Experimental study on correlation between compressibility and permeability of on-load lignite pore structure
-
摘要:
为分析褐煤受载孔隙结构可压缩性与渗透率的相关性,采用单轴压缩在线核磁共振测试方法,测试得到了褐煤受载过程T2图谱演化曲线及其渗透率,研究了不同应力水平下褐煤孔隙结构的可压缩性系数与渗透率的关系。根据T2图谱计算发现,褐煤内小孔、中孔、大孔的占比分别为50%~60%、20%~30%、5%~20%,其中小孔可划分为吸附孔,中孔和大孔可划分为渗流孔。在褐煤受载破坏的全过程中,煤体孔隙变化主要集中在渗流孔,吸附孔虽占比超过50%,但对于煤体宏观变形的贡献几乎可以忽略。渗流孔的可压缩性较强,可压缩系数变化值达到0.07~0.23,而吸附孔的可压缩系数变化值仅为0.01~0.02。煤体的渗透率变化趋势与渗流孔可压缩系数变化趋势一致,相关系数均大于0.893,煤体骨架的可压缩性与渗流孔可压缩性的线性关联证明了煤体渗透率随应力的变化,主要取决于渗流孔。
Abstract:In order to analyze the correlation between compressibility and permeability of lignite bearing pore structure, the T2 pattern evolution curve and permeability of lignite loading process were tested by uniaxial compression online NMR test method, and the relationship between compressibility coefficient and permeability of lignite pore structure under different stress levels was studied. According to the calculation of T2 map, it is found that the proportion of small holes, medium holes and large pores in lignite is 50%~60%, 20%~30% and 5%~20%, respectively, of which small pores can be divided into adsorption pores, and mesopores and macropores can be divided into seepage pores. In the whole process of load failure of lignite, the pore changes of coal body are mainly concentrated in seepage pores, and although the adsorption pores account for more than 50%, their contribution to the macroscopic deformation of coal body can be almost ignored. The compressibility of the seepage hole is strong, and the change value of compressible coefficient reaches 0.07~0.23, while the change value of compressible coefficient of adsorption pores is only 0.01~0.02. The change trend of coal permeability is consistent with the change trend of the compressibility coefficient of seepage holes, and the correlation coefficients are greater than 0.893, and the linear correlation between the compressibility of coal skeleton and the compressibility of seepage holes proves that the change of coal permeability with stress mainly depends on the seepage pores.
-
Keywords:
- lignite /
- compressibility /
- permeability /
- pore structure /
- uniaxial compression
-
-
表 1 试样物理参数
Table 1 Physical parameters of samples
试样 体积/cm3 孔隙度/% Aad/% Vdaf/% FC/% S1 23.75 19.1 9.36 7.25 81.63 S2 23.94 16.65 S3 24.09 17.37 -
[1] 林海飞,季鹏飞,孔祥国,等. 我国低渗煤层井下注气驱替增流抽采瓦斯技术进展及前景展望[J]. 煤炭学报,2023,48(2):730−749. LIN Haifei,JI Pengfei,KONG Xiangguo,et al. Progress and prospect of gas extraction technology by underground gas injection displacement for increasing flow in low-permeability coal seam in China[J]. Journal of China Coal Society,2023,48(2):730−749.
[2] 李立功,张晓雨,李超,等. 考虑孔径分布的低渗透煤层气体渗透率计算模型[J]. 煤炭学报,2019,44(4):1161−1168. LI Ligong,ZHANG Xiaoyu,LI Chao,et al. A computation model for gas permeability in low permeability coal seam considering the distribution of pore size[J]. Journal of China Coal Society,2019,44(4):1161−1168.
[3] 杜书恒,沈文豪,赵亚溥. 页岩储层应力敏感性定量评价:思路及应用[J]. 力学学报,2022,54(8):2235−2247. doi: 10.6052/0459-1879-22-262 DU Shuheng,SHEN Wenhao,ZHAO Yapu. Quantitative evaluation of stress sensitivity in shale reservoirs:Ideas and applications[J]. Chinese Journal of Theoretical and Applied Mechanics,2022,54(8):2235−2247. doi: 10.6052/0459-1879-22-262
[4] 彭守建,贾立,许江,等. 叠置煤层气系统合采渗透率动态演化特征及其影响因素[J]. 煤炭学报,2020,45(10):3501−3511. PENG Shoujian,JIA Li,XU Jiang,et al. Dynamic evolution and its influencing factors of coal seam permeability during joint gas production of superimposed CBM system[J]. Journal of China Coal Society,2020,45(10):3501−3511.
[5] 王之朕,张松航,唐书恒,等. 煤层气开发井网密度和井距优化研究-以韩城北区块为例[J]. 煤炭科学技术,2023,51(3):148−157. WANG Zhizhen,ZHANG Songhang,TANG Shuheng,et al. Study on well pattern density and well spacing of coalbed methane development:Taking Hanchengbei Block as an example[J]. Coal Science and Technology,2023,51(3):148−157.
