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Dynamic response mechanism of initial failure of coal mass induced by in-situ stress

in an outburst inoculation process of the working face for coal mining

WANG Chaojie', TANG Zexiang', XU Changhang', YANG Hongwei’, LIU Lutan'

(1. College of Mechanical and Electrical Engineering, China University of Petroleum (East China), Qingdao 266580, China,
2. Henan Shenhuo Group Co., Ltd., Yongcheng 476600, China)

Abstract: There is still a great challenge to reveal the micro-macro dynamic mechanical behavior of initial coal failure induced by mining
stress field in working face as a necessary condition for the outburst occurrence. The multivariate stress loading paths for the damage and
instability of mining coal were constructed based on the typical coal and gas outburst accident of mining face. PFC3D discrete software
was used to carry out the visual simulation of damage and instability of coal under multiple working conditions and scales. The dynamic
response law of damage and instability of mining coal was revealed, the dynamic evolution behavior of cracks in mining coal was clarified,

and the prospect of outburst prevention technologies was put forward based on the initial failure process of coal induced by in-situ stress
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under mining. The results shown that the failure type and strength of the mined coal varied significantly with the loading and unloading
rate of the principal stress. In the process of gradual unloading of stress, the macroscopic fracture surface of coal presented the form of
single inclined plane or conjugate shear plane, and the failure strength of coal decreased with the increase of unloading rate. With the
gradual loading in both directions of stress at the same rate, unidirectional sudden unloading or a certain residual stress maintaining state
presented a macro fracture surface parallel to the direction of the intermediate principal stress. And the failure strength of coal decreased
with the increase of the unloading degree or the decrease of the residual stress. Under different stress loaded, the tension-shear failure pro-
cess of coal appeared successively with shear and tension cracks. In the process of instability caused by mining coal damage, the dynamic
evolution of cracks presented intermittent, progressive and paroxysmal composite characteristics. The overall development process of
cracks can be characterized as the initial appearance of new cracks (intermittent-sudden increase stage), crack expansion (gradual-slow in-
crease stage), penetration and expansion (paroxysmal-slow increase stage), and the overall tearing process of coal (sudden increase stage).
The mechanical strength of coal was regarded as one of the main controlling factors affecting the occurrence of outbursts. The difficulty of
initial failure of coal induced by in-situ stress depended critically on the stress loading and unloading path. The coal was most prone to ini-
tial failure when the unidirectional principal stress was suddenly unloaded or the bidirectional principal stress was gradually unloaded.

Based on this mechanical law, the “ideal mining mode of outburst prediction in mining working face” was proposed to represent the most

dangerous state of coal in the working face.

Key words: coal and gas outburst; coal/rock-gas dynamic disaster; outburst prevention; dynamic damage; crack propagation
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Table 1 Mechanical parameters of briquette sample
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Table 2 Physical parameters of numerical simulation
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