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摘　要：煤层气与煤炭协调开发的关键在于协调煤炭开采与煤层气开发的时空关系。“十一五”至“十

三五”期间，依托国家科技重大专项“大型油气田及煤层气开发”项目的总体实施，煤矿区煤层气与

煤炭协调开发机制取得巨大进展。煤矿区煤层气开发由最初为保障煤矿安全生产的“瓦斯抽排”“煤

层气抽采”“地面开发和井下抽采相结合”等形成“煤矿区煤层气与煤炭协调开发”的技术开发新机制。

通过界定煤层气与煤炭协调开发范围、建立煤层气与煤炭协调开发评价方法、形成煤层气与煤协调

开发优化决策平台，提出基于“协调开发、提质增效、技术支撑、平台决策、集成示范”的煤矿区煤

层气与煤炭协调开发理念，依托煤层气与煤炭协调开发技术体系等成套技术系列，形成山西矿区煤

层气“四区联动”全域协调开发模式、两淮矿区煤层群煤层气立体联合开发模式、松藻矿区复杂松软

煤层超前增透协调开发模式、新疆矿区大倾角多煤组”三位一体”协调开发模式，进而带动全国煤矿

区煤层气开发实践。煤矿区煤层气与煤炭协调开发机制、模式与应用引领了我国煤矿区煤层气行业

科技创新，显著提升煤矿区煤层气开发利用水平。随着国家能源战略的调整，“双碳”战略的实施和

生态文明建设等新形势新要求，煤矿区煤层气发展面临新需求新挑战，指出需重点推进煤矿区煤层

气地质精细探查、井下煤层气高效开发、废弃矿井煤层气抽采、煤系气协同共采等技术研发，构建

煤矿区煤层气与煤炭清洁高效开发的新技术体系。

关键词：煤层气；煤矿区；煤层气与煤炭协调开发；开发利用

中图分类号：TD712.6　　　文献标志码：A　　　文章编号：0253−2336（2022）12−0001−13

Progress and trend of key technologies of CBM development and utilization in
China coal mine areas

SUN Haitao1, SHU Longyong2, JIANG Zaibing3, HU Jian4

 （1. Chongqing Research Institute of China Coal Technology & Engineering Group Corp.,Chongqing 400037,China; 2. CCTEG China Coal Research Insti-

tute, Beijing 100013, China; 3. Xi’an Research Institute Co. Ltd., China Coal Technology and Engineering Group Corp.,

Xi’an 710077, China; 4. Chinese Institute of Coal Science , Beijing 100013, China）

Abstract: The key to coordinated development of coal mine methane and coal is to coordinate the spatio-temporal relationship between
coal mining and coal mine methane development. During the “11th Five-Year Plan” and “13th Five-Year Plan” period, relying on the over-
all implementation of the national major science and technology project “Development of large oil and gas fields and coal mine methane”,
the coordinated development mechanism of coal mine methane and coal in coal mining areas has made great progress. The development
mechanism of coal mine methane in coal mine area is formed by “gas drainage”, “coal mine methane extraction”, “combination of ground
development and underground extraction” and so on to ensure the safety of coal mine production. By defining the scope of coordinated de-
velopment of coal mine methane and coal, establishing the evaluation method of coordinated development of coal mine methane and coal,
forming the optimization decision-making platform of coordinated development of coal mine methane and coal,  the concept of coordin-
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ated development of coal mine methane and coal in coal mine area based on “coordinated development, quality and efficiency improve-
ment, technical support, platform decision-making, integrated demonstration” was put forward. Relying on the coordinated development
technology system of coal mine methane and coal, as well as a complete set of technologies such as efficient extraction and effective utiliz-
ation of coal mine methane in coal mining areas, Formation of coal-bed methane mining area in shanxi area “four linkage” global coordin-
ation development mode, huaibei mining area coal seam group of coal mine methane (CBM) three-dimensional joint development pattern,
the  complex  soft  Songzao  mining  area  coal  seam  ahead  of  anti-reflection  coordinated  development  pattern,  Xinjiang  mining  area  coal
group “trinity” of large dip Angle coordinate development mode, leading to the coal mining area of coal bed methane development prac-
tice. The coordinated development mechanism, model and application of coal mine methane and coal in coal mine area have led the sci-
entific and technological innovation of coal mine methane industry in coal mine area,  and significantly improved the level of coal mine
methane development and utilization in coal mine area. With the adjustment of national energy strategy, the implementation of the strategy
of “double carbon” and the new requirements of the new situation, such as construction of ecological civilization coal mining area of coal
bed methane development faces new challenges, new demand on promoting fine coal mining area of coal mine methane geological explor-
ation and underground coal bed methane efficient development, abandoned mine coal mine methane extraction, such as coal gas together, a
total  of  mining technology research and development,  To construct  a  new technology body for  clean and efficient  development  of  coal
mine methane and coal in coal mine area
Key words: coal bed methane； coal mine areas； coordinated development of coal mining and coal bed methane development； develop-
ment and utilization

  

