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中低阶煤孔隙结构特征及其对瓦斯解吸特性影响

刘纪坤 ，任　棒 ，王翠霞
 （西安科技大学 安全科学与工程学院, 陕西 西安　710054）

摘　要：煤的孔隙结构是影响瓦斯储存和运移的重要因素。为了进一步研究中低变质程度煤瓦斯解吸

特性，选取 6 组阜康矿区煤样进行压汞试验和瓦斯解吸试验。通过绘制进退汞曲线、统计各孔径段

孔隙结构特征以及绘制瓦斯解吸曲线，着重分析了煤的孔隙形态、孔容、孔比表面积和体积分形维

数及其对瓦斯解吸量及解吸速率的影响。结果表明：试验煤样均存在不同比例的开放孔，大孔主要

以开放孔为主，中孔和小孔主要以半封闭孔为主，微孔主要以封闭孔为主；煤样孔容以微孔和大孔

贡献为主，比表面积以微孔贡献为主。通过绘制瓦斯解吸曲线和解吸速率散点图，发现瓦斯解吸量

随解吸时间先快速增加后趋于稳定值，进而拟合发现，中低阶煤瓦斯解吸曲线可采用 1/Q=m/t0.75+n
表示，拟合度在 0.995 以上，其中参数 m 为与瓦斯解吸速率相关的参数，参数 n 为解吸体积常数，

系数 0.75 可能与煤变质程度有关，后期可对不同变质程度的煤样解吸曲线进行分析，解吸速率随解

吸时间呈指数式递减。将不同孔径段孔隙结构特征与解吸特性参数拟合发现，在瓦斯解吸初期，大

孔中的瓦斯优先被解吸，随着孔径的减小，优先率逐渐降低。中大孔分形维数介于 2.879 1~
2.991 5，分形特征明显，解吸初速度与分形维数呈明显正相关关系，n 与分形维数关系不明显。
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中图分类号：TD712　　　文献标志码：A　　　文章编号：0253−2336（2022）12−0153−09

Pore structure characteristics of middle and low rank coals and their influence on
gas desorption characteristics
LIU Jikun, REN Bang, WANG Cuixia

 （College of Safety Science and Engineering, Xi’an University of Science and Technology, Xi’an 710054, China）

Abstract: The pore structure of coal is an important factor affecting gas storage and migration. In order to further study the gas desorption
characteristics of low and medium metamorphic coals, 6 sets of coal samples from the Fukang mining area were selected for mercury intru-
sion and gas desorption experiment. Mercury intrusion and extrusion curves of coal samples were drawed, the pore structure characterist-
ics of each pore segment were counted, the gas desorption curve was drawed, and the pore morphology, pore volume, pore specific surface
area and volume fractal dimension of coal and their influence on the gas desorption capacity and desorption rate were analyzed. The res-
ults show that there are different proportions of open pores in coal samples. Macropores are mainly composed of open pores, the middle
and small  pores  are  mainly composed of  semi-closed pores,  and the micropores  are  mainly composed of  closed pores.  In  addiction,  the
total pore volume are mainly contributed by micropores and macropores, and micropores contributes the most to the total specific surface
area. By drawing the gas desorption curve and the desorption rate scatter diagram, it is found that the gas desorption amount increases rap-
idly with the desorption time and then tends to a stable value, and then the fitting finds that the gas desorption curve of middle and low
rank coal can be expressed by 1/Q=m/t0.75+n, the degree of fitting is above 0.995, where m is a parameter related to the gas desorption rate,
n is a parameter related to the desorption volume constant,and the coefficient of 0.75 may be related to the degree of coal metamorphism,
and the desorption curves with different degrees of metamorphism can be analyzed in the later stage. And the desorption rate decreases ex-
ponentially with the desorption time. Fitting the pore structure characteristics of different pore sizes with the desorption characteristic para-
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meters, it is found that the gas in the macropores is preferentially desorbed in the initial stage of desorption. As the pore size decreases, the
priority  rate  gradually  decreases.  The  fractal  dimension  of  mesopores  and  macropores  is  between  2.879  1−2.991  5,  which  has  obvious
fractal characteristics. It is proposed that the initial desorption velocity and fractal dimension show a significant positive correlation. The
relationship between n value and fractal dimension is not obvious.
Key words: middle and low rank coal；  desorption model；  pore structure；   low-to-medium metamorphic coal；  gas desorption quantity；
mercury intrusion method

