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Experimental research and industrial application of heat injection-enhanced

coalbed methane extraction
HU Linjie', FENG Zengchao', ZHOU Dong’, WANG Xing'
(1.Key Laboratory of Insitu Property Improving Mining of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China,
2. College of Safety and Emergency Management Engineering, Taiyuan University of Technology, Taiyuan 030024, China)
Abstract: As the main clean energy in coal seams, the efficient extraction and utilization of coalbed methane (CBM) will help to improve
resource utilization and coal mine safety production. However, due to the strong adsorption characteristics of methane and the low per-
meability characteristics of coal seams, the recovery efficiency of CBM is particularly low. Based on the energy conservation equation, the
theory of heat injection-enhanced CBM extraction was improved. The experiments of heat injection-enhanced CBM extraction were car-
ried out in the laboratory and in the coal mine, and the desorption law of methane under different conditions and the promotion effect of
heat injection on CBM extraction were studied. The laboratory experiment results show that the final desorption rates of coal samples un-
der the three conditions of water injection desorption, natural desorption and thermal injection desorption are 12%, 37% and 81%, respect-
ively. The quantitative calculation results show that the enhanced desorption by heat injection after natural desorption and water injection
desorption can increase the desorption rate by 46% and 68% respectively, which proves that heat injection can enhance the desorption of
methane and release the water lock effect. The field test results in Yangquan mining area show that the heat injection method can not only
improve the desorption rate of CBM, but also shorten the extraction time of CBM. The heat injection method can increase the concentra-
tion of CBM and the daily gas production by 10 times and 100 times respectively, wherein the maximum concentration of CBM and the
maximum daily average gas production are 98% and 123 m*/d, respectively. The effective heat injection radius of No.8 heat injection bore-

hole is more than 5 m, and the extraction stage after heat injection is the efficient extraction period of CBM. The research results can
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provide reference for the field application of heat injection-enhanced CBM extraction and the prevention and control of local gas in coal

mines.

Key words: coalbed methane; heat injection-enhanced CBM extraction; methane desorption law desorption rate; effective heat injection

radius; energy stimulation
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hanced CBM extraction
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Table 1 Proximate analysis and rank of test coal seam
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Fig.2 System connection diagram of indoor heat injection experiment
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in the original extraction stage of the heat injection group and

control group
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Table 5 Temperature and CBM concentration of extrac-

tion borehole in heat injection stage
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