0　引　　言

煤层气是重要的清洁能源。我国煤层气地质资

源量达 36.8 万亿 m3，其中煤矿区煤层气 (又称“煤矿

瓦斯”) 资源量超过 16 万亿 m3，占我国煤层气总资

源量的 43.5%[1–3]。2020 年我国煤炭产量 39 亿 t，其

中，95% 以上煤炭产量来自井工开采，煤矿区煤层气

井下抽采量达 128 亿 m3，井下煤层气抽采仍是我国

煤矿区煤层气抽采的主要方式。煤矿瓦斯是危害煤

矿安全生产的首要灾害，井下抽采受矿井建设、井下

掘进和采煤工程的影响，煤矿区煤层气与煤炭生产

长期存在相互制约、相互干扰、互不协调的问题[4]。

煤层气与煤炭协调开发的关键在于协调煤炭开采与

煤层气开发的时空关系，依靠科技进步和关键技术

突破，实现煤矿煤层气与煤炭协调开发，煤炭和煤层

气两种能源资源共采，对提高煤矿区煤层气资源化

开发利用水平、减少温室气体排放和防治煤矿瓦斯

灾害具有重要意义。

我国煤矿区煤层气开发可追溯到 20 世纪 50 年

代的煤矿井下瓦斯抽采，60 年代开始进行较为科学

的煤矿瓦斯地质研究工作，成为防治煤矿瓦斯灾害

事故的根本措施。70 年代末，原煤炭工业部煤炭科

学研究院抚顺煤研所曾在抚顺、阳泉、焦作等高瓦斯

矿区以解决煤矿瓦斯突出为主要目的施工了 20 余

口地面瓦斯抽排试验井[5]。90 年代，随着美国地面

开发煤层气的成功技术的传入，煤层气地面开发逐

步进入了产业化勘探开发阶段。煤矿区煤层气开发

由最初为保障煤矿安全生产的“瓦斯抽排”“煤层气

抽采”“地面开发和井下抽采相结合”逐渐发展到

 “煤与瓦斯共采”“采煤采气一体化”并形成“煤矿区

煤层气与煤炭协调开发”的技术开发理念[6–12]。

依托“十一五”至“十三五”国家科技重大专项

 “大型油气田及煤层气开发”项目 (课题) 和示范工

程的总体实施，煤矿区煤层气项目组取得了一系列

重大成果。本文系统阐述煤矿区煤层气与煤炭协

调开发机制、模式与应用，全面呈现基于“协调开

发、提质增效、技术支撑、平台决策、集成示范”的

煤矿区煤层气与煤炭协调开发理念下构建的煤矿

区煤层气与煤炭协调开发机制。笔者系统介绍煤

层气与煤炭协调开发模式优化决策系统和评价方

法，凝练总结了山西矿区煤层气“四区联动”全域

协调开发模式、两淮矿区煤层群煤层气立体联合开

发模式、松藻矿区复杂松软煤层超前增透协调开发

模式、新疆矿区大倾角多煤组“三位一体”协调开

发模式，为全国煤矿区煤与煤层气的协调开发及模

式应用提供理论指导和技术支撑。在全国煤矿区

得到良好推广应用，有效带动全国煤层气产业发展。

在新的历史起点上，笔者系统分析煤矿区煤层气与

煤炭协调开发面临的新形势和发展的新要求，提出

煤矿区煤层气与煤炭协调开发发展的新趋势和科

技创新的重点发展方向。 

1　我国煤矿区煤层气开发的地质条件
 

1.1　煤矿区煤层赋存特征

与北美地区稳定地台背景下发育的富煤盆地不

同，我国煤层发育盆地的大部分地区具有多期成煤

期次、构造发育强烈、地质条件复杂等特点，煤层气

2022 年第 12 期 　煤  炭  科  学  技  术 第 50 卷

2



地质与储层条件复杂多样，煤矿区煤层气抽采与利

用难度重重[13]。美国含煤盆地煤层渗透率普遍较高，

Black Warrior 盆地煤层绝对渗透率多在 10−15～25×
10−15 m2，San Juan 盆地煤层绝对渗透率多在 5×10−15～
15×10−15 m2。

煤层气资源分布受控于含煤地层分布。我国含

煤岩系主要分 2 个阶段，第 1 阶段为低等植物成煤

时期，腐泥煤时代，前中泥盆世；第 2 阶段为高等植

物成煤时期，腐植煤时代，主要在晚古生代后石炭二

叠纪、晚三叠世–早白垩世、第三纪，其中大陆含煤盆

地主要的成煤期为石炭纪、二叠纪、早、中侏罗世。

石炭二叠纪是大陆盆地的重要成煤期，主要包括在

华北赋煤区、华南赋煤区，煤层气资源量分别占了全

国总量的 58.1%,8.6%；早、中侏罗世成煤期主要包括

在西北赋煤区，煤层气资源量占全国总量的 31.7%；

晚侏罗–早白垩世成煤期主要在东北赋煤区，约占全

国煤层气总量的 1.6%[14–15]。

我国煤层气资源量 90% 分布在地质构造复杂、

较复杂、低渗碎软煤层等地区。我国煤层渗透率测

值的主要分布范围为 0.1×10−15～5×10−15 m2，渗透率≤

10−15 m2 的占比 71.2%，其中≤0.1×10−15 m2 的占比

32.6%，如图 1 所示。全国大多数煤层气储层具有低

压、高应力、低渗特征。煤层储层压力梯度低于静水

压力梯度。从全国范围看，受构造煤发育和地应力

较大的双重影响，华南赋煤区、华北东部地区煤储层

的渗透率普遍低，大多数储层渗透率不超过 10−15 m2。

煤储层压力低、临储比低，会导致煤层气排采难度大、

产气时间长、产气量低。华北赋煤区也仅沁水盆地

和鄂尔多斯盆地东缘等区具有地质构造相对简单、

煤层厚度较大与含气量较高等综合优势。大多数地

区煤层气处于低饱和状态，华北、西北赋煤区的煤层

含气饱和度普遍低于 50%。 
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图 1    中国煤储层渗透性区域分布[14]

Fig.1    Regional distribution map of coal reservoir permeability in China[14]
 

