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摘　要：为了实现煤裂隙多尺度分布特征的高精度，高效率识别，开展基于 CT 数字岩心深度学习的

煤裂隙多尺度分布特性识别方法研究。利用工业 CT 扫描系统收集大量煤原始 CT 数字岩心信息阵列，

将 CT 数字岩心信息阵列低损转换成二维灰度图像，再分割成不同尺度的正方形图像并将其图像亮度

增强为不同级别作为训练样本，然后通过 Matlab 平台实现了用于含 CT 裂隙图像识别的 AlexNet,Res-
Net-18,GoogLeNet,Inception-V3 四种模型的构建与模型参数的优化。研究在不同数量训练样本下不同

模型训练的识别准确率与验证准确率；研究在相同训练样本下不同模型对于不同尺度和亮度图像的

准确率、计算效率和训练时间，获得适用于计算含裂隙的二维 CT 图像的分形维数的最优模型，再按

照盒计维数的统计方法，计算每张裂隙图像的分形分布特性，并与传统二值化方法和人眼识别方法

相对比，验证了基于 CT 数字岩心深度学习的煤裂隙多尺度分布特性识别方法的适用性，结果表明：

① ResNet-18 模型在图片样本为亮度 4，尺度为 3.5～21 mm 时是适用于计算含裂隙的二维 CT 图像

的分形维数的最优模型，该模型计算二维 CT 裂隙图像的分形维数精度高，且训练时间短。②基于

CT 数字岩心深度学习的煤裂隙多尺度识别方法与传统二值化方法相比，识别连通性裂隙的速度快、

精度高、不易受煤中杂质的影响。

关键词：煤裂隙；CT 数字岩心；图像识别；裂隙识别；CT 扫描
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Multi-scale distribution of coal fractures based on CT digital core deep learning
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Abstract: In order to realize high-precision and high-efficiency identification of multi-scale distribution characteristics of coal fractures,
carry out the study of multi-scale distribution characteristics identification methods based on CT digital core deep learning. Industrial CT
scanning system is used to collect a large number of coal original CT digital core information array, the CT digital core information array
is converted into a two-dimensional gray-scale image and then it is divided into square images of different scales and the image brightness
is enhanced to different levels as training samples, Finally, the construction and optimization of model parameters of AlexNet, ResNet-18,
GoogLeNet and Inception-V3 models for the identification of CT-containing fractures are realized by Matlab platform. Study the recogni-
tion accuracy and verification accuracy of different model training under different number of training samples; Study the accuracy, calcula-
tion efficiency and training time of different models for images with different scales and brightness under the same training sample, obtain
the optimal model for calculating the fractal dimension of two-dimensional CT images with fractures, then, the fractal distribution charac-
teristics of each fracture image are calculated according to the statistical method of box-counting dimension, compared with the traditional
binarization  method  and  human  eye  recognition  method,  The  applicability  of  the  multi-scale  distribution  characteristics  identification
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method of coal fractures based on CT digital core deep learning is verified. The result shows: ① ResNet-18 model is the optimal model for
calculating  the  fractal  dimension  of  two-dimensional  CT  images  with  cracks  when  the  image  sample  is  brightness  4  and  the  scale  is
3.5 mm to 21 mm, the model has high accuracy and short training time in calculating the fractal dimension of two-dimensional CT frac-
ture images. ② Compared with the traditional binarization method, the multi-scale recognition method of coal fracture based on CT digital
core deep learning has the advantages of fast speed, high accuracy and is not easily affected by impurities in coal.
Key words: coal fractures； CT digital core； image recognition； crack identification ； CT scan

  