  

0　引　　言

煤是具有孔隙–裂隙双重体系的多孔介质[1-2]。

双重孔裂隙体系为瓦斯的储存提供空间，为瓦斯的

运移提供通道。煤的孔隙结构特征对瓦斯的解吸、

扩散及渗流都有直接影响[3]，掌握瓦斯解吸理论对于

高效抽采瓦斯具有重要的指导意义。

为了有效表征孔隙结构特征如孔比表面积、孔

容、孔隙率、孔径分布等，多种孔隙结构表征方法被

提出和应用，如压汞法[4]，气体吸附法 (N2，CO2)[5]，核

磁共振法[6]，扫描电镜法[7]，显微 CT 法[8]，小角散射

法[9]，每种测量方法孔隙测量大小范围不同，且每种

测试方法都有各自的局限性，仅用一种方法很难准

确表征孔隙结构特征[10]。孔隙结构表征存在单一方

法表征向多种方法联合表征，二维图像向三维重构

等过渡转变。

秦跃平等[11] 通过解吸试验发现，初始瓦斯压力

越大，瓦斯解吸速率越大。王杰等[12] 通过热蒸汽处

理煤样后，煤体孔隙结构发生演化，进而将处理前后

的煤样进行对照分析，发现热蒸汽有助于煤体残余

瓦斯的解吸。范家文等[13] 通过试验研究不同应力约

束下，煤体瓦斯解吸规律和孔隙结构特征的变化，表

明 80 ℃ 是瓦斯解吸合适的温度，且瓦斯解吸后会产

生更多的孔隙。尹金辉[14] 发现瓦斯解吸过程中伴随

能量的变化进而引起温度变化，而解吸过程中吸热

反应占主导，一定时间后外界温度作用发挥明显。

陆壮等[15] 发现吸附曲线与脱附曲线存在迟滞现象，

进一步研究变质程度、温度、水分、粒径等宏观因素

对解吸迟滞特征的影响。许耀波等[16] 结合压汞试验，

分析高阶煤孔隙结构对解吸规律的影响，得出孔隙

结构较差时煤层气的解吸速率慢、解吸量少，将高阶

煤的解吸过程分为快速解吸和慢速解吸阶段。张书

林等[17] 研究表明水分对煤吸附瓦斯的抑制作用来源

于两方面，一方面水分子占据煤分子表面的吸附位，

另一方面水分子多层吸附占据甲烷分子吸附的通道。

根据近年来的研究发现，粒径、变质程度、温度、

压力、水分等宏观影响因素对瓦斯解吸的影响研究

较多，且取得丰硕的成果。但是微观孔隙结构对解

吸特性影响研究较少，且主要针对高阶煤展开研究。

笔者通过压汞法对中低变质程度煤样进行孔隙结构

参数测定，并结合瓦斯解吸试验分析中低变质程度

煤样孔隙结构特征对瓦斯解吸特性的影响，以期为

瓦斯涌出预测和治理奠定基础。 

1　煤样选取及试验方案
 

1.1　煤样基础参数测定

取采煤工作面新鲜煤样，密封保存带回实验室。

试验煤样经过粉碎筛选后，进行工业分析、显微分析

和镜质组反射率测定分析，结果见表 1。
  

表 1    煤样基础参数测定结果

Table 1    Test results of basic parameters of coal samples

煤样编号 采样地点 Mad/% Ad/% Vdaf/% FCad/% Ro,max/%

1号 东风福胜 1.74 10.3 46.30 47.33 0.52

2号 西沟二矿 1.22 6.92 36.22 58.64 0.66

3号 金塔矿 2.43 3.95 41.85 54.50 0.66

4号 西沟一矿 1.46 4.32 41.34 55.30 0.70

5号 五宫矿 1.33 2.55 40.44 57.27 0.72

6号 鑫龙矿 0.91 14.36 39.71 51.16 0.76
  

1.2　试验方案 

1.2.1　压汞试验

试验采用 AutoPoreIV 951  0 型全自动压汞仪

(孔径测量范围 3 nm~360 μm)，取 2.8~4 mm 煤样约