1.2　煤矿区煤层气开发的地质条件分类

基于全国煤炭基地煤矿区的开采地质条件、煤

储层特征，提出了煤矿区煤层气开发地质–储层类型

分类依据，划分出了简单地质中硬较高渗煤层、较复
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杂地质碎软低渗煤层、复杂地质碎软低渗煤层等 3
种典型类型。简单地质中硬较高渗煤层地质–储层

类型以晋城、阳泉、潞安、彬长等为代表，地质构造

简单、地势平缓、煤质较硬、含气量高、渗透率较高；

较复杂地质碎软低渗煤层地质–储层类型以两淮、焦

作、峰峰、韩城等为代表，地质构造复杂、地势平缓、

煤质松软、含气量高、渗透率低；复杂地质碎软低渗

煤层地质–储层类型以云贵川煤矿区以及湖南、江西

等地，地质构造复杂、地形起伏较大、薄煤层群发育、

煤质松软突出、含气量高、煤储层压力高、渗透率低、

地应力大。

基于煤层厚度、资源量、含气量等将煤矿区煤层

气富集区划分为煤层气资源有利区和不利区；在有

利区内，依据构造煤发育程度、厚度、含气量、煤层

气资源及资源丰度等，划分为适合地面抽采区、适合

井上下联合抽采区、适合井下抽采区，见表 1。所划

分的不同级别抽采区块尚未考虑地质构造的复杂性

及影响程度、抽采技术的适应性及针对性、地形与交

通条件的匹配性及满足程度、煤矿建设生产情况等

实际情况具体确定所适合的抽采区。
  

表 1    我国赋煤区煤层气抽采区块分级标准

Table 1    Classification standard of CBM extraction block in China's coal-bearing region

赋煤区 适合地面抽采区 适合井上下联合抽采区 适合井下抽采区

华北

构造煤厚度＜1 m

煤层气资源量＞400×108 m3

含气量＞8 m3/t

构造煤厚度＞1 m

含气量＞8 m3/t

煤层气资源量＜400×108 m3

资源丰度＜0.5×108 m3/km2

构造煤全层发育

煤层气资源量＞ 100×108 m3

或构造煤厚度＞1 m

含气量＞3 m3/t

煤层气资源量＜ 400×108 m3

东北

构造煤厚度＜1 m

含气量＞8 m3/t

煤层气资源量＞100×108 m3

资源丰度＞0.5×108 m3/km2

构造煤厚度＞ 1 m

含气量＞ 8 m3/t

煤层气资源量＞100×108 m3

资源丰度＞0.5×108 m3/km2

构造煤厚度＞1 m

煤层气资源量＞100×108 m3

含气量＞3 m3/t

资源丰度＜0.5×108 m3/km2

西北

构造煤不发育

含气量＞4 m3/t

资源丰度＞108 m3/km2

煤层气资源量＞300×108 m3

含气量＞4 m3/t

资源丰度＜108 m3/km2

煤层气资源量＞300×108 m3

含气量 ＞3 m3/t

资源丰度＜108 m3/km2

煤层气资源量＞300×108 m3

华南

构造煤厚度＜1 m

煤层气资源量＞400×108 m3

资源丰度＞1.0×108 m3/km2

含气量＞10 m3/t

构造煤厚度＞1 m

含气量＞10 m3/t

煤层气资源量＞100×108 m3

资源丰度＞0.5×108 m3/km2

构造煤全层发育

煤层气资源量＞100×108 m3

或构造煤厚度＞1 m

含气量＞5 m3/t

煤层气资源量＜ 300×108 m3

 
 

2　煤层气与煤炭协调开发机制

煤层气与煤炭协调开发的关键在于协调煤炭开

采与煤层气开发的时空关系，煤层气与煤炭 2 种资

源同源共生的特点决定了煤炭开采与煤层气开发密

切相关且相互影响，合理进行煤炭采掘部署和煤层

气开发规划以协调煤炭开采与煤层气开发的时空关

系，才能实现煤层气与煤炭协调开发。 

2.1　煤层气与煤炭协调开发范围界定

实现煤层气与煤炭两种同源共生资源安全高效

协调开发，需全矿区、全层位、全时段协调煤层气与

煤炭开发的生产部署，进而提出煤矿规划区、准备区、

生产区和采空区“四区”联动的概念，如图 2 所示。

规划区是指从回采煤层开始地面井建设到井下采气

工程开始建设之间的时间段，属于超前预抽阶段。

准备区是指从井下采气工程开始建设开始至采煤工

作面开始回采之间的时间段，属于精准抽采阶段。

生产区是指从采煤工作面开始回采到采煤工作面回

采结束之间的时间段，属于高效抽采阶段。采空区

是指采煤工作面回采结束之后进行的采气时间段，

属于安全绿色抽采阶段。煤层气与煤炭协调开发的

关键在于协调煤炭开采与煤层气开发的时空关系，

规划区、准备区、生产区和采空区“四区”随着煤矿

采掘的推进而呈动态演变，规划区预抽 5~10 a 后转

化为准备区，准备区抽采 3~5 a 后转化为生产区，生

产区随后又转化为采空区。
 

2.2　煤层气与煤炭协调开发评价方法

煤层气与煤炭协调开发中煤层气抽采占据核心

地位，煤层气高效开采程度制约煤层气与煤炭协调

开发效果[16–23]。采用 BP 神经网络算法构建各时区

的各种煤层气开采技术的煤层气开发量预测模型[24]，
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通过构建和运用煤层气与煤炭协调开发技术适应性

与煤层气开发利用的大数据平台[25–26]，建立煤矿区

煤层气开发利用全生命周期综合评价方法和模型，

进一步形成矿井“抽建掘采”系统布局与评价的成套

技术，为煤矿区煤层气开发利用设计与“抽建掘采”