0　引　　言

煤层的裂隙是在成煤的过程中各种不同应力的

影响所造成的裂开现象，其不仅是煤层气的储存空

间与渗滤通道，也是煤的力学特性的关键影响因素[1]。

煤层裂隙的连通性、数量和尺度的分布十分复杂。

其对于油气的开采、煤矿的安全生产和煤岩体工程

特性方面也都具有重要意义。因此针对煤层裂隙分

布开展研究。

分形几何学是研究非线性现象的理论和方法 [2]，

目前被广泛应用于分析岩体裂隙分布特性分析[3]，如

康天合等[4] 利用分形几何来研究煤体裂隙尺度分布，

冯增朝等[5] 通过分析岩石裂隙数量与尺度之间的分

形关系来研究岩体裂隙尺度对其变形与破坏的控制

作用，赵阳升等[6] 则是采用分形几何学研究岩层裂

缝分形分布的相关规律，它能沟通微观量与宏观量

之间的联系。这个结论可跨越尺度推广，具有十分

重要的工程意义。

目前，对于煤裂隙结构的获取方法有数字摄像

机、扫描电镜、光学显微镜和 CT 扫描等方式[7]。其

中摄像机、扫描电镜和光学显微镜等局限于煤的表

面裂隙观测，无法获取煤内部裂隙的分布。而 CT 数

字岩心技术因其可以无损获取岩体的内部裂隙结构

而被大量学者采用，如：宋晓夏等[8] 利用 CT 数字岩

心技术对构造煤的渗流孔进行精细定量表征，王刚

等[9] 为了研究煤的孔裂隙结构特征，通过 CT 数字岩

心技术对煤进行三维重建，实现煤的孔裂隙结构的

定性定量表征和分析，冯子军等[10] 采用 CT 数字岩

心技术观测煤在热解破裂过程中孔裂隙演化细观特

征。然而，上述 CT 数字岩心中裂隙识别主要采用人

眼识别方法[11] 和二值化方法[12]。传统的人眼识别是

对其进行人眼观察与测量工具测量。这种方法不仅

费时费力，且非常容易受到自然环境和人为因素的

影响。二值化方法则是根据阈值的不同来对图像中

的裂隙和背景进行分割，再进行识别，其容易受煤岩

体中杂质和图像噪音的影响，识别准确率难以保证。

这为 CT 数字岩心中裂隙多尺度分布规律研究带来

了巨大的阻碍。

近年来，随着深度学习运算方法的飞速发展，众

多学者将其引入了 RGB 数字图像获取的裂隙识别

研究中。冯春成[13] 搭建了一种基于深度卷积网络的

水电站溢流坝表观裂缝检测方法；李生元[14] 通过卷

积神经网络和穷举搜索技术提出了对混凝土结构表

面裂隙检测的方法；魏世银[15] 利用深度学习方法来

对桥梁裂缝进行健康诊断和营养决策；陈涵深[16] 采

用深度学习的方法对路面裂隙破损进行检测；黄宏

伟等[17] 基于深度学习对盾构隧道的渗漏水进行病害

图像识别。这为基于 CT 数字岩心深度学习的煤裂

隙多尺度分布特性识别带来了良好的启发。

因此，通过将卷积神经网络与 CT 数字岩心技术

相结合，研究在相同训练样本下不同卷积神经网络

模型对于不同尺度和亮度图像的准确率，分析该模

型对于煤裂隙图像多尺度特征识别的适用性，从而

形成基于 CT 数字岩心深度学习的煤裂隙多尺度分

布特性识别方法 [18]。该识别方法速度快、精度高、

不易受外界环境的影响，且可以观测识别煤内部裂

隙和不会破坏煤本身的内部构造。这对于煤体渗流

和力学性能的科学研究具有重要意义。 

1　裂隙的分形统计理论与方法
 

1.1　煤岩体连通裂隙面分布的二维分形描述

二维 CT 图像的裂隙迹线的盒维数分形统计方

法概述如下[19]：
N (L0n) = N0(L0/n)−D （1）

式中，N(L0/n) 为边长为 L0/n 的第 n 级分割尺度下正

方形网格中含有长度大于或等于 L0/n 裂隙的数量

(图 1)；N0 为含有连通性裂隙的网格初值，D 为连通
 

(a) 裂隙长度大于L0/n (b) 裂隙长度小于L0/n

图 1    含连通性裂隙图像和不含连通性裂隙图像

Fig.1    Images with connected fractures and images without con-
nected fractures
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裂缝面分布的分形维数。

本研究的分割尺度 n 选取 1、2、3、4、5、6，针

对 CT 扫描得到二维剖面图，采用上述方法对煤岩石

试件内的裂隙面进行统计，分析煤岩体内裂隙面的

规律。 

2　基于卷积神经网络的煤多尺度裂隙识别模型
 

2.1　CT 裂隙图像的预处理与数据集的建立

煤样取自阳煤集团寺家庄煤矿，煤种为无烟煤。

CT 扫描实验利用太原理工大学 μCT225 kVFCB 型

高精度显微 CT 试验系统[20]，煤样经 CT 扫描完成后

得到煤样的三维数字岩心，利用 Matlab 对其进行切

片，转化为待识别的灰度图像。

数据集的建立步骤如下：①从待识别灰度图像

挑选 50 张含裂隙图像 (含径向图像，X 轴向图像，Y
轴向图像)，将其剪裁成 4 400 张边长为 50～256 像

素 (煤样尺度：3.5～21 mm) 的正方形图像；②将裁减

后图像分为含连通裂隙的图像与含不连通裂隙或不

含裂隙的背景图像 2 类 (图 2)，各 2 200 张；③每一类

中 2 000 张为训练集，200 张为测试集，通过平移、旋

转等方式增大训练数据，防止过拟合。

  

