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摘　要：植被种类的准确分类是实现煤矸石山植被修复效果评价的基础。利用无人机遥感技术获取不

同季节的煤矸石山可见光影像，通过色彩空间转换和纹理滤波充分挖掘可见光影像中丰富的色彩、

结构及纹理等特征；然后对传统人工特征选取方法做出改进，该方法可快速、简单、高效地筛选特

征信息以获取最优分类特征，并将优选结果与 RGB 影像融合以获得多特征融合影像；最后，利用 3
种监督分类模型分别对两期 RGB 影像及多特征融合影像进行分类处理并对结果进行精度评价及植被

动态变化分析。结果表明：基于改进的人工特征选取方法可筛选出不同季节煤矸石山影像的最优分

类特征，所选特征不仅能有效反映各类地物的差异性，同时可降低特征信息冗余以提高影像分类精

度及效率。支持向量机（Support Vector Machine Classification, SVM）分类方法结合多特征融合影像的

分类精度最高，总体分类精度最高可达 90.60%，相应 Kappa 系数为 0.878 0，较同期 RGB 影像分别

提高了 9.74% 和 0.126 5；而最大似然（Maximum Likelihood Classification, MLC）和神经网络（Neural
Network, NNC）分类方法精度提高较少，总体分类精度较同期 RGB 影像最多可分别提高 6.95% 和

3.93%，相应 Kappa 系数分别提高 0.084 5 和 0.054 1。同时，基于最优分类结果从植被覆盖度和植被

配置模式 2 个角度对常村煤矸石山植被修复效果进行评价，结果表明：该煤矸石山采用了多种不同

的植被配置模式，且秋夏两季的植被覆盖度均高于 75%，植被修复的整体效果较好。研究可为基于

无人机可见光影像的煤矸石山植被信息识别分类提供参考，同时为煤矸石山植被修复的后期管理、

维护等提供意见或建议。

关键词：无人机遥感；煤矸石山；植被分类；色彩空间转换；纹理滤波；多特征优选

中图分类号：P237;TP751　　　文献标志码：A　　　文章编号：0253−2336（2023）05−0245−15

Classification of coal gangue pile vegetation based on UAV remote sensing
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Abstract: The accurate classification of vegetation species is the basis for the evaluation of vegetation restoration effect of coal gangue
pile. In this paper, the visible image of coal gangue pile in different seasons was obtained by UAV remote sensing technology. The color
space conversion and texture filtering were used to adequately explore the rich features of color, structure and texture in the visible image.
Then, the traditional artificial feature selection method was improved, which could quickly, simply and efficiently screen features informa-
tion to obtain the optimal classification features, and the optimized results were fused with RGB images to obtain multi-feature fusion im-
ages. Finally, based on two stages of RGB images and multi-feature fusion images, the vegetation of coal gangue pile was classified by
three supervised classification methods, including support vector machine (SVM), maximum likelihood (ML) and neural network (NN).
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Meanwhile, the accuracy of classification results was evaluated by confusion matrix and the dynamic changes of vegetation were analyzed.
The results showed that the improved artificial feature selection method could screen out the optimal classification features of coal gangue
pile vegetation in different seasons. The selected classification features can not only effectively reflect the differences of various ground
features, but also reduce the redundancy of feature information to improve the accuracy and efficiency of image classification. The classi-
fication result based on Support Vector Machine Classification (SVM) combined with multi-feature fusion image had highest classifica-
tion accuracy, and the overall classification accuracy could reach 90.60%, and the corresponding Kappa coefficient is 0.878 0, which was
9.74% and 0.126 5 higher than that  of  RGB image of the same period,  respectively.  And, the accuracy of MLC and NNC classification
methods was less improved. Compared with the RGB images of the same period, the overall classification accuracy could be improved by
6.95% and 3.93%, respectively, and the corresponding Kappa coefficient could be improved by 0.084 5 and 0.054 1, respectively. At the
same  time,  based  on  the  result  of  optimal  classification,  this  paper  evaluated  the  vegetation  restoration  effect  of  coal  gangue  pile  in
Changcun from the perspectives of vegetation coverage and vegetation allocation pattern. The results showed that a variety of different ve-
getation allocation patterns were adopted by the coal gangue pile, and the vegetation coverage in autumn and summer is higher than 75%.
The overall effect of vegetation restoration was better. This study could provide reference for the identification and classification of coal
gangue piles vegetation information based on UAV visible light image, and meanwhile provide opinions or suggestions for the later man-
agement and maintenance of coal gangue piles vegetation restoration.
Key words: UAV remote sensing；  coal gangue pile；  vegetation classification；  color space conversion；   texture filtering；  multi-feature
priority selection