时空接续优化提供支持。结合煤与煤层气协调开发

动态模拟与辅助设计技术[27–28]，形成煤与煤层气协

调开发模式的优化决策系统，为煤矿区煤与煤层气协

调开发过程中的技术优选与评价决策奠定重要基础。

从现有的煤层气开采技术体系和生产区煤炭开

采技术体系中选择规划区煤层气抽采技术、准备区

煤层气抽采技术、生产区煤层气抽采技术和采煤方

法以及采空区资源评价技术，以资源量守恒模型为

本构方程，结合各区时长控制机制、煤层气逸散量计

算模型、各区采用煤层气开采技术所对应的煤层气

开采量 BP 神经网络预测模型，构建煤与煤层气协调

开发的全生命周期资源量守恒模型，将抽采达标临

界指标作为方程求解约束条件，时长为基本待求解

变量，形成了煤与煤层气开发全生命周期资源量守

恒模型流程。 

2.3　煤层气与煤炭协调开发优化决策

采煤工作面煤层气与煤协调开发优化决策是实

现全矿区煤与煤层气协调开发的基础。采煤工作面

煤层气与煤协调开发的本质是对采煤工作面区域进

行煤层气高效开采，确保煤炭安全高效开采，实现采

煤工作面煤炭资源与煤层气资源共同安全高效开采。

基于规划区、准备区、生产区、采空区时长和采气量

等变量构建煤层气与煤炭协调开发效果评价指标体

系，能够实现对采煤工作面煤层气与煤炭协调开发

效果的真实客观评价，实现了采煤工作面煤与煤层

气协调开发效果评价与协调开发模式优化决策的统

一结合。 

3　煤层气与煤炭协调开发模式

煤层气与煤炭协调开发技术体系、煤矿区煤层

气高效抽采等成套技术系列，为山西晋城、两淮、松

藻、新疆等矿区的示范工程和试验基地提供技术和装

备支撑，进而带动全国煤矿区煤层气与煤炭协调开发。 

3.1　山西矿区煤层气“四区联动”全域协调开发模式

山西是我国重要的优质无烟煤生产基地，主要

含煤地层为石炭系上统太原组 (C3t) 和二叠系下统山

西组 (P1s)，山西煤层气资源赋存条件具有储层压力

低、渗透率低、饱和度低的特点以及地质构造复杂、

地形地貌条件差的特殊性，属于单一低渗碎软高瓦

斯煤层。 

3.1.1　“四区联动”全域协调开发模式

山西重点煤矿区创建以“煤矿规划区地面预抽

全域快降、准备区联合抽采高产高效、生产区井下抽

采精准达标、采空区地面钻采消患减排”为核心的全

矿区、全层位、全时段的煤矿区煤层气“四区联动”

(即：规划区、准备区、生产区、采空区) 井上下联合

抽采模式，形成地面超前预抽、井上下联合抽采、井下

精准抽采、采空区地面钻采等关键技术工艺[29–34]。

规划区具体包括地面井建设、地面井抽采、接替

等待 3 个阶段，规划区的地面井建设与调试阶段时

长主要取决于客观钻井技术、井网布置密度等工程
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地面井建设 采动区地面井抽采
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图 2    煤层气与煤炭协调开发四区界定及联动机制

Fig.2    Definition and linkage mechanism of coordinated development of coal mine methane and coal
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施工因素影响，对于开采高效煤层气目标而言，应当