…

CT扫
描图像

256×256

像素

随即剪切
成不同尺
度的像素

未含有
连通裂
隙的图

片2 200张

剩下的2 000

张图片用作
训练集

随机选择200

张作为测试集

剩下的2 000

张图片用作
训练集

随机选择200

张作为测试集

50×50

像素

60×60

像素
含有连
通裂隙
的图片
2 200张

5

0

张
裂
隙
原
始
图
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图 2    数据收集与图像处理流程

Fig.2    Flow chart of data collection and image processing
  

2.2　卷积神经网络的构建

卷积神经网络 (CNN) 是广泛的用于图像识别，

自然语言处理等领域的深度学习代表算法之一，

由卷积层、池化层、全连接层堆砌而成，模型结构

如图 3 所示。研究选择 4 种经典模型对其进行了

模 型 构 建 和 参 数 优 化 ， 让 其 适 用 于 识 别 二 维 CT
裂隙图像。分别是 AlexNet[21], ResNet-18[22], Goog-
LeNet[23], Inception-V3[24]，每种模型的层数分别为 8 、
18 、22 、46 层，并将超参数 (学习率、批量大小和

迭代次数) 优化为最适合识别二维 CT 裂隙图像的

数值。 

输入

输出全连接

池化
卷积

卷积
池化

● ● ●

图 3    模型结构

Fig.3    Model structure
  

3　煤的多尺度裂隙识别模型的识别
 

3.1　不同模型的最优训练样本容量分析

以上面 4 种模型为卷积神经网络的框架做训练，

分别以各 500，1 000，1 500，2 000 数量的 2 类子图像

参与卷积训练，另有 2 类各 200 张子图像用于测试

模型，训练中训练集和验证集随机分为 8∶2，为了减

少误差，每种数量做 6 次训练，再取 6 次训练精度的

平均值，下表为训练数据。训练精度是训练的准确

率，验证精度是用于测试模型数据的 400 张图片的

精度。

由 图 4 可 知 AlexNet 随 着 训 练 样 本 从 500 到

1 500，准确率得到了提高。但到了 2 000，准确率却

轻微下降，另外 3 种模型在 1 000 时的准确率最低，

发生了过拟合，验证集的损失率大幅增加。但随着

训练样本的继续增多，过拟合消失，在 1 500 时准确

率最高，到 2 000 也轻微下降。在 500 时的损失率

最大。
  

0.65

1.00

500 1 000 1 500 2 000

精
度

均
值

/% AlexNet训练精度
AlexNet验证精度
ResnNet-18训练精度
ResnNet-18验证精度
GoogLeNet训练精度
GoogLeNet验证精度
Inception-V3训练精度
Inception-V3验证精度

样本数

图 4    不同模型的训练精度和验证精度均值

Fig.4    Mean value of training accuracy and verification accur-
acy of different models

 

继续分析测试集的验证准确率，可以清晰的看

到 4 种模型的正确率都随着训练样本的增多稳步上

升，但从 1 500 到 2 000 AlexNet, ResNet-18, GoogLe-
Net, Inception-v3 四种模型的验证准确率只分别提高

了 0.017 917, 0.031 5,0.025 667, 0.034 583，提升已经

很小，且由图 5 可知 4 种模型的验证准确率随着模
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型样本的增多呈对数增长，在 2 000 时 4 种模型的增

长趋势都趋于平缓，所以从最优训练样本数来分析

我们应选择 2 000 作为训练集。由表 1 还可以得知

4 种模型的训练结果和测试结果都相差较小，所以先

确定选择 2 000 作为数据集，模型的选择再通过下文

的实际测试来决定。
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图 5    不同模型的验证准确率随训练样本数量增多的变化趋势

Fig.5    Verification accuracy of different models changes with
the increase of the number of training samp

 
  