[6] 谢红. CO2注入条件对高阶煤储层煤层气驱替效果影响研究[D]. 徐州:中国矿业大学,2021. XIE Hong. Study on the influence of CO2 injection conditions on the displacement effect of coalbed methane in high-rank coal reservoirs[D]. Xuzhou:China University of Mining and Technology,2021.
[7] 尧春洪,李波波,高政,等. 孔隙压力升降条件下煤岩双孔隙渗透率模型研究[J]. 煤炭科学技术,2022,50(11):116−121. YAO Chunhong,LI Bobo,GAO Zheng,et al. Study on dual pore permeability model of coal under the conditions of pore pressure increasing and decreasing[J]. Coal Science and Technology,2022,50(11):116−121.
[8] 李雄炎,秦瑞宝,曹景记,等. 复杂储层连通孔隙度评价与渗透率定量计算方法[J]. 石油地球物理勘探,2022,57(2):377−385,245. LI Xiongyan,QIN Ruibao,CAO Jingji,et al. Method of connected porosity evaluation and quantitative permeability calculation for complex reservoirs[J]. Oil Geophysical Prospecting,2022,57(2):377−385,245.
[9] 王斌,李波波,许石青,等. 煤岩基质-裂隙相互作用下渗透特性研究[J]. 煤炭科学技术,2022,50(11):110−115. WANG Bin,LI Bobo,XU Shiqing,et al. Study on permeability characteristics of coal rock under the interaction of coal matrix and fracture[J]. Coal Science and Technology,2022,50(11):110−115.
[10] 孙粉锦,杨焦生,王玫珠,等. 不同煤阶煤应力敏感特征及其控制机理[J]. 煤田地质与勘探,2022,50(9):51−58. doi: 10.12363/issn.1001-1986.21.12.0810 SUN Fenjin,YANG Jiaosheng,WANG Meizhu,et al. Stress sensitivity characteristics and control mechanism of different coal rank reservoirs[J]. Coal Geology & Exploration,2022,50(9):51−58. doi: 10.12363/issn.1001-1986.21.12.0810
[11] 王巧智,江安,苏延辉,等. 用CT扫描技术分析致密砂岩储层应力敏感性[J]. 钻采工艺,2022,45(4):56−60. WANG Qiaozhi,JIANG An,SU Yanhui,et al. Stress sensitivity analysis for tight sandstone reservoir by CT scanning technology[J]. Drilling & Production Technology,2022,45(4):56−60.
[12] ZHAO Y X,TAI Z Y,GUO X D. In situ SAXS study on the evolution of coal nanopore structures with uniaxial compressive stress[J]. Journal of Natural Gas Science and Engineering,2022,108:104806. doi: 10.1016/j.jngse.2022.104806
[13] HAN J,WU C F,JIANG X M,et al. Investigation on effective stress coefficients and stress sensitivity of different water-saturated coals using the response surface method[J]. Fuel,2022,316:123238. doi: 10.1016/j.fuel.2022.123238
[14] XIAO K,ZHANG Z T,ZHANG R,et al. Anisotropy of the effective porosity and stress sensitivity of coal permeability considering natural fractures[J]. Energy Reports,2021,7:3898−3910. doi: 10.1016/j.egyr.2021.06.067
[15] WANG H M,ZHOU Q,SHENG J C,et al. Effect of long-term infiltration on porosity-permeability evolution in carbonate rocks:An online NMR coupling penetration test[J]. Journal of Hydrology,2023,617:129029. doi: 10.1016/j.jhydrol.2022.129029
[16] QIN L,ZHANG X,MATSUSHIMA J,et al. Accurate characterization method of coal pore and pore throat structure of different coal ranks based on two-dimensional NMR liquid nitrogen fracturing cycles[J]. Fuel,2023,341:127729. doi: 10.1016/j.fuel.2023.127729
[17] 翟成,孙勇,范宜仁,等. 低场核磁共振技术在煤孔隙结构精准表征中的应用与展望[J]. 煤炭学报,2022,47(2):828−848. ZHAI Cheng,SUN Yong,FAN Yiren,et al. Application and prospect of low-field nuclear magnetic resonance technology in accurate characterization of coal pore structure[J]. Journal of China Coal Society,2022,47(2):828−848.