缩短该阶段时长。从规划区转换为准备区主要取决

于井下采掘抽生产规划。准备区具体包括采气工程

建设、回采煤层瓦斯区域预抽达标、回采巷道掘进、

采煤设备布置、接替等待 5 个阶段。准备区时期开

始进行掘进工程，采掘工程与采气工程同时进行，开

拓准备区时长划分较为复杂，井下采气工程钻孔施

工阶段随地面采动井采气工程、掘进煤巷条带式煤

层瓦斯预抽工程，回采煤层区域预抽达标阶段主要

是采气工程。

从开拓区转换为生产区主要取决于井下采掘抽

生产规划。生产区具体包括采煤工作面回采、采煤

工作面封闭两个时间阶段。生产区回采工作面采煤

阶段内所包含采气工程有回采煤层开采区域瓦斯预

抽工程、井上下联合预抽未开采煤层区域瓦斯工程、

采空区瓦斯抽采工程、地面采动井预抽未开采煤层

区域煤层气工程，利用回采煤层开采卸压作用进行

煤层气高效抽采。采空区时长取决于采空区内瓦斯

体积分数，采空区主要用于查明剩余煤层气资源赋

存状况，建立废弃矿井采空区煤层气资源量评价方法。

根据矿权范围内煤层气及煤炭资源禀赋特点，

结合煤层气抽采技术与煤炭开采工艺，对全矿区所

有可采煤层气进行采前抽、采中抽、采后抽等全层位、

全时段精准科学抽采，实现煤层气与煤炭 2 种资源

安全高效协调开发。规划区、准备区、生产区和采空

区“四区”随着煤矿采掘的推进而呈动态演变，规划

区预抽 5~10 a 后转化为准备区，准备区抽采 3~5 a
后转化为生产区，生产区随后又转化为采空区。 

3.1.2　“四区联动”全域协调开发技术体系

生产规划区煤层气地面预抽是晋城矿区煤层气

开发的主要方式，煤层气井型由垂直井发展到丛式

井、L 型/U 型水平井、多分支水平井等多种井型，形

成了以群式布井、规模施工，统一管理为特点的井工

厂优化设计方法和快优钻井技术。井上下联合抽采

技术主要应用于开拓准备区的煤层气开发，是煤矿

井上下整体煤层气开发模式的重要组成部分，主要

包括地面压裂井下定向长钻孔抽采技术和地面“L”
型井与采动影响联合抽采技术。煤层气井下抽采关

键技术主要应用于煤炭生产区的煤层气开发，是煤

与煤层气开采相互影响的重要阶段，也是煤层气强

化抽采阶段，主要包括顶底板梳状长钻孔抽采技术、

高位钻孔抽采技术以及模块化区域递进式抽采技

术[35–38]。煤炭采空区煤层气抽采技术通过研究采空

区煤层气富集规律、煤层气资源评价及井位优化研

究，形成了适应煤矿采空区地面抽采工艺和技术体

系，如图 3 所示。
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图 3    山西矿区“四区联动”煤层气与煤炭协调开发技术体系

Fig.3    “Four regions linkage” coordinated development technology system of coal mine methane and coal in Shanxi Mining Area
 
 

3.1.3　重大专项示范工程的示范与成效

山西重点煤矿区寺河、成庄等矿区基本破解了

高瓦斯矿井安全高效开采难题，实现了高瓦斯煤层，

低瓦斯开采，2020 年底建成了成庄矿建成了山西省

绿色开采试点煤矿中惟一的一座煤与煤层气共采试

点矿井。通过煤层气与煤炭协调开发进一步推进，

晋城矿区在煤层气开发利用技术领域得到了进一步

发展，以穿采空区井、U 型分段压裂水平井、井上下
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联合抽采等多项工程技术取得良好的应用效果，保