3 g 经过 70 ℃ 干燥 12 h 后装入膨胀计中，进行低压

和高压压汞试验，测定煤样的孔隙结构特征参数。 

1.2.2　瓦斯解吸试验

1）试验方案。瓦斯吸附解吸试验采用自主研发

的瓦斯吸附解吸一体化装置，试验原理如图 1 所示。

试验选取平衡压力为 3  MPa，设定试验温度

30 ℃，将煤样经过粉碎、筛选粒径为 60~80 目 (0.18~
0.25 mm) 进行试验。经过气密性检验、重复 3 次取

平均值进行系统体积标定、真空脱气后开始吸附/解
吸试验，每隔1 min 记录一次样品罐内压力值。

2）解吸量的计算。在煤样瓦斯解吸过程中，通

过气体状态方程将瓦斯气体压力转化为对应的解吸
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量，除以煤样的质量，公式如下：

Qi =
Pivf−Pi−1vf

ZGRT0
Vm×103 （1）

式中，Qi 为第 i 秒煤样中瓦斯解吸量，mL/g；Pi, Pi−1

为第 i 秒样品罐中瓦斯压力，MPa；vf 为样品罐的自

由体积，mL；Z 为 Pi 下的气体压缩因子；G 为煤样质

量，g；R 为气体常数，取 8.314 5 J/(mol·K)；T0 为试验

温度，K；Vm 为摩尔体积，L/mol。
3）解吸速度的计算。瓦斯解吸初速度作为瓦斯

涌出过程中重要的参数。根据下式进行计算：

Vi =
Qi−Qi−1

Δt
（2）

式中，Vi 为第 i 秒煤样中瓦斯解吸速度，mL/(g·min)；
Qi−1 为第 i−1 秒煤样中瓦斯解吸量，mL/g；Δt 为时间

间隔，min。 

2　孔隙结构测试结果与分析

孔径分类方法已经被许多科研工笔者提出[18]。

本文采用霍多特 (XOJIOT)[19] 的孔径划分方法，将孔

径分为大孔 (>1 000 nm)，中孔 (100~1 000 nm)，过渡

孔 (10~100 nm)，微孔 (<10 nm)。 

2.1　孔隙形态特征

将压汞试验测得进退汞曲线绘图 2。由图 2 可

知，进退汞曲线均出现滞后环现象。不同滞后环代

表煤样具有不同的孔隙开放程度[20]。3 号、4 号、5
号和 6 号煤样进退汞曲线滞后环较大，表明具有的

开放孔和半开放孔较多，孔隙连通性较好。而 1 号

和 2 号煤样滞后环较小，表明煤样具有一端封闭的

孔隙较多，孔隙连通性较差。总体来看，6 种煤样均

存在不同比例的开放性孔隙，大孔主要以开放孔为

主，中孔和小孔主要以半封闭孔为主，微孔以封闭孔

为主。孔隙开放程度反映孔隙连通性，开放性越好，

连通性较好，试验煤样微孔开放性差，瓦斯从微孔不

易放散到中大孔，随着孔隙的增大，一旦瓦斯放散到

中大孔时，由于中大孔开放性好，极容易放散到

外界。
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图 2    煤样进退汞曲线
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2.2　孔比表面积分布特征

比表面积是决定煤中瓦斯含量的重要因素。将

煤样各孔径段比表面积占比和总比表面积汇总表 2。

由 表 2 可 知 ， 试 验 煤 样 孔 比 表 面 积 在 13.562  2~
26.995 8 m2/g，其中微孔占比最多，占比介于 87.60%~
90.21%， 中 孔 及 大 孔 含 量 最 少 ， 仅 仅 占 到 0.01%~
0.03%。结果表明微孔对比表面积的贡献最大。 