  

0　引　　言

煤炭资源的过度开采引发诸多环境问题，严重

影响矿区周边地区的生态环境[1]。煤矸石山在自然

环境中极易发生自燃、淋溶、扬尘等，对周边大气、

水体、土壤等造成严重污染[2-4]。然而，煤矸石山的

自然修复过程极其缓慢，因此采用人工修复的方法

治理煤矸石山显得尤为必要。目前，煤矸石山的人

工修复主要侧重于土壤基质改良、立地条件[5]、整形

整地技术、优势树种与种间配置、植物栽植与绿化技

术[6-7] 等方面的研究，其目的是为了建立一个稳定、

高效的人工植被生态系统。其中，植被修复效果的

准确评价也成为治理工作中必不可少的环节。但目

前植被修复效果评价大多基于实地样方调查等传统

方法，不仅耗费大量人力物力及时间成本，而且无法

从整体上对修复效果做出准确判断。植被种类的准

确分类可在一定程度上反映植被的多样性、覆盖度

及空间分布情况等。因此，快速、准确的植被信息识

别分类对煤矸石山植被修复效果评价意义重大。

传统卫星遥感技术存在分辨率较低、时效性较

差、影像成本高等问题，并不适用于小区域范围内快

速、低成本、高精度的地物识别分类。而无人机遥感

技术凭借其高分辨率、强时效性、低成本且操作简单

灵活等优势[8] 广泛应用于精准农业[9-13]、林业资源调

查[14-16]、地质灾害识别与监测[17-18]、矿区环境监测与

土地复垦[19-21] 等领域，并取得显著成果。

目前，植被信息的识别分类方法主要分为 2 类。

①植被指数结合阈值分割等传统方法提取植被信息，

如汪小钦等[22]、高永刚等[23] 利用可见光影像有限的

波段信息构造不同植被指数并结合不同阈值分割方

法有效提取植被信息。此类研究已较为成熟，且多

针对背景与前景目标差别明显的情况，如植被与非

植被分类，并未对植被种类做进一步细分。②通过

色彩空间转换和纹理滤波等图像增强技术充分挖掘

高分辨率影像中潜在的色彩、结构及纹理等特征并

进行特征优选，然后结合不同分类方法识别植被信

息，如 LU 等[24] 根据不同时期草地的多光谱影像提

取不同特征并进行特征组合，然后采用面向对象方

法结合随机森林算法实现草种分类，结果表明该方

法能精准识别草地中的不同物种。郭鹏等[25] 对无人

机可见光影像进行色彩空间转换和纹理滤波以构建

影像特征集，然后通过直接比较差异系数和变异系

数获得最优分类特征并利用传统分类方法实现作物

分类，同时还利用植被指数区分不同作物类型，最后

比较两种分类方法精度，结果表明基于色彩和纹理

特征提取的农作物信息精度更高；同样，韩文霆等[26]

也采用该方法筛选适宜提取玉米种植信息的特征并

最终有效提取拔节期玉米种植信息。戴建国等[27] 通

过 ReliefF-Pearson 特征降维方法对可见光影像的色

彩、结构及纹理等特征进行优选，然后结合不同监督

分类方法对北疆主要农作物进行分类，结果表明该

方法可有效区分农作物类型。此类研究其对象多呈

现块状、条带状等规则分布的情况，如大田农作物分

类等；而缺乏植被种类较多且空间分布复杂的识别

分类研究，如煤矸石山植被等。同时，人工特征优选

的过程较为复杂，且无法在优选过程中对所选特征

及时进行评价，导致特征信息冗余及分类处理的精

度和效率降低。
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笔者针对种类较多且空间分布复杂的植被信息