证了企业煤层气和煤炭协调开发，也带动了煤层气、

煤炭产业的安全效益、环保效益和企业社会影响力

进一步扩大。“四区联动”井上下联合抽采模式已推

广应用至山西阳泉、西山、潞安、大同等矿区，正在

向河南平顶山、甘肃窑街、贵州新田等矿区进行推广

应用。 

3.2　两淮矿区煤层群煤层气立体联合开发模式

两淮矿区为我国深部高瓦斯煤层群矿区的典型

代表，存在煤层松软、渗透率低的特性，不利于直接

抽采。根据煤矿区煤层气开发地质–储层类型分类

依据，两淮矿区煤层气地质–储层条件属于典型的较

复杂地质碎软低渗煤层。两淮煤炭基地的淮南、淮

北矿区均位于华北聚煤区的南部，石炭－二叠纪含

煤地层的沉积类型属南华北型，主要含煤地层为二

叠纪的山西组、下石盒子组和上石盒子组，明显区别

于北华北型 (其主要含煤地层为石炭纪的太原组和

二叠纪的山西组)。淮南矿区以低、中煤阶为主，煤

层气含量较高。淮北矿区的煤阶比较多样，从气煤

到无烟煤均有分布，煤层气含量较高，整个矿区煤层

气含量变化在 4～15 m3/t。 

3.2.1　淮南矿区煤层群条件井上下立体抽采模式

淮南矿区的含煤沉积属海陆交互相，煤层层位

及厚度均比较稳定，可作为煤层气开发目标的煤层

(单层厚度大于 1 m、发育稳定和较稳定的煤层) 包

括 13－1、8、1 等 10 个煤层，总计厚度 24 m。淮南矿

区以低、中煤阶为主，煤层气含量较高，生产矿井均

为高瓦斯矿井。

淮南矿区经过长期摸索，形成了–700 ~ –800 m
埋深煤层群煤层气立体高效抽采模式。

煤气安全共采现场测定和试验研究表明，不论

原始渗透系数怎样低的煤层，受采动的影响煤层卸

压后，其渗透系数会急剧增加，煤层内气体渗流速度

大增，抽采钻孔的煤层气量也随之增大。两淮矿区

含煤地层处在深厚表土层 (300～500 m) 高地应力覆

岩层下，原始煤层透气性极低，原始煤层瓦斯抽采效

率低，两淮矿区低透气性煤层井上下立体抽采卸压

瓦斯模式是地面钻井卸压瓦斯抽采技术[39–40]。通过

首采层的开采，对邻近煤层形成膨胀卸压作用，大幅

提高邻近煤层的透气性，大量卸压煤层气向某一特

定区域富集。通过采动区地面钻井、煤层气抽采专

用巷道、顶板走向长钻孔以及穿层钻孔等技术方法，

对富集区煤层气进行有针对性的抽采，不仅高效抽

采低透气性煤层的煤层气资源，同时消除邻近层的

煤层气含量和压力，保障煤炭资源的安全高效回采。

对于未采动区煤层，通过地面钻井水力压裂、井下穿

层和顺层钻孔水力压裂、深孔预裂爆破、CO2 预裂增

透等技术方法，大幅提高煤层的透气性，将难抽采的

煤层转变为可抽采甚至易抽采煤层，实现煤层气资

源的有效开发。

煤层群条件下保护层卸压井上下立体煤层气开

发，将煤层气开发融合到煤炭开采的全过程，将 2 种

资源的协调开发在时间上分为 3 个阶段，即煤炭的

采前、采中和采后“三阶段”；空间上分为 4 个区域，

即规划区、准备区、生产区和采空区“四区域”。随

着煤炭采掘活动的推进，“三阶段”和“四区域”在时

空上进行不断的演变和转换，形成复杂矿区煤层群

煤层气立体联合开发模式。 

3.2.2　淮北矿区煤层群条件井上下立体抽采模式

淮北矿区的含煤沉积同样属海陆交互相，可作

为煤层气开发目标的煤层包括 32,71,10 等 6 个煤层，

总计厚度 9.84 m。另外，淮北矿区的岩浆活动比较

强烈，对煤层发生侵蚀和熔蚀作用等，破坏较大。淮

北矿区的煤阶比较多样，从气煤到无烟煤均有分布，

但以中煤阶为主。煤层气含量在区域展布方面变化

大，总体呈现出东高西低、南高北低的特征。生产矿

井均为高瓦斯矿井。淮北矿区多属低压储层，淮北

矿区煤层渗透率变化在 0.02×10−15～20.00×10−15 m2。

淮北矿区坚持井上下立体抽采、应抽尽抽、抽采

平衡、效果达标，做到不掘突出头，不采突出面。卸

压瓦斯预抽方式：开采保护层+地面钻井+高位穿层

拦截钻孔+顺层钻孔＋高位钻孔＋采空区埋管联合

抽采方式[41]。 

3.2.3　两淮矿区煤层气与煤炭协调开发技术体系

两淮矿区的协调开发模式以煤炭开采为主线，

将煤层气开发融合至煤炭开采的全过程，将两种资

源的协调开发在时间上分为 3 个阶段，即煤炭的采

前、采中和采后“三阶段”；空间上，分为规划区、准

备区、生产区和采空区“四区域”，随着煤炭采掘活

动的推进，“三阶段”和“四区域”在时空上进行不断

的演变和转换。

两淮矿区以煤层群条件下的煤层气与煤炭协调

开发方式实现煤层气与煤炭 2 种资源协同共采，通

过系统协调时间接续和空间协调的生产模式，提出

了煤层群条件下的煤层气抽采技术体系，主要包括

地面煤层气抽采技术和井下煤层气抽采技术。地面

抽采钻井又分为压裂地面井和非压裂地面井抽采技

术；井下煤层气抽采技术又可分为保护层 (首采层)
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煤层气抽采技术、被保护层 (邻近层) 抽采技术和采

空区抽采技术，如图 4 所示。
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图 4    两淮矿区煤层气与煤炭协调开发技术体系

Fig.4    Coordinated development technology system of coal
mine methane and coal in Liangnan and Huaibei Mining Area

  

3.2.4　重大专项示范工程的示范与成效

 “十一五”期间，两淮矿区开展中阶煤、松软煤

层群采煤采气一体化抽采，未采区、采动区，采空区

煤层气抽采，采动区地面倾斜钻井、水平型钻井煤层

气抽采，高瓦斯、特大型矿井安全高效煤层气抽采、

井下松软煤层钻进技术与煤层气强化抽采 5 项示范

任务，初步形成了符合两淮矿区松软、低透气性、中

厚、多组煤层群开采条件下煤层气立体抽采技术；

 “十二五”期间，两淮开展中煤阶、松软煤层群采煤

采气一体化抽采技术，未采区、采动区煤层气抽采技

术，松软煤层钻进技术与煤层气强化抽采技术，高瓦

斯特大型矿井煤层气高效抽采与就地利用系统，形

成两淮矿区 700～800 m 埋深煤层群煤层气立体高

效抽采模式；“十三五”期间，两淮示范区开展了地面

水平井分段压裂煤层气抽采技术、地面采动区井卸

压煤层气抽采技术、井下松软煤层煤层气强化抽采

技术、煤层气抽采巷道盾构及以孔代巷施工技术、低

浓度煤层气利用技术应用示范。形成煤矿用盾构机

施工专用煤层气抽采巷道成套技术、高压低透气性

条件下地面水平井分段压裂施工工艺、“以孔代巷”

