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A rapid identification model of mine water inrush based on PSO-XGBoost
DONG Donglin, ZHANG Longgiang, ZHANG Enyu, FU Peiqi, CHEN Yugqi, LIN Xindong, LI Huizhe
(School of Geosciences & Surveying Engineering, China University of Mining and Technology-Beijing, Beijing 100083, China)

Abstract: Mine water inrush is one of the main threats to mine safety production. Rapid analysis of the cause of water inrush and accurate
identification of water inrush source are the key steps of mine water inrush disaster control. In order to effectively prevent and control mine
water inrush disaster and identify mine water inrush source accurately and quickly, a mine water inrush source identification model (PSO-
XGBoost) based on particle swarm optimization algorithm (PSO) and limit gradient lifting regression tree (XGBoost) was proposed. The
efficiency and accuracy of water inrush source identification were further improved by the efficient parameter global search model, and the
model was successfully applied to the Laohutai mine in Fushun coal field, Liaoning Province to verify the practicability of the model.
Based on the spectral data of 40 groups of water samples from Laohutai mine, the original spectral data were preprocessed by multiple
scattering correction, smoothing denoising, standardization and principal component analysis, and the training set and test set were divided
according to the ratio of 7 : 3 according to stratified random sampling. Secondly, the individual optimal value and the global optimal value

of particles are initialized, and PSO is used to iteratively optimize seven parameters of XGBoost algorithm, such as learning_rate, n_estim-
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atiors, max_depth, etc., to construct the classification and recognition model under the optimal parameter combination. To further investig-

ate the superiority of the model, the average discrimination accuracy and log loss value were selected as evaluation indexes to compare the

classification recognition results of PSO-XGBoost model with PSO-SVM and PSO-RF models, while the generalization ability of each

model was evaluated by 100 repetitions of cross-validation. The comparison results showed that the average discrimination accuracies of
XGBoost, PSO-SVM, PSO-RF and PSO-XGBoost models for the test set data were 87.76%, 87.56%, 91.67% and 91.67%, respectively.
For repeated cross-validation, the average accuracy of XGBoost, PSO-SVM, PSO-RF, and PSO-XGBoost models were 87.76%, 87.56%,
90.63%, and 93.18%, respectively, with corresponding log-loss averages of 0.545 3, 0.546 0, 0.562 3, and 0.453 4, respectively. Compre-

hensive analysis of evaluation indexes shows that PSO-XGBoost model has higher discrimination accuracy and better generalization abil-

ity in mine water inrush source identification.

Key words: mine water inrush; water source identification; particle swarm optimization algorithm; XGBoost; machine Learning; para-

meter optimization
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Table 3 Cumulative contribution of principal components
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Fig.9 Iterative optimization search results of three different algorithms
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Table 4 Performance comparison of different

classification models
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