2.3　孔容分布特征

孔容为瓦斯运移提供重要的通道。将煤样各孔

径段孔容占比和总孔容列表 2。通过表 2，可以看出

不同煤样孔径分布具有差异性，试验煤样孔容介于

0.038 3~0.069 9 mL/g，各个煤样之间的孔容随着孔

径分布相差不大，且对于同一种煤样各孔径段占比

不同，反映出孔径分布的非均质性，孔容中＜10 nm

的微孔占比最大，介于 35.06%~46.72%。大孔对孔

容的贡献较微孔弱，中孔占比最小。
 

2.4　孔隙结构分形特征

基于孔隙结构具有自相似特点，采用分形维数

参数描述孔径分布的复杂性。假设采用球形体进行

填充孔隙，将测得孔容 V 和进汞压力 P 代入下式[21]：

lg
(
dV
dP

)
∞(D−4) lg P （3）

式中，V 为孔容，mL/g；P 为进汞压力，MPa；D 为体积

分形维数。

由式 (3) 可知，lg(dV/dP) 与 lg P 进行线性拟合

得到直线斜率 k，k+4=D。将 lg(dV/dP) 与 lg P 做双

对数曲线如图 3 所示，由图 3 可知，lg(dV/dP) 随 lg P
 

表 2    压汞试验各孔径段孔容和比表面积试验结果

Table 2    Experimental results of pore volume and specific surface area in different pore sizes by mercury injection

煤样编号 总孔容/(mL·g−1)
各孔径段孔容占比/%

总比表面积/(m2·g−1)
各孔径段孔比表面积占比/%

＜10 nm 10~100 nm 100~1 000 nm ＞1 000 nm ＜10 nm 10~100 nm 100~1 000 nm ＞1 000 nm

1号 0.069 35.06 19.84 5.79 39.30 24.916 87.60 12.10 0.27 0.03

2号 0.061 46.72 21.78 3.80 27.71 25.771 88.49 11.27 0.22 0.02

3号 0.065 45.85 22.31 6.15 25.69 26.996 90.21 9.55 0.23 0.01

4号 0.038 46.03 16.67 8.41 29.05 13.562 89.80 9.95 0.23 0.02

5号 0.064 45.87 17.82 5.89 25.88 26.837 90.10 9.65 0.23 0.01

6号 0.059 39.52 20.03 7.66 32.80 21.110 89.69 9.98 0.29 0.03
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Fig.3    Fractal fitting graph
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的增加呈现下降趋势。基于压汞试验对高压段孔隙