煤层气抽采钻孔施工工艺、采动区 L 型井抽采煤层

气施工工艺、松软煤层水力化增透施工工艺等新工

艺及装备，实现了深部碎软低渗煤层群地面煤层气

抽采技术突破。

通过两淮矿区煤层群开采条件下煤层气抽采示

范工程的实施，煤层气抽采量、抽采率和利用率均显

著提高 2020 年煤层气年抽采量稳定在 5.51×108 m3，

煤层气年利用量达到 2.21×108 m3。矿区新增发电机

组 46 台，合计装机功率 38 450 kW，浓度在 10%~30%

的煤层气利用率提高到 40.1%。在示范工程的有力

保障下，两淮矿区煤炭产量稳步提升。 

3.3　松藻矿区复杂松软煤层超前增透协调开发模式

松藻矿区具有地质构造复杂、煤体松软、储层压

力低、储层渗透率低、含气饱和度低和储层含气量高

的特点，是我国南方矿区，特别是西南地区、湖南省、

江西省等煤矿区的典型代表。松藻矿区地质构造复

杂，煤层赋存条件差，开采难度大，煤层原始瓦斯含

量高，煤层松软，渗透率低，煤层瓦斯压力大，煤层气

资源丰富。松藻矿区属于近距离松软低渗突出煤层

群开发条件，主要面临着煤层突出危险严重、煤层预

抽效果差、邻近层卸压煤层气涌出量大等难题[42-46]。 

3.3.1　开拓区、准备区、采空区煤层气超前抽采

开拓区是指煤层增透之前所掘进的巷道。为煤

层增透和煤层气抽采提供超前空间和时间条件，将

开拓区的底板巷道开拓工序与准备区的煤层增透抽

采钻孔、煤层增透和煤层气抽采施工工序分开，底板

主要巷道超前于瓦斯抽采巷道开拓掘进，确保专用

瓦斯抽采巷道的施工。

准备区是布置出满足安全开采条件的工作面。

通过实施石门揭煤水力压裂、煤层气预抽钻孔的施

工、煤层气预抽，在底板瓦斯抽采巷向保护层掘进条

带区域打压裂钻孔并进行水力压裂，以及施工穿层

钻孔进行掘进条带预抽。

被保护层瓦斯预抽区域达到安全标准后，进行

被保护层的回采，以此形成一个保护层开采和被保

护层的循环开采。为保证保护层安全开采，需进行

采空区煤层气抽采，保护层采空区抽采方式采用采

空区密闭插管抽采和回风巷高位钻孔抽采方式。 

3.3.2　超前增透协调开发技术体系

根据保护层开采的石门揭煤→煤巷掘进→工作

面回采→形成采空区时间顺序，将煤层气抽采划分

为掘前预抽、采前预抽、采中抽采、采后抽采 4 个阶

段。在煤层群赋存条件下，掘前预抽中的石门揭煤

预抽技术不仅限定于抽采石门揭开保护层区域的煤

层气，也抽采石门揭开其他煤层区域的煤层气；掘前

预抽中的保护层穿层条带预抽、采前预抽、采中抽采

中的保护层顺层卸压抽采技术主要抽采保护层煤层

气；采中抽采中的被保护层穿层卸压抽采技术主要

抽采被保护层煤层气；采后抽采技术主要抽采保护

层采空区及被保护层采空区煤层气[47-51]，如图 5 所示。 

3.3.3　重大专项示范工程的示范与成效

通过技术攻关，以松软突出煤层水力压裂增透

为主的综合抽采技术在松藻矿区得到成功应用，推
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动了高突矿井煤层气抽采技术的大幅跨越，与传统

技术相比，煤层气抽采量提高 3～5 倍，石门揭煤时

间缩短 5 个月以上，突出保护煤层掘进单进提高

55%～90%，保护层回采单产提高 57%，为我国煤矿

井下松软突出煤层的安全高效开采提供了成功的系

列化水力压裂增透抽采煤层气的典范。
  

松藻
矿区
复杂
松软
煤层
超前
增透
协调
开发
技术
体系

掘前预抽
石门揭煤预抽

保护层穿层条带预抽

保护层顺层预抽

被保护层穿层预抽

保护层顺层卸压抽采

被保护层穿层卸压抽采

保护层采空区半封闭插管抽采

保护层高位钻孔抽采

采空区全封闭抽采

采前预抽

采中预抽

采后预抽

图 5    松藻矿区复杂松软煤层超前增透协调开发技术体系

Fig.5    Advanced anti-reflection coordinated development tech-
nology system of complex soft coal seam in Songzao

Mining Area
 

重大专项实施期间，松藻矿区累计生产原煤 5 429
万 t，抽采煤层气 24.97 亿 m3、利用煤层气达 17.54
亿 m3，煤层气年抽采量由 1.96 亿 m3 增加至 2.47 亿

m3、增加 0.51 亿 m3，矿井瓦斯抽采率由 55.89% 增

加至 67.33%、增加 20.47%。随着项目实施的推进，

大量的新装备、新技术和新工艺的引进和推广应用，

矿区煤层气抽采技术不断完善，煤与瓦斯突出事故

得到有效遏制，2010—2015 年消除了煤与瓦斯突出

等瓦斯事故，确保了矿区的良性发展。 

3.4　新疆矿区大倾角多煤组”三位一体”协调开发

模式 

3.4.1　新疆矿区煤层气开发地质条件

新疆矿区乌东煤矿北采区主采八道湾向斜北翼

煤层，北采区含煤地层为中侏罗统的西山窑组，目前

主要开采煤层为 45 号煤层和 43 号煤层，平均煤层

倾角 45°，采用水平分层走向长壁综采放顶煤开采，

各区段高度 25 m。乌东煤矿工作面瓦斯涌出主要来

源是开采本分层和下部煤体瓦斯涌出，其涌出量占

到整个涌出量的 95% 以上。 

3.4.2　大倾角多煤组“三位一体”协调开发技术体系

乌东煤矿瓦斯抽采应该是以煤层瓦斯预抽及卸

压瓦斯拦截抽采和采空区瓦斯抽采措施为核心的立

体化瓦斯抽采成套技术体系[52]。大倾角采动地面井

3 种模式的提出及失稳机制的揭示，宜采用大倾角多

煤组“避、抗、让、疏、护”采动区地面井抽采成套技

术、大倾角碎软低渗井下区域化成套抽采工艺与技

术，有效降低了生产投入和“采–掘–抽”接替时间，形

成煤矿区大倾角煤层气开发利用三位一体技术模式，

提出“三孔四区五量”煤与煤层气协调开发模式，实

现煤矿区煤层气协调开采的定量分析与评价。先导

试 验 中 大 倾 角 采 动 区 地 面 井 工 作 面 平 均 抽 采 率

53.13%，倾角 (30°～50°) 煤层下向顺层长钻孔单孔

深度达到 216 m，形成符合新疆主要高瓦斯矿区特点

的煤层气抽采、利用关键技术和典型模式[52]，如图 6
所示。
  

大倾角多煤组煤层气与煤炭开发技术体系

顺层长钻
孔抽采

顶板走向长钻
孔抽采

采空区埋
管抽采

顺层长钻
孔抽采

卸压瓦斯
抽采 (顺层钻孔)

开采分层瓦斯抽采 开采分层下部煤体瓦斯抽采

矿井瓦斯抽采安全措施体系 矿井瓦斯抽采管理制度体系

瓦斯抽采效果评价体系

煤与瓦斯共采

图 6    新疆矿区大倾角多煤组煤层气与煤炭协调开发

技术体系

Fig.6    Coordinated development technology system of coal
mine methane and coal in large dip coal group in Xinjiang

