.

    [14] 贺飞,王继仁,郝朝瑜,等. 浅埋近距离煤层内错布置采空区自燃危险区域研究[J]. 中国安全生产科学技术,2016,12(2):68−72.

    HE Fei,WANG Jiren,HAO Zhaoyu,et al. Study on dangerous area of goaf spontaneous combustion in shallow and close distance coal seams with inner crossing layout[J]. Journal of Safety Science and Technology,2016,12(2):68−72.

    [15] 邸帅,王继仁,郝朝瑜,等. 多场耦合作用下瓦斯与煤自燃协同预防数值模拟[J]. 安全与环境学报,2018,18(2):497−503.

    DI Shuaim,WANG Jiren,HAO Zhaoyu,et al. Numerical simulation of synergistic prevention from the gas and coal spontaneous combustion under multifield coupling[J]. Journal of Safety and Environment,2018,18(2):497−503.

    [16] 信亚男. 高抽巷抽采条件下采空区瓦斯与煤自燃耦合灾害的研究[D]. 徐州:中国矿业大学,2019.

    XIN Yanan. Study on coupling disaster of gas and coal spontaneous combustion in goaf under the condition of high drainage roadway [D]. Xuzhou:China University of Mining and Technology,2019.

    [17] 褚廷湘,刘春生,余明高,等. 高位巷道瓦斯抽采诱导浮煤自燃影响效应[J]. 采矿与安全工程学报,2021,29(3):421−428.

    CHU Tingxiang,LIU Chunsheng,YU Minggao,et al. Influential effect on spontaneous combustion of float coal induced by gas extraction in upper roadway[J]. Journal of Mining & Safety Engineering,2021,29(3):421−428.

    [18] 褚廷湘,姜德义,余明高,等. 顶板巷瓦斯抽采诱导煤自燃机制及安全抽采量研究[J]. 煤炭学报,2016,41(7):1701−1710.

    CHU Tingxiang,JIANG Deyi,YU Minggao,et al. Study on mechanism of inducing coal spontaneous combustion and safe gas extraction volume under roof tunnel gas extraction[J]. Journal of China Coal Society,2016,41(7):1701−1710.

    [19] 裴晓东,张人伟,马伟南. 高瓦斯易自燃采空区瓦斯与煤自燃耦合模拟研究[J]. 煤炭科学技术,2016,44(4):73−77.

    PEI Xiaodong,ZHANG Renwei,MA Weinan. Study on coupling simulation of gas and coal spontaneous combustion in high gassy and easy spontaneous combustion goaf[J]. Coal Science and Technology,2016,44(4):73−77.

    [20] 韩明旭. 阳煤五矿高瓦斯矿井遗煤自燃特征及CO2防灭火数值模拟研究[D]. 阜新:辽宁工程技术大学,2022.

    HAN Mingxu. Numerical simulation study on spontaneous combustion characteristics of residual coal and CO2 fire prevention and extinguishing technology at high gassy mine in Yangmei Wu coal mine[D]. Fuxin:Liaoning Technical University,2022.

    [21] 汪腾蛟,聂朝刚,杨小彬,等. 考虑温度变化的采空区瓦斯抽采数值模拟[J]. 煤炭科学技术,2021,49(7):85−94.

    WANG Tengjiao,NIE Chaogang,YANG Xiaobin,et al. Numerical simulation of gas drainage in gob considering temperature change[J]. Coal Science and Technology,2021,49(7):85−94.

    [22] 李宗翔,衣刚,武建国,等. 基于“O”型冒落及耗氧非均匀采空区自燃分布特征[J]. 煤炭学报,2012,37(3):484−489.

    LI Zongxiang,YI Gang,WU Jianguo,et al. Study on spontaneous combustion distribution of goaf based on the “O” type risked falling and non-uniform oxygen[J]. Journal of China Coal Society,2012,37(3):484−489.

    [23] 高光超,李宗翔,张春,等. 基于三维“O”型圈的采空区多场分布特征数值模拟[J]. 安全与环境学报,2017,17(3):931−936

    GAO Guangchao,LI Zongxiang,ZHANG Chun,et al. Numerical simulation multi-field distribution characteristic features of the goaf based on 3D“O”type circle[J]. Journal of Safety and Environment,2017,17(3):931−936.

    [24] 朱红青,霍雨佳,方书昊,等. 寺家庄矿综采工作面顶板走向高抽巷合理层位研究[J]. 煤炭科学技术,2021,49(1):234−239.

    ZHU Hongqing,HUO Yujia,FANG Shuhao,et al. Study on the reasonable stratum of high-drainage roadway with roofstrike of fully-mechanized working face in Sijiazhuang Mine[J]. Coal Science and Technology,2021,49(1):234−239.

  • 期刊类型引用(2)

    1. 马力通,白月姝,梁宏旺,孙慎光. 预处理对褐煤非燃料化利用影响的研究进展. 化学与生物工程. 2025(03): 1-7 . 百度学术
    2. 邓军,张敏,易欣,白祖锦,王彩萍,王凯. 煤矿采空区微生物驯化及抑制煤自燃特性. 煤炭学报. 2025(01): 379-391 . 百度学术

    其他类型引用(2)

图(4)  /  表(8)
计量
  • 文章访问数:  39
  • HTML全文浏览量:  2
  • PDF下载量:  20
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-07-02
  • 网络出版日期:  2024-06-25
  • 刊出日期:  2024-05-31

目录

    /

    返回文章
    返回