结构破坏特征的研究[22]，当毛细管力 P＞10 MPa 煤

基质压缩明显影响了孔隙结构，当 P=10 MPa 时取对

数为 1，通过观察图 3，得知 lg P=1 两侧存在明显分

段，研究结果与前人相符，以 lg P=1 作为分界点进行

拟合，将拟合结果列于表 3。
  

表 3    分形维数计算结果

Table 3    Calculation results of fractal dimension

煤样编号 孔径d范围 斜率 D R2

1号
151.075≤d<339 880.3 −1.120 9 2.879 1 0.922 4

3.019<d<151.075 −0.137 6 3.862 4 0.813 1

2号
150.995≤d<337 892.7 −1.093 9 2.906 1 0.937 5

3.019<d<150.995 −0.194 1 3.805 9 0.801 8

3号
151.210≤d<348 774.8 −1.118 5 2.881 5 0.921 1

3.019<d<151.210 −0.296 8 3.703 2 0.947 4

4号
151.047≤d<347 290.6 −1.109 9 2.890 1 0.979 7

3.019<d<151.047 −0.340 3 3.659 7 0.943 2

5号
151.075≤d<348 731.7 −1.040 9 2.959 1 0.930 5

3.019<d<151.075 −0.283 7 3.716 3 0.907 5

6号
151.084≤d<338 148.5 −1.021 4 2.978 6 0.949 3

3.019<d<151.084 −0.313 5 3.686 5 0.870 5
 

由表 3 可知，试验煤样分形维数出现分段特征，

均存在 2 个分形维数值，其中第 1 段分形维数介于

2.879 1~2.991 5，拟合度均在 0.92 以上，第 2 段分形

维数介于 3.659 7~3.862 4，均大于 3。分形维数值越

大，相应孔隙结构越复杂。煤体作为多孔介质，基于

压汞试验对高压段孔隙结构破坏特征的研究[22]，高

压段时大中孔遭到破坏，大中孔比例减少，进一步基

于煤基质压缩性系数的研究[23]，高压段对煤基质压

缩效应导致微孔含量增加，微孔测量误差增大，表明

高压对煤样的内部原有的孔隙结构会造成破坏。根

据经典分形理论，多孔材料分形维数 D 介于 2~3，由

表 3 可知，第 2 段分形维数均大于 3，对应孔径小于

151.21 nm，主要是因为对汞加压使汞进入较小孔隙

后，煤基质被压缩，孔隙已遭到破坏，导致孔隙测定

结果有误差，孔径越小测量误差越大[24]，因此当分形

维数大于 3 时结果可靠性差，此部分分形维数不作

进一步讨论。 

3　孔隙结构特征对瓦斯解吸规律分析
 

3.1　煤样瓦斯解吸试验结果分析

瓦斯解吸量随解吸时间的变化曲线称为解吸曲

线。取平衡压力为 3 MPa，绘制解吸曲线如图 4 所示。

由图 4 可知，6 种煤样的解吸曲线变化趋势相同，随

着时间的增加，解吸量先快速增加后趋于稳定值。
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图 4    瓦斯解吸量与解吸时间的关系

Fig.4    The relationship between gas desorption
amount and time

 

为进一步研究解吸量与解吸时间关系，将解吸

量的倒数与解吸时间的幂指数绘制散点图 5。由

图 5 可知，两者具有很强的线性关系，并进行线性拟

合，将拟合结果列于表 4。由表 4 可知，线性相关系

数 R2 均在 0.995 以上。基于研究分析，提出中低变

质程度煤的解吸模型如下式：

1
Q
=

m
t0.75
+n （4）

式中，Q 为解吸量，mL/g；t 为解吸时间，min；n 为解

吸体积常数，当解吸时间无穷大时，最大解吸量的倒

数，g/mL；m 为与初始瓦斯解吸速率有关的解吸常数，

当解吸时间 t 为 1 min 时解吸量倒数与解吸体积常

数的差值，(mL/g)−1·min0.75。
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图 5    瓦斯解吸量的倒数与解吸时间的关系

Fig.5    The relationship between the reciprocal of gas desorp-
tion amount and time

 

系数 0.75 可能与煤变质程度有关，后期可对不

同变质程度的煤样解吸曲线进行分析。

根据式 (2) 计算出解吸速率，并将解吸速率随时

间变化关系绘制散点图 6。由图 6 可知，试验煤样曲
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线变化趋势基本一致，均随解吸时间的增加，先快速

下降再缓慢降低最后趋于稳定，呈现指数式递减。

主要是由于瓦斯解吸过程中，受压力差驱动影响，瓦

斯从煤体快速解吸，表现为解吸速率较大，随着解吸

过程的推进，煤体内部瓦斯体积分数降低，煤体内外

瓦斯体积分数差减小，解吸速率逐渐减少。 

3.2　孔容对瓦斯解吸规律

在此定义，瓦斯压力解除后，解吸 1 min 时的解

吸速率为解吸初速度。由 3.1 节中提出的煤解吸模

型中 m 和 n 两个参数可知，n 为最大解吸量的倒数，

m 为与初始瓦斯解吸速率有关的解吸常数。本文主

要对解吸初速度进行分析，对 m 值不做深入讨论。

将各孔径段孔容与解吸量绘制散点图，如图 7
所示。由图 7 可知，各孔径段孔容对解吸初速度和

n 均成正比例关系，在瓦斯解吸初期，大孔孔容对 n
值和初始瓦斯解吸速率线性拟合程度最高，表明在

瓦斯解吸初期，大孔中瓦斯优先解吸出来。根据进

退汞曲线孔隙形态分析结果可知，大孔主要以开放

孔为主，中孔和小孔主要以半封闭孔为主，微孔以封

闭孔为主，开放孔利于瓦斯放散，当实验瓦斯压力解

除后，大孔中瓦斯先行解吸出来，对解吸初速度影响

最大。因此在初始瓦斯解吸时，大孔孔容对瓦斯放

散起到主导作用。 

 
表 4    瓦斯解吸量拟合参数

Table 4    Basic desorption parameters of samples

煤样编号 m/((mL·g−1)−1·min0.75) n/(g·mL−1) 决定系数R2

1号 1.114 02 0.114 66 0.998 50

2号 1.260 73 0.096 76 0.995 72

3号 1.193 59 0.122 85 0.998 50

4号 2.362 31 0.149 09 0.997 08

5号 1.440 40 0.106 39 0.995 73

6号 0.845 60 0.119 12 0.999 48
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3.3　孔比表面积对瓦斯解吸规律