Mining Area
  

3.4.3　现场先导试验的示范与成效

乌东煤矿下属一九三〇煤矿 24312 工作面的先

导实验的卸压涌出瓦斯抽采比例为 37.51%~75.92%，

平均比例为 51.41%。煤炭开采效率为 72.4%，瓦斯

抽采效率为 84.6%。煤炭开采量为 25.3 万 t，最优预

抽采瓦斯量为 175 万 m3、采中抽采瓦斯量为 28.7
万 m3、采后抽采瓦斯量为 6.1 万 m3，为一九三〇煤

矿在现有技术条件下实现煤层气与煤炭高级耦合协

调开发提供优化方向。

通过山西、两淮、松藻、新疆矿区示范工程和现

场试验的成功实施，带动项目成果在全国煤矿区得

到良好推广应用，有效推动了全国煤层气产业建设。

在全国高瓦斯矿井大量关闭、煤矿数量大幅减少

(由 2008 年的 1.8 万处降到 2020 年的 4 700 处) 的背

景下，煤矿井下煤层气抽采量由 2008 年的 53×108 m3

大幅增长并稳定在 2020 年的 130×108 m3 左右，利用

　孙海涛等：煤矿区煤层气与煤炭协调开发机制模式及发展趋势 2022 年第 12 期　
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量由 2008 年的 16×108 m3 大幅增长至 2020 年的 57×
108 m3，利用率稳步提升。

通过国家科技重大专项“大型油气田及煤层气

开发”项目的总体实施，在“协调开发、提质增效、技

术支撑、平台决策、集成示范”总体思路的指导下，

煤矿区煤层气项目组开展研究攻关，构建了煤层气

与煤炭协调开发决策布局优化方法与技术体系，健

全完善了我国煤矿区煤层气行业具有特色优势、先

进实用的协调开发模式，引领了我国煤矿区煤层气

行业科技创新[53-59]，显著提升煤矿区煤层气开发利

用水平。 

4　煤层气与煤炭协调开发发展方向

当前全球气候变化和温室气体减排相关的技术

创新和实践正成为世界各国共同发展的重要能源技

术方向。我国正在进行能源战略调整，随着国家生

态文明建设和双碳目标的深入推进，以甲烷为主的

煤矿区煤层气资源将成为重要的开发利用对象，实

现煤矿区煤层气资源的高效开发利用，煤层气与

煤炭协调开发具有广阔的发展前景。

我国能源生产和利用方式向“安全、绿色、清洁、

高效”方向发展，清洁能源需求大增，天然气消费需

求和产量需求大增[60]，是煤层气产业发展的重大机

遇但同时煤矿区煤层气发展面临新需求新挑战[61-63]。

煤炭去产能政策导致关闭矿井大幅增加，导致煤矿

区煤层气开发源头减少；煤炭产能逐渐战略性向西

部转移，煤矿区煤层气抽采需面对集约化、低煤层瓦

斯、高回采瓦斯矿井的技术挑战[64]；煤矿的智能化无

人化发展为煤层气智能化开发技术提出挑战。

针对我国煤矿区煤层气开发中出现的新形势新

变化，亟需积极突破关键技术瓶颈，重点攻克关键技

术，开展工程技术验证，实现技术集成创新，构建我

国煤矿区煤层气清洁高效可持续开发新的技术体系。

重点推进煤矿区煤层气地质精细探查、井下煤层气

高效开发、废弃矿井煤层气抽采、煤系气协同共采等

技术创新与进步。要攻克的技术难题包括：地面排

采单井有效控制范围小，井下中硬以上煤层的大盘

区抽采和碎软煤层的区域递进式抽采钻孔能力、增

渗能力弱，井下煤层气抽采系统内浓度波动控制难，

废弃矿井及煤矿区煤系气开发缺乏适用的技术体系

支撑。面向晋陕蒙新等我国煤矿区主战场，研发地

面、井下及井上下联合煤层气区域化快速高效开发

关键技术及装备，构建煤矿区煤层气与煤炭清洁高

效开发的新技术体系。 

5　结　　论

1) 我国煤层气资源量大多分布在地质构造复杂、

较复杂、低渗碎软煤层等地区，大多数煤层气储层具

有低压、高应力、低渗特征，煤矿区煤层气与煤炭协调

开发要基于煤矿区煤层气地质条件的分类合理实施。

2) 煤层气与煤炭协调开发的关键在于协调煤炭

开采与煤层气开发的时空关系，提出煤矿规划区、准

备区、生产区和采空区“四区”联动煤矿区煤层气协

调开发的重要概念，形成煤层气与煤炭协调开发评

价方法，实现了采煤工作面煤与煤层气协调开发效

果评价与协调开发模式优化决策指标体系。

3) 基于采煤与采气开采顺序，总结提出煤矿区

煤层气井上下联合抽采技术、采动区煤层气抽采技术、

煤矿井下煤层气抽采技术、煤矿区碎软煤层低透气

性煤层增渗技术的煤层气与煤炭协调开发技术体系。

4) 凝练总结山西矿区煤层气“四区联动”全域协

调开发模式、两淮矿区煤层群煤层气立体联合开发

模式、松藻矿区复杂松软煤层超前增透协调开发模

式、新疆矿区大倾角多煤组“三位一体”协调开发模

式，为全国煤矿区得到良好推广应用、带动全国煤层

气产业建设提供可供借鉴的示范。

5) 指出煤矿区煤层气发展面临新需求新挑战，

重点推进煤矿区煤层气地质精细探查、井下煤层气

高效开发、废弃矿井煤层气抽采、煤系气协同共采等

技术研发，构建煤矿区煤层气与煤炭清洁高效开发

的新技术体系。
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