识别分类所存在的问题，结合已有研究成果，以常村

煤矸石山为典型区域，对传统人工特征选取方法进

行改进以简单、快速、高效地获取最优分类特征，并

结合多种机器学习算法对煤矸石山植被进行识别分

类研究，以期获得一种基于无人机遥感的煤矸石山

植被分类方法，为煤矸石山植被修复效果评价提供

参考依据。 

1　研究区与数据
 

1.1　研究区概况

潞安矿区位于沁水盆地东部边缘中段，隶属华

北地层区山西地层分区宁武−临汾小区[28]，地跨长治、

襄垣、屯留、潞城和长子等五市县，包括常村、王庄、

漳村、石圪节及五阳等大型煤矿。选择常村煤矿矸

石山作为研究区域，其位于长治市屯留县境内（112°58′
21″E，36°21′22″N），北靠常村矿区工业广场，西倚二

广高速，东临 208 国道，其概略位置如图 1a 所示。

该煤矸石山于 1986 年启用，由地面起堆，高约 55 m，

坡度在 21°～43°，总堆量约 300 万 t，东西长 260 m，

南北宽 230 m，总占地面积约 60 000 m2。截止 2009
年 8 月完成全山绿化治理工程，无自燃迹象，植被生

长态势较好，植被覆盖度较高，可作为煤矸石山植被

修复的典型案例进行分析。 

1.2　影像数据采集

无人机影像数据采集以大疆 M210 RTK V2 型

四旋翼无人机作为飞行平台，其水平和垂直定位精

度达到±0.1 m；同时，该平台搭载禅思 (ZENMUSE)
XT2 双光热成像镜头，有效像素为 1 200 万。影像采

集分两次进行，时间分别为 2020 年 10 月 21 日和

2021 年 6 月 9 日，天气状况均良好，适宜进行无人机

飞行试验。为避免后期分类处理结果产生误差，2 次

影像采集的航飞参数均保持一致，其中航向重叠度

和旁向重叠度均设置为 85%，飞行高度 70 m，飞行速

度 4.0 m/s，飞行时间约 75 min，共采集 2 期数据，总

计 5 098 景影像。
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(a) 研究区所在位置 (b) 研究区两期正射影像

图 1    研究区域

Fig.1    Study area
 
 

1.3　影像数据预处理

对获取的无人机影像进行预处理，主要包括影

像拼接和影像裁剪。其中，利用 Pix4D mapper 软件

中的流程化处理模块进行影像拼接；使用 ENVI5.3

软件中的地表真实感兴趣区（Ground Truth ROIs）工

具进行影像裁剪。研究对可见光影像各波段中心波

长及范围无特殊要求，故无需进行辐射定标；同时，

无人机定位精度达到厘米级，且研究对影像地理坐
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标无特殊要求，预处理影像点位精度足以满足要求，