[18] WANG C L,ZHAO Y,NING L,et al. Permeability evolution of coal subjected to triaxial compression based on in situ nuclear magnetic resonance[J]. International Journal of Rock Mechanics and Mining Sciences,2022,159:105213. doi: 10.1016/j.ijrmms.2022.105213
[19] ZHOU H W,LIU Z L,ZHAO J W,et al. In-situ observation and modeling approach to evolution of pore-fracture structure in coal[J]. International Journal of Mining Science and Technology,2023,33(3):265−274. doi: 10.1016/j.ijmst.2023.01.001
[20] ZHENG S J,YAO Y B,LIU D M,et al. Quantitative characterization of multiphase methane in coals using the NMR relaxation method[J]. Journal of Petroleum Science and Engineering,2021,198:108148. doi: 10.1016/j.petrol.2020.108148
[21] LIU Y F,TANG D Z,LI S,et al. Productivity subarea of CBM field and its key controlling factors:A case study in the Hancheng pilot test area,southeastern Ordos Basin,China[J]. Energy Exploration & Exploitation,2019,37(1):102−124.
[22] 蒋静宇,程远平,张硕. 低阶煤孔隙结构定量表征及瓦斯吸附放散特性[J]. 煤炭学报,2021,46(10):3221−3233. JIANG Jingyu,CHENG Yuanping,ZHANG Shuo. Quantitative characterization of pore structure and gas adsorption and diffusion properties of low-rank coal[J]. Journal of China Coal Society,2021,46(10):3221−3233.
[23] 蒋静宇,史孝宁,程远平,等. 急速卸压条件下构造煤体应力释放规律试验研究[J/OL]. (2023‒06‒09)[2023‒6‒29]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KSYL20230608001&dbname=CJFD&dbcode=CJFQ. JIANG Jingyu,SHI Xiaoning,CHENG Yuanping,et al. Experimental study on stress release law of structural coal under rapid pressure relief[J/OL]. (2023‒06‒09)[2023‒6‒29].http://kns.cnki.net/KCMS/detail/detail.aspx?filename=KSYL20230608001&dbname=CJFD&dbcode=CJFQ.
-
期刊类型引用(16)
1. 王龙,张明,杨凯. TBm硬岩掘进机在小庄矿的应用与实践. 山东煤炭科技. 2024(03): 123-128 . 百度学术
2. 赵刚,李浩,王洪江. 红透山铜锌矿浅孔爆破参数优化方案研究. 有色矿冶. 2024(03): 15-17 . 百度学术
3. 乔伟. 基于多孔水力压裂的硬岩快速掘进技术研究. 山东煤炭科技. 2024(06): 38-42 . 百度学术
4. 周连清. 桑树坪煤矿岩巷掘进爆破参数优化. 陕西煤炭. 2024(10): 110-113+146 . 百度学术
5. 邵文琦,陈大勇,佟治,乔亮,杜浪浪,黄炳香,陈圣贺,高尚占,祁正飞,孙政. 煤矿岩巷掘进技术现状及展望. 中国矿业. 2024(11): 192-205 . 百度学术
6. 刘晓峰,吕岩. 泊里矿井底绕道周边控制爆破聚能穴角度数值模拟研究. 建井技术. 2024(06): 71-75+80 . 百度学术
7. 刘峰. 大倾角岩巷下山掘进运输技术研究. 煤炭科技. 2023(01): 118-122 . 百度学术
8. 杨仁树,李成孝,陈骏,邹凤仪,王雁冰,肖成龙,张召冉. 我国煤矿岩巷爆破掘进发展历程与新技术研究进展. 煤炭科学技术. 2023(01): 224-241 . 本站查看
9. 李军岐,邸广强,樊楠,巩欣伟. 大断面硬岩巷道复式楔形掏槽技术. 陕西煤炭. 2023(02): 152-157 . 百度学术
10. 王雁冰,王国豪,鲍舟琦,谢平,张英豪. 基于数码电子雷管的岩巷爆破掘进炮孔密度优化方法. 金属矿山. 2023(05): 113-121 . 百度学术
11. 杨芸森. 矿山岩巷掘进周边控制爆破影响因素及参数优化研究. 内蒙古煤炭经济. 2023(08): 4-6 . 百度学术
12. 周庆宏,罗勇,肖殿才,祁琦. 双向聚能爆破技术在岩巷掘进中的应用. 煤炭工程. 2023(09): 34-40 . 百度学术
13. 李成孝,杨仁树,王雁冰,徐斌,左进京,谢平. 基于数值模拟的岩石巷道深孔分段装药掏槽爆破研究. 煤炭科学技术. 2023(09): 100-111 . 本站查看
14. 刘强,赵刚,李浩. 红透山铜锌矿成套机械化开采方案研究. 有色矿冶. 2023(06): 10-13+43 . 百度学术
15. 余永强,余雳伟,范利丹,徐峰,周桂杰. 定向断裂控制爆破技术在巷道掘进中应用研究. 爆破. 2022(01): 61-67+94 . 百度学术
16. 杨仁树,郑昌达,李清,丁晨曦,陈骏. 近50年我国竖井爆破掘进参数统计与分析. 中国矿业大学学报. 2022(06): 1031-1044+1085 . 百度学术
其他类型引用(8)