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Study on carbon monoxide, carbon dioxide and oxygen competitive adsorption

properties of bituminous coals

DONG Xuanmengl, GUO Liwenl’z, DONG Xianweil’z, WANG Fushengl’2
(1. College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China; 2. Mining Development and Safety
Technology Key Lab of Hebei Province, Tangshan 063210, China)

Abstract: In order to clarify the adsorption pattern between coal and CO, CO, and O,, the competition between CO and CO, and O, in coal
is studied. Qianjiaying bituminous coal is used as the research object, and the molecular unit parameters are calculated by quantitative ana-
lysis method based on the experimental results of Fourier transform infrared spectroscopy (FTIR). The molecular cell structure of Qi-
anjiaying bituminous coal is constructed (C,,5HgsO50N2o). To verify the accuracy of the model, the infrared spectrum of molecules is simu-
lated by quantum chemical calculation, and the calculated results are basically consistent with the experimental results. On this basis, the
effects of pressure(0—16 MPa) and temperature(20—60 °C) on the adsorption of CO, CO, and O, by coal are investigated by using the
Grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) methods. From the experimental results, it can be concluded that
the fitted isothermal adsorption curves conformed to the Langmuir equation. Under the same pressure, the adsorption capacity of CO, CO,
and O, is weaker as the temperature increases. At the same temperature, there is a positive correlation trend between the burial pressure of
coal seam and the adsorption amount. The magnitude of adsorption of single gases CO, CO, and O, is CO, > O, > CO, and CO, can reach

saturation adsorption state in the first. The competitive adsorption results of binary gases show that the adsorption selectivity of CO,/CO
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has obvious advantages in low-pressure or shallow buried coal seams. However, the adsorption selectivity of O,/CO did not change signi-

ficantly with the change of pressure. The competitive adsorption capacity of CO, is greater than that of CO, and the adsorption capacity of

CO, decreases with the increase of CO concentration; The competitive adsorption of O, is greater than CO when the ratio of CO to O, mol-

ar concentration is < 1, but the adsorption of CO is greater than O, when the molar concentration of CO is much greater than O,. There-

fore, the molar concentration of CO is high, which inhibits the adsorption capacity of CO, and O,. In other words, in bituminous coal

seams with high abnormal CO concentration, the effect of using CO, injection to control fire extinguishing is not significant, so the amount

of air leakage from the working face should also be controlled to prevent CO from desorption to the coal body and to ensure that the CO

concentration in the well is within the permissible range.

Key words: bituminous coal; competitive adsorption; molecular simulation; adsorption characteristics; molecular structure
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R5 BEASSEREMAE Langmuir &5
Table 5 Langmuir fitting parameters of single component

gas adsorption
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