故无需布设地面像控点及地理坐标纠正。经过上述

影像预处理，最终获取研究区域 2020-10-21 和 2021-
06-09 两期正射影像，其空间分辨率约 0.03 m，如图 1b
所示。 

2　研究方法
 

2.1　煤矸石山植被分类方案

所获取的 2 期不同季节煤矸石山可见光影像只

包含红、绿、蓝 3 个波段信息，若仅依靠 RGB 色彩

信息难以有效区分煤矸石山植被种类。因此，首先

借助图像增强技术充分挖掘可见光影像中潜在的色

彩、结构及纹理等特征，由此构建影像分类特征集；

然后选取各类地物训练样本并统计样本各项特征的

变异系数及差异系数；再对传统人工特征选取方法

做出改进以简单、快速、高效地获取不同季节煤矸石

山可见光影像的最优分类特征，并将优选结果与同

期 RGB 影像融合以获得两期多特征融合影像；最后

利用 3 种监督分类方法分别对 2 期 RGB 影像及多

特征融合影像进行分类处理并对结果进行精度评价

及植被动态变化分析。同时，基于最优分类结果分

别计算不同季节煤矸石山的植被覆盖度，从植被覆

盖度和植被配置模式 2 个角度分析煤矸石山植被修

复效果。总体研究技术路线如图 2 所示。 

2.2　图像增强 

2.2.1　色彩空间转换

选取合适的颜色空间是有效分割图像的基础[29]。

无人机可见光影像采用 RGB 颜色空间显示，但红、

绿、蓝波段之间存在很强的相关性及随机噪声，若直

接用于分类处理难以保证精度[30]。而 HSI 颜色空间

采用色度（Hue）、饱和度（Saturation）、亮度（Intensity）

3 个分量来表征颜色[31]，且各分量之间相互独立，与

人感受彩色的方式紧密联系[32]，有利于提高分类处

理精度。

基于 ENVI5.3 环境分别对两期无人机可见光影

像进行色彩空间转换以获得 HSI 色彩空间影像，其

中包括色度、饱和度及亮度 3 个特征波段信息，如图 3a
所示。 

2.2.2　纹理滤波

无人机可见光影像光谱分辨率较低，但其空间

分辨率较高，结构和纹理信息丰富。因此，可借助纹

理滤波充分挖掘影像中丰富的结构、纹理等特征[33]，

并将其应用于影像分类以提高分类处理精度。

在 ENVI5.3 环境下采用基于二阶概率统计的滤

波方法对 HSI 颜色空间影像进行滤波处理以获取色

调、饱和度和亮度 3 个分量的均值、方差、协同性、

对比度、相异性、信息熵、二阶矩和相关性共计 24
项纹理特征。综合考虑影像处理的精度及效率，将

滤波窗口设置为 7×7，空间相关性矩阵 X 和 Y 的变

化值均设置为 1，灰度量化级别设置为 64。纹理滤

波结果如图 3b 所示，其中 RGB 通道分别为色度二

阶矩、亮度相异性和饱和度方差。 

2.3　样本选择与统计

通过实地样方调查，并综合考虑无人机可见光

影像的空间分辨率、地物类型差异性程度、地物空间

分布复杂程度以及优势植被种类变化等因素，将

2020-10-21 期影像地物大致分为紫穗槐、铺地柏、草

本、紫藤、乔木、枯萎高羊茅、高羊茅、裸地、建筑物

及道路等共计 10 种类型；将 2021-06-09 期影像地物

大致分为紫穗槐、铺地柏、草本、乔木、紫锦木、金

叶女贞、紫花苜蓿、裸地、建筑物及道路等共计 10
种类型。为使各类地物的色彩、结构及纹理特征的

统计结果更具代表性，在选取训练样本时尽量选择

各类地物内部纯净像元，避免混合像元对后续分类

产生影响。同时，选取足够数量且分布均匀的测试

样本用于后续精度评价。训练样本及测试样本选取

结果见表 1。

 
影像采集与预处理

样本选取

训练样本

测试样本

图像增强

色彩空间转换

纹理滤波

样本统计

变异系数

差异系数

多特征融合

监督分类

分类结果
精度评价 方法优选

植被最优
分类结果

植被配置
模式分析

植被覆盖
度分析

不同季节植被
动态变化分析

多特征优选

样本可分离性值

SVM 方法

NNC 方法

MLC 方法

图 2    研究技术路线

Fig.2    Research technology roadmap

2023 年第 5 期 　煤  炭  科  学  技  术 第 51 卷

248