将各孔径段孔比表面积与解吸初速度值和参数

n 作图，如图 8 所示。由图 8 可知，除微孔外，各孔径

段孔比表面积对瓦斯解吸初速度和初始瓦斯解吸量

均成正比例关系，可见在瓦斯解吸初期，各孔径段比

表面积对瓦斯解吸过程均起到促进作用，且大孔比

表面积拟合度最高，随着孔径的减小，曲线拟合度逐

渐减低，表明大孔内瓦斯优先解吸，孔径越小，优先

程度逐渐减少。比表面积主要为瓦斯吸附提供吸附

位，结合 2.2 节分析结果，微孔比表面积最大，微孔是

瓦斯吸附的主要场所，但根据进退汞曲线进一步分

析发现，微孔主要以封闭孔为主，连通性差，在瓦斯解

吸初期，瓦斯解吸困难，优先将大孔内瓦斯解吸，微

孔内瓦斯解吸可能会与运移特性等有关。结合孔容

对瓦斯解吸指标的影响分析结果可知，大孔比表面

积和孔容对解吸初速度和 n 值影响均最大，其次随着

孔径减小，拟合关系逐渐减弱，大孔为瓦斯解吸提供

足够的空间，且孔隙开放性越好时越容易发生解吸。
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图 8    各孔径段孔比表面积与解吸参数关系

Fig.8    The relationship between the pore specific surface area and desorption parameters
 
 

3.4　分形维数对瓦斯解吸规律

由 3.2 和 3.3 节分析可知：瓦斯解吸初期，中大

孔对瓦斯解吸特性影响最为显著。为进一步描述中

大孔孔径分布特征对瓦斯解吸参数的影响，引入分

形维数，描述孔径分布的复杂性。将 2.4 节所得中大

孔分形维数与解吸参数的关系绘图，如图 9 所示。

由图 9 可知，随着分形维数的增加，解吸初速度呈现

递增趋势，表明在瓦斯解吸初期解吸越快。分形维

数越大，孔径分布越不均匀，并且结合孔隙形态的分

析结果，中大孔主要以开放性和半封闭性孔为主，在

压力差影响下瓦斯解吸初速度值越大，解吸能力越

好。图中亦看出，分形维数值与最大瓦斯解吸量关

联性不强。
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4　结　　论

1) 通过分析孔隙结构特征可知：6 种煤样均存在

不同比例的开放性孔隙，大孔主要以开放孔为主，中

孔和小孔主要以半封闭孔为主，微孔主要以封闭孔

为主。微孔和大孔孔容对总体孔容贡献最大，比表

面 积 以 微 孔 占 比 为 主 。 中 大 孔 分 形 维 数 值 介 于

2.879 1~2.991 5，拟合度均在 0.92 以上，中大孔结构

较复杂，分形现象显著。

2) 通过分析中低变质程度煤的解吸曲线可知：

随着解吸时间的增加，解吸量呈现先快速增加后趋

于稳定值，并进行拟合发现 1/Q 与 t–0.75 呈现线性关

系，拟合度在 0.995 以上，可以将解吸模型描述为

1/Q=m/t0.75+n，系数 0.75 可能与煤的变质程度有关，

后期考虑进一步细化此值。m 是与瓦斯解吸速率相

关的参数，n 是最大瓦斯解吸量的倒数。

3) 讨论孔隙结构特征对瓦斯解吸参数的影响发

现：在瓦斯解吸过程中，大孔内的瓦斯优先被解吸出，

随着孔径的减小，优先率逐渐减低，结合孔隙形态的

分析结果，微孔主要以封闭孔为主，在瓦斯解吸初期

微孔内瓦斯解吸可能会与运移特性等有关。且进一

步分析中大孔分形特征对瓦斯解吸参数的影响，

研究表明解吸初速度与分形维数呈现明显正相关

关系。
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