表 1    不同模型计算结果分析

Table 1    Analysis of calculation results of different models

训练序号
计算结果平均值

AlexNet ResNet-18 GoogLeNet Inception-V3

样本数

500

训练精度 0.775 833 0.842 5 0.783 333 0.83

验证精度 0.728 8 0.843 333 0.816 667 0.812 917

样本数

1 000

训练精度 0.768 75 0.698 333 0.697 5 0.701 25

验证精度 0.847 917 0.897 5 0.897 083 0.908 333

样本数

1 500

训练精度 0.927 5 0.961 917 0.954 733 0.957 5

验证精度 0.918 75 0.915 583 0.915 0.911 667

样本数

2 000

训练精度 0.908 417 0.920 9 0.913 867 0.927 35

验证精度 0.936 667 0.947 083 0.941 667 0.946 25
  

3.2　不同模型验证准确率分析

为了对所优化的 4 种模型进行更全面的分析和

评价，引入了混淆矩阵对 4 种模型进行实验验证。

通过对比模型的验证结果来判断 4 种模型在实际应

用中的准确性。验证集为提前随机留取的 400 张图

片 (有连通 200 张，无连通 200 张)，用 4 种模型对验

证集进行验证。结果如图 6 所示。

可知 4 种模型的识别结果相差不大，验证准确

率的准确值均值可以由表 1 得到，由图 6 中更可以

清楚的看出，其中 ResNet-18 对 200 张有连通图片识

别出 191 张，AlexNet, Inception-V3, GoogLeNet 分别

为 190 张 、190 张 、187 张 ， Inception-V3,  AlexNet,
ResNet-18, GoogLeNet 对 200 张无连通图片识别出

194 张，188 张、186 张、188 张。通过对结果进行对

比可以发现 ResNet-18 模型对连通性图片的识别更

精准，Inception-V3 模型则是在对无连通性图片的识

别中更胜一筹。 

3.3　不同模型训练效率分析

工 作 环 境 是 中 央 处 理 器 为 Intel(R)  Core(TM)
i7–10 875 H CPU ，内存为 16 GB。采用单 GPU 训练。

不同模型下 2 000 样本的训练时间如图 7 所示，其中

AlexNet, GoogLeNet, ResNet-18 训练时间 15～22 min，

训练效率较高； Inception-V3 模型训练时间长达 131
min，训练效率偏低。
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图 7    不同模型的训练时间

Fig.7    Training time of different models
  

3.4　不同训练样本亮度的模型识别对比

训练样本图像亮度是用图像灰度表征的，其取

值范围是 0～65 535；值越大图像越亮，图像亮度改

变会影响特征的提取从而影响裂隙连通性的识别的

准确率，为了寻求最优识别亮度，通过将这些灰度点

统一乘以 2、3、4、5 来进行图像增强，将这些图片记

为亮度 2、亮度 3、亮度 4、亮度 5(图 8) 再进行卷积

训练。 
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(b) ResNet-18的混淆矩阵

(c) GoogLeNet
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(d) Inception-V3

的混淆矩阵

图 6    不同模型识别结果

Fig.6    Recognition results of different models
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(a) 原始亮度 (b) 亮度2 (c) 亮度3 (d) 亮度4 (e) 亮度5

图 8    裂隙的 5 种亮度图像

Fig.8    Five brightness images of cracks
 

用 3.1 节的方法将 5 种亮度的训练样本放入 4
种模型中进行训练，其验证准确率结果如图 9 所示。

由图可得 AlexNet ,ResNet-18,GoogLeNet, Inception-
V3 模型分别在原始亮度、亮度 4、亮度 3、亮度 2 时

验证准确率最高，其准确率分别为 0.936、0.953 5、

0.951 5、0.952 5。可以看出在各自最优亮度下，AlexNet
模型的验证准确率较低，其他 3 个模型则十分接近。
  

0.89

0.90

0.91

0.92

0.93

0.94

0.95

0.96

原始图像 亮度2 亮度3 亮度4 亮度5

AlexNet
ResNet-18
GoogLeNet
Inception-V3

验
证

精
度

图片亮度等级

图 9    不同模型在 5 种亮度样本条件下的验证精度

Fig.9    Verification accuracy of different models under five
brightness samples

  