变异系数可有效反映样本内部像元统计特征值

的离散程度，值越小表明该特征越能有效代表此类

地物，即变异系数值越小的特征可作为此类地物区

别于其他地物的典型特征；而差异系数则可反映各

类地物间该特征的差异程度，值越大表明该特征越

有利于区分各类地物。基于此，分别统计基于 2 期

影像所选训练样本各项特征的平均值、标准差，并分

别计算各类样本 27 项特征的变异系数及类间差异

系数，以便用于后续多特征优选，计算公式如下：

V =
S
M
×100% （1）

DW =
M1−M2

M2
×100% （2）

式中：V 为变异系数；S 为标准差； M 为均值；DW 为

类间差异系数；M1 为第一类均值；M2 为第二类均值。

2020-10-21 期影像计算结果中，草本各项特征的变异

系数及草本与其他地物各项特征的差异系数计算结

果见表 2。

分析表 2 可知，草本各项特征的变异系数值差

异明显，其中色度相异性的变异系数值为 169.49%，

而色度信息熵的变异系数值为 4.69%；同时，草本与

其他地物各项特征的差异系数值变化范围较大，其

中草本与道路的亮度对比度差异系数值为 806.49%，

而草本与建筑物的色度二阶矩差异系数值为 0.42%。

上述结果表明并不是所有的特征信息都能突出各类

 
2020-10-21

2020-10-21

2021-06-09

2021-06-09

(a) HSI 色彩空间转换结果

(b) 纹理滤波结果 0 0.03 0.060.08 0.12 km

N

图 3    图像增强结果

Fig.3    Results of image enhancement

 
表 1    训练样本及测试样本选取结果

Table 1    Selection results of training samples and
test samples

影像期数 地物类型 训练样本/个 测试样本/个 总计

2020-10-21

草本 50 150 200

紫穗槐 100 700 800

铺地柏 50 200 250

乔木 50 100 150

高羊茅 100 600 700

枯萎高羊茅 100 500 600

紫藤 30 50 80

建筑物 10 20 30

道路 50 200 250

裸地 50 150 200

2021-06-09

紫锦木 20 100 120

金叶女贞 10 250 260

乔木 30 150 180

草本 30 100 130

紫花苜蓿 150 700 850

铺地柏 50 250 300

紫穗槐 80 600 680

裸地 30 250 280

建筑物 10 20 30

道路 50 200 250

总计 1 050 5 290 6 340

　周　涛等：基于无人机遥感的煤矸石山植被分类 2023 年第 5 期　

249



地物之间的差异性，因此需要进一步筛选出有利于

分类处理的特征信息。 

2.4　分类特征优选

样本可分离性作为训练样本的评价指标可用于

表 征 训 练 样 本 之 间 的 差 异 性 程 度 ， 其 理 论 值 在

0～2.0，若该值大于 1.9，说明样本之间差异大、可分

离性好，属于合格样本；若小于 1.8，则属于不合格样

本，需要重新选择样本；若小于 1.0，则考虑将两类样

本合并为一类样本。当训练样本的选取无法继续优

化，即不能通过改变样本的选择来增强类别间的差

异性程度时，可增加样本内部所含特征信息以增强

类别间的差异性程度。

传统人工特征选取方法通过直接比较变异系数

和差异系数筛选最优分类特征[25,34]，但仅在分类对象

类型较少时效果较好；若分类对象类型较多，该方法

的选取过程会更加复杂且效率有所降低。基于此，

 

表 2    草本各项特征的变异系数及草本与其他地物各项特征的差异系数

Table 2    Coefficients of variation for each feature of herb and coefficient of difference for each feature among
herb and other ground features

