Academic Center

All Issues
Latest Issue
Most Download Articles
Most Read Articles

Study on formula of mine three-phase foam fire prevention and control material optimized by response surface methodology


ZHU Hongqing,HU Chao,ZHOU Quantao,GUO Jinlin,WANG Xiaokuan,YUAN Xiaole

Author Unit:

1.School of Resource and Safety Engineering,China University of Mining and Technology(Beijing),Beijing ,China;2.Anyang Xinlong Coal (Group)Longshan Coal Mine,Anyang ,China

Key Words:

three-phase foam; response surface methodology; fire prevention and control material; coal ash
  • Abstract
  • Paper Chart
  • Related Articles
  • Citation Format
In order to optimize the basis formula of three-phase foam fire prevention and control material,a quadratic regression model of foam volume and stability time is established based on the response surface methodology, the model utilizes Design-Expert 8.0 and Box-Behnken combined experiment principle. The results of variance analysis show that theP value of the regression modelis smaller than 0.001 and the model is reliable. The interaction between anionic foaming agent SDBS and non-ionic foaming agent APG0814 have the most significant effect among all factors that influence the foam volume, followed by the interaction between coal ash and SDBS and interaction between coal ash and APG0814. However, the influence of coal ash and stabilizer PAM is greater than influence of APG0814 and coal ash or APG0814 and SDBS in the stability time. Using the model to predict the best formulation of three-phase foam material, the results show that the best foam volume and stability time can achieve 2 400 mL and 21.3 min when the mass fraction of SDBS, APG0814, PAM and coal ash is 0.12%,0.09%, 2.94% and 22.32%, respectively. Meanwhile, compared with the un-optimized three-phase foam, the foam volume and stability time of the optimized three-phase foam are increased by 9.6% and 8.7%, respectively.
No Content Yet
June 15th,2022

Contact Us

  • All Rights of Website Desige Reserved©《COAL SCIENCE AND TECHNOLOGY》Editorial Department
  • 京ICP备05086979号-19

  • Address:8th Floor, Coal Building, District 13, Heping Street, Chaoyang District, Beijing:Ad & Finance Department(Room 1204),Editorial Department(Room 811)
  • Telephone:010-87986431(Ad Consult)
  • Mailbox: