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Influence of axial spacing on stall development of FBCDZ-10-No20

mode contra-rotating fan

CHEN Qingguang, XU Yanhui, GUO Wu, ZHANG Zhenjiang
(College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China)

Abstract: The rotating fan is prone to instability such as stall and even surge when operating at low flow rates. In order to study the influ-
ence of axial spacings on the stall inception and its development and propagation process of a contra-rotating fan , a Shear Stress Trans-
port(SST) k-e turbulence model was used to numerically simulate the unsteady flow in the whole passage of a FBCDZ-10-No20 contra-ro-
tating fan. The stall evolution of fan under two axial spacings are investigated. The results show that the axial spacing has significant influ-
ence on the inception and development of fan stall.In the stall inception stage, when the axial spacing between the two-stage impellers is
170 mm, the stall inception first occurs within the rear impeller, which locates in the trailing edge area on the suction surface of the blade
root. Then stall inception develops from the blade root to the tip area along the radial direction, and accumulates towards a blade passage
along the circumferential direction and falls off on the way to form a blocking area, which eventually leads to stall. When the axial spacing
is 70 mm, the stall inception successively occurs the tip area of the two-stage impellers. Then stall inception keeps increasing, which even-
tually leads to stall. During the full stall stage, the axial spacing has a significant effect on the propagation of the stall vortex in the circum-
ferential, axial and radial directions. When the axial spacing is 170 mm, the type of stall vortex shows the single vortex full-blade high
stall. The propagation range of the stall vortex in the axial direction is limited to the region of rear impeller, and rotates at 33.3% of the rear
impeller speed in the circumferential direction; When the axial spacing is 70 mm, the type of stall vortex shows the multi-vortex partial

blade high stall. The stall vortex are successively generated in the tip area of the two-stage impellers, propagating upward and downstream

Y5 H H#3: 2022-04-28 FERE: AT DOI: 10.13199/j.cnki.cst.2022-0600
E£WH: ILARYE HRBHF AR I H (ZR2021ME242)
EE R R (1969—), B, ILARERA, #8%, i+A R, E-mail: chenqg@sdust.edu.cn

229


https://doi.org/10.13199/j.cnki.cst.2022-0600
mailto:chenqg@sdust.edu.cn

2023 4F55 6 A

# £ A F H# K 551 %

in the axial direction, and are dispersed in the area above 70% of the blade height of each blade channel in the radial direction. Due to the

change of the axial distance between the two-stage impellers, the type of stall inception of the fan is changed from “partial surge type” to

“Spike-type”.

Key words: contra-rotating fan; axial spacing; stall inception; tip leakage flow; radial vortex flow
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