特征指标 变异系数
差异系数Dw

紫穗槐 铺地柏 乔木 紫藤 高羊茅 枯萎高羊茅 建筑 道路 裸地

色度 17.25 48.65 11.14 20.53 61.85 50.76 368.31 34.91 46.70 8.18

亮度 14.32 7.60 13.21 10.87 1.01 11.87 26.58 48.40 35.67 26.33

饱和度 15.37 9.07 66.00 18.65 44.32 69.83 13.75 82.12 21.49 7.65

色度均值 10.83 48.83 10.93 19.35 61.63 53.72 404.85 34.57 47.02 10.98

色度方差 15.50 95.59 77.68 81.50 97.35 80.79 89.80 96.73 61.74 99.74

色度协同性 18.75 15.63 16.98 18.60 1.88 11.05 1.31 26.74 7.25 1.49

色度对比度 10.97 97.95 85.52 66.63 98.23 79.04 95.57 98.54 42.04 99.88

色度相异性 169.49 66.20 53.58 52.93 45.96 42.65 22.33 81.10 30.18 93.14

色度信息熵 4.69 36.59 30.84 36.53 11.61 31.63 14.43 22.91 14.97 18.61

色度二阶矩 75.28 165.13 78.31 179.03 26.86 137.88 24.02 0.42 17.83 28.44

色度相关性 32.92 1.55 1.24 8.97 7.77 9.98 16.34 38.17 90.26 23.97

亮度均值 19.74 7.25 21.77 12.69 1.92 16.41 34.80 58.41 45.44 34.70

亮度方差 38.70 16.49 41.63 12.34 31.33 56.45 14.15 22.20 236.95 72.02

亮度协同性 7.40 41.46 0.17 26.06 17.88 40.09 33.37 71.06 69.10 40.87

亮度对比度 11.03 170.41 4.33 69.89 27.07 228.06 125.88 178.10 806.49 243.96

亮度相异性 42.33 73.79 1.46 34.72 15.31 84.64 55.13 172.74 301.53 89.02

亮度信息熵 29.90 2.94 5.96 0.46 5.98 8.12 3.90 93.17 62.54 9.96

亮度二阶矩 39.00 13.24 59.46 9.26 59.46 32.18 19.18 97.96 92.88 39.80

亮度相关性 23.43 85.00 78.42 80.33 41.55 81.44 80.98 81.87 81.14 80.26

饱和度均值 7.08 20.53 70.32 24.73 37.19 76.93 13.76 83.00 23.37 7.66

饱和度方差 54.24 82.88 62.64 60.60 82.54 30.87 77.07 99.52 20.02 37.42

饱和度协同性 142.08 3.45 9.24 2.80 46.98 20.43 17.60 38.64 16.65 0.93

饱和度对比度 14.42 12.67 79.37 0.57 70.10 255.41 52.09 99.38 100.46 1.27

饱和度相异性 54.60 7.03 31.29 3.16 49.79 102.77 31.08 91.02 60.11 0.91

饱和度信息熵 11.05 23.55 13.86 12.77 35.88 18.79 27.75 26.85 33.23 9.70

饱和度二阶矩 57.08 117.42 28.71 24.32 408.47 34.45 177.75 53.48 58.97 25.29

饱和度相关性 27.66 61.56 15.42 50.01 36.93 53.04 50.37 29.08 14.03 41.55

　　注：表中数据为2021-10-21期影像，差异系数DW的计算结果取绝对值。
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对传统人工特征选取方法做出适当改进，具体的方

法流程如下：

1）基于原始 RGB 影像计算各类地物训练样本

的可分离性值，并将可分离性值小于 1.9 的类别组合

按 (0,1.0)、(1.0,1.8) 及 (1.8,1.9)3 个区间进行分组。

2）针对可分离性值在最小区间内的类别组合，

依次选取这些类别组合差异系数最大的特征信息，并

将所选特征与 RGB 影像融合，获得多特征融合影像。

3）基于多特征融合影像再次计算各类地物训练

样本的可分离性值，并将可分离性值小于 1.9 的类别

组合按上述方法进行分组。

4）针对可分离性值在最小区间内的类别组合，

继续依次选取这些类别组合差异系数最大的特征信

息，若该特征在第二步中已被选取，则按差异系数值

降序依次选取其他特征，并将所选特征与上述多特

征融合影像再次融合以获得新的多特征融合影像。

5）以此类推，不断选取并融合色彩、结构及纹理

等特征以获得新的多特征融合影像，然后基于新的

多特征融合影像计算训练样本的可分离性值，直到

所有的样本可分离性值均大于 1.9 时，特征优选结束。

对上述改进方法做如下 4 点说明：①与直接比

较所有样本各项特征信息的变异系数及差异系数的

传统人工特征选取方法不同，基于原始影像及多特

征融合影像多次计算样本可分离性值可快速确定哪

些地物种类无法进行有效区分，特征选取更具针对

性且效率有所提高；②该方法将各步骤中样本可分

离性值的计算结果按区间进行分组，且每次仅优先

针对最小区间内的样本组合选取对应特征，尽可能

降低特征信息冗余；③通过不断计算多特征融合影

像的样本可分离性值，可对上一步骤中所选取的特

征信息及时做出评价，即验证所选取的特征信息是

否有助于提高样本可分离性，抑或是造成特征信息

冗余以便及时做出修正；④最小区间并非固定不变，

而是根据样本可分离性值的计算结果确定。

根 据 上 述 改 进 的 人 工 特 征 选 取 方 法 ， 基 于

2020−10−21 期和 2021−06−09 期影像分别筛选出部

分色彩、结构及纹理特征作为 2 期影像的最优分类

特征。其中，2020−10−21 期影像的最优分类特征选

取结果见表 3。

如表 3 所示，按照上述改进的人工特征选取方

法流程依次筛选 2020−10−21 期影像的最优分类特

征，具体步骤如下：①第一步：基于 RGB 影像计算各

类地物训练样本的可分离性值，选取值小于 1.9 的类

别组合并将其分为 3 个区间；②第二步：针对可分离

性值位于最小区间 (0,1.0) 中的 4 种类别组合，依次

选择差异系数值最大的特征，其中乔木/紫穗槐为色

度对比度，高羊茅/紫穗槐、高羊茅/乔木均为饱和度

二阶矩，乔木/铺地柏为饱和度方差，然后将这 3 类特
 

表 3    基于改进的人工特征选取方法的分类特征优选结果

Table 3    The results of classification features priority selection based on improved artificial features selection method

样本可分离性值区间 样本类别组合 RGB影像

特征波段优选结果

RGB/H-Con/

S-Var/S-Sec

RGB/H-Con/S-Var/

S-Sec /I-Sec

RGB/H-Con/S-Var/

S-Sec /I-Sec /H-Var/S-Con

(0,1.0)

乔木/紫穗槐 0.506 52 1.828 82 1.862 38 1.949 24

高羊茅/紫穗槐 0.699 36 1.905 30 1.908 22 1.953 25

高羊茅/乔木 0.867 07 1.841 47 1.887 03 1.943 88

乔木/铺地柏 0.880 97 1.865 41 1.936 99 1.978 09

(1.0,1.8)

铺地柏/紫穗槐 1.321 96 1.932 84 1.987 73 1.997 51

高羊茅/铺地柏 1.340 70 1.681 57 1.922 28 1.975 68

草本/紫穗槐 1.411 74 1.980 51 1.987 14 1.999 43

裸地/枯萎高羊茅 1.528 59 1.917 91 1.933 91 1.985 70

草本/铺地柏 1.617 59 1.953 59 1.994 18 1.997 55

乔木/草本 1.701 91 1.911 27 1.938 76 1.978 85

高羊茅/枯萎高羊茅 1.784 80 1.974 96 1.976 40 1.990 99

道路/建筑物 1.797 36 1.999 74 1.999 94 2.000 00

(1.8,1.9)
高羊茅/草本 1.842 79 1.983 14 1.986 07 1.997 72

枯萎高羊茅/紫穗槐 1.847 62 1.930 09 1.940 93 1.978 08
　　注：H-Hon、S-Var、S-Sec、 I-Sec、 H-Var、S-Con分别代表色度对比度、饱和度方差、饱和度二阶矩、亮度二阶矩、色度方差和饱和度对比

度；表中样本可分离性值区间仅适用于基于RGB影像的可分离性值计算结果。
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征信息与 RGB 影像融合以获得多特征融合影像；