4　煤裂隙多尺度分布识别方法的对比
 

4.1　4 种模型对各个尺度准确率的分析

由于人眼识别在传统裂隙识别中准确率得到了

肯定，所以本节对于模型对各个尺度裂隙识别的准

确率判别通过与人眼识别[15] 结果对比来实现。分析

步骤为：①从数据中任意选择 8 张不同的裂缝图片

(图 10)。②再将每张图像分为如图 8 所示中的 5 种

亮度，每张图像再分为 6 个尺度，图像尺度从尺度 1
到尺度 6 为 21～3.5 mm，然后计算 8 张裂缝图像在

5 种亮度条件下的每个尺度有连通性的图片总数。

③与人眼识别出的图片数做差，每个尺度下的 8 个

差值相加即为误差，在每个尺度下每种模型选出其

误差最小所处的亮度，再进行对比，最后选择出每种

尺度下所得误差最小的模型和亮度，结果如图 11 所

示 (图中不显示每种模型所处的亮度条件)。6 种尺

度下的误差相加即为总误差 (表 2)。
  

矿物质

CT裂隙图像1 CT裂隙图像2 CT裂隙图像3 CT裂隙图像4

CT裂隙图像5 CT裂隙图像6 CT裂隙图像7 CT裂隙图像8

图 10    CT 裂隙图像

Fig.10    CT fracture images
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图 11    不同模型在 5 种亮度下识别的各尺度含裂隙图像数

与人眼识别数的误差

Fig.11    Error between the number of fractured images and the
number of human eyes recognized by different models under

five brightness
  

表 2    不同模型在 5 种亮度条件下的总误差

Table 2    Total errors of different models under five brightness conditions

AlexNet亮度 总误差 ResNet-18亮度 总误差 GoogLeNet亮度 总误差 Inception-V3亮度 总误差

原始图像 83 原始图像 68 原始图像 85 原始图像 103

亮度2 88 亮度2 86 亮度2 103 亮度2 43

亮度3 111 亮度3 125 亮度3 65 亮度3 130

亮度4 97 亮度4 54 亮度4 79 亮度4 131

亮度5 96 亮度5 66 亮度5 77 亮度5 116
 

如图 11 所示在尺度 1 时各模型的误差为 0，所

以没显示，在尺度 2 和尺度 5 时 ResNet-18 在亮度 4
时的误差最小，在尺度 3 时 Inception-V3 在亮度 2 时

误差最小，在尺度 4 时 Inception-V3 在亮度 3 时误差

最小，在尺度 6 时 GoogLeNet 在亮度 3 时误差最小，

由图中可以看出随着识别的图片尺度的减小 (尺度
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1 图片最大，尺度 6 图片最小)，各个模型对图片识别

的误差也在不断增加，因此得出模型对小尺度图片

的识别准确率比大尺度图片的低。主要是因为将大

尺度图片分割成小尺度图片后，裂隙特征的提取难

度增大，因此降低了识别准确率。

由表 2 可以得出 AlexNet, ResNet-18, GoogLeN-
et,  Inception-V3 分别在原始亮度、亮度 4、亮度 3、

亮度 2 时总误差最小，为最优亮度，分别为 83, 54,
65, 43。 

4.2　煤多尺度裂隙分形维数计算对比

为了验证基于 CT 数字岩心深度学习的煤裂隙

多尺度分布特性识别方法的适用性，对卷积神经网

络识别方法与二值化方法的准确性进行对比。其中

二值化方法采用全局阈值，阈值选择方法分别采用

迭代法与最大类间误差法 (OTSU)。卷积神经网络

识 别 方 法 选 用 AlexNet, ResNet-18,  GoogLeNet,   In-
ception-v3 四种模型在最优样本亮度条件下，依据式

(1) 对含复杂裂隙网络的 8 张图片中裂隙的分形维数

进行计算。由于人眼识别在传统裂隙识别中准确率

得到了肯定，所以对煤多尺度裂隙分形维数计算判

别，通过与人眼识别统计获得分形维数结果对比来

实现。哪种方法算出的分形维数越接近人眼识别出

的分形维数，哪种方法结果越准确，具体计算结果见

表 3。
  

表 3    裂缝分形维数计算部分结果

Table 3    Some results of fracture fractal dimension calculation

编号
最优图像

亮度

CT裂缝

图像1

CT裂缝

图像2

CT裂缝

图像3

CT裂缝

图像4

CT裂缝

图像5

CT裂缝

图像6

CT裂缝

图像7

CT裂缝

图像8

分形维数

总误差

人眼识别

分形维数
— 1.347 1.372 1.384 1.237 1.079 1.561 1.299 1.302 —

AlexNet

分形维数
原始图像 1.507 1.393 1.353 1.559 1.156 1.451 1.41 1.332 0.657

ResNet-18

分形维数
亮度4 1.432 1.452 1.386 1.271 1.055 1.589 1.263 1.427 0.31

GoogLeNet

分形维数
亮度3 1.38 1.386 1.271 1.208 0.993 1.266 1.143 1.293 0.743

Inception- V3

分形维数
亮度2 1.229 1.387 1.355 1.121 1.011 1.51 1.124 1.027 0.847

迭代法二值化

分形维数
— 0.948 0.905 0.89 0.894 0.474 0.601

无法

计算
0.909 3.867

OTSU二值化

分形维数
— 1 1.126 0.905 0.676 0.663 0.785 1.093 1.004 3.329

 

见表 3，最后一列为每种模型计算 8 张裂隙图像

分形维数与人眼识别分形维数做差后的和，记为分

形维数总误差 , AlexNet,  ResNet-18, GoogLeNet,  In-
ception-v3 四种模型在其各自最优亮度下的分形维

数总误差分别为 0.657, 0.31, 0.743, 0.847。

再统计这 4 种模型计算的八张裂隙图像的分形

维数各自最接近人眼识别分形维数的张数，AlexNet
在原始亮度下、ResNet-18 在亮度 4,GoogLeNet 在亮

度 3,Inception-V3 在亮度 2 时分别为 0 张、5 张、2 张、

1 张，ResNet-18 识别分形维数最接近人眼识别分形

维数的张数最多，且 ResNet-18 在亮度 4 所计算的 8
张裂隙图像的分形维数与人眼识别的误差范围为

0.002~0.085，AlexNet 在原始亮度下、GoogLeNet 在亮

度 3，Inception-V3 在亮度 2 时为 0.021～0.16, 0.009～

0.295, 0.015～0.275，因此不论是从计算最接近人眼

识别分形维数的张数还是计算的分形维数的误差范

围 (误差浮动) 都可以判断 ResNet-18 在亮度 4 时计

算裂隙的分形维数最准确，为最佳模型。又因为识

别图 10 中的 CT 裂隙图像时，按照式 (1) 的方法将

图像分为尺度 1(21 mm) 到尺度 6 (3.5 mm)，所以得

出  ResNet-18 模 型 在 图 片 为 亮 度 4， 尺 度 为 3.5～

21 mm 时为适用于 CT 图像裂隙识别的最优模型。

计算结果最差的是两种二值化方法，迭代法和

OTSU 分形维数总误差分别为 3.867, 3.329。OTSU
二值化方法比迭代法好一些，因为迭代法容易受煤

岩体中矿物质的影响，如表 3 中裂隙 7 因为矿物质

过多，导致二值化后图像都为黑，无法计算分形维数。

由图 7 可知 ResNet-18 的训练时间只用约 20 min，

比 Inception-V3 短的多，但是 ResNet-18 在亮度 4 时

算出的分形维数反而更接近人眼识别计算出的分形

维数，而且 Inception-V3 的层数为 46，ResNet-18 的

层数只有 18，说明模型的层数对于识别裂缝来计算

分形维数的准确率并不成正比关系。

相较于传统的用人眼对裂隙进行识别和测量，
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和现在的通过结合数字摄像机和卷积神经网络进行

识别都有一定的缺陷。所以通过结合 CT 数字岩心

技术和卷积神经网络对裂隙进行识别具有非常大的

优势：①减少人的主观性引起的误差，精度高；②自

动识别的适用性更强，对于不同宽度的，角度的裂隙

识别的适用性更强；③快速无损检测，不会对煤样造

成破坏从而减少误差。 

5　结　　论

1) 通过选用不同数量级的 CT 裂隙图片来训练

深度卷积神经网络模型，发现训练集选用 2 000 数量

级为最优训练样本容量。

2) 通过将 4 种模型计算出的分形维数与人眼识

别计算的分形维数做对比，研究发现 ResNet-18 模型

在图片为亮度 4，尺度为 3.5～21 mm 为适用于 CT
图像裂隙识别的最优模型。

3) 在二维 CT 裂隙图像类别下，与现有的人眼识

别方法、迭代法、OTSU 三种传统图像识别方法做对

比分析，发现研究方法识别速度快、精度高，特别是

不像二值化方法易受外界环境的影响。
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