③第三步：基于第二步获取的多特征融合影像继续

计算训练样本的可分离性值并将结果按上述方法进

行分组，针对可分离性值位于最小区间 (1.0,1.8) 中的

类别组合，依次选择差异系数值最大的特征，其中高

羊茅/铺地柏为亮度二阶矩，然后将该特征信息与第

二步获得的多特征融合影像再次融合以获得新的多

特征融合影像；④第四步：基于第三步所获取的新的

多特征融合影像继续计算训练样本的可分离性值并

将结果按上述方法进行分组，针对可分离性值位于

最小区间 (1.8,1.9) 中的 2 种类别组合，依次选择差异

系数值最大的特征，其中乔木/紫穗槐和高羊茅/乔木

2 种类别组合差异系数值最大的特征在第二步中已

被选取，则按降序依次选择色度方差及饱和度对比

度，然后将这 2 类特征信息与第三步获得的多特征

融合影像再次融合以获得最新的多特征融合影像；

⑤第五步：基于第四步所获取的最新的多特征融合

影像再次计算训练样本的可分离性值，此时所有样

本的可分离性值均大于 1.9，表明所有训练样本均为

合格样本，特征优选结束。

根据上述 2020-10-21 期影像最优分类特征的筛

选过程绘制多特征优选过程示意如图 4 所示。

由图 4 可知，基于改进的人工特征选取方法依

次选取并融合特征信息后，目标类别组合的样本可

分离性值均增大，表明所选取的分类特征可有效增

强样本间的可分离性。最终，所有的样本可分离性

值均大于 1.9，即通过增加样本内部所含特征信息，

不合格或较差的训练样本均成为合格样本。

基于上述改进的人工特征选取方法，最终选择

色度对比度、饱和度方差、饱和度二阶矩、亮度二阶

矩、色度方差以及饱和度对比度等共计 6 种特征信

息作为 2020-10-21 期影像的最优分类特征；选择亮

度相关性、亮度对比度、色度对比度、亮度方差、饱

和度对比度、饱和度二阶矩、色度方差以及饱和度相

异性等共计 8 种特征信息作为 2021-06-09 期影像的

最优分类特征。然后，将上述优选特征分别与相应

RGB 影像融合以获得 2 期多特征融合影像，并用于

后续分类处理。 

2.5　监督分类方法

基于 ENVI5.3 环境，选择 3 种经典机器学习分

类器进行影像分类处理，包括神经网络（Neural Net
Classification,  NNC） 、 支 持 向 量 机 （ Support  vector
machine classification, SVM）和最大似然（Maximum
Likelihood Classification, MLC）。同时，借助交叉验

证不断优化各分类器参数。 

2.6　植被覆盖度计算

无人机可见光影像空间分辨率达厘米级，可认

为影像中无混合像元。基于此，可计算煤矸石山的

植被覆盖度。首先，选择最优分类结果进行类别合

并，将所有不同类型的植被合并为植被，其余地物

合并为非植被。然后，基于合并结果计算植被覆盖

度，即植被像元数与影像像元总数的比值[35]，计算
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样
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可

分
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性
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虚线框表示最小区间内的类别组合

图 4    多特征优选过程

Fig.4    Process of multi-feature priority selection
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公式如下：

CV =
Nveg

Ntotal
×100% （3）

Nveg Ntotal式中：CV 为植被覆盖度； 为植被像元数； 为

影像像元总数。 

3　结果与分析
 

3.1　不同方法分类结果对比分析

基于 2 期不同季节的煤矸石山可见光影像，分

别采用上述 3 种监督分类方法进行地物分类处理，

分类结果如图 5 所示。

如图 5 所示，以研究区域正射影像及实地调查

结果为参照，两期 RGB 影像分类结果中均出现较多

错分误差和漏分误差。2020-10-21 期影像分类结果

中，A、G 区域将道路错分为建筑物，D 区域将 3 处建

筑物均错分为道路；B、E 区域将大部分高羊茅错分

为枯萎高羊茅；C 区域几乎将所有紫穗槐错分为道路

和枯萎高羊茅；F 区域将大部分紫穗槐错分为枯萎高

羊茅。此外，NNC 方法分类结果中道路、枯萎高羊

茅和其他地物类型之间出现大量错分现象；SVM 方

法分类结果中大量紫穗槐未被有效区分。2021-06-
09 期影像分类结果中，a、c 区域将部分紫穗槐错分

为铺地柏和紫锦木；d、e 区域将部分道路错分为建筑

物；b、h 区域未能有效识别部分草本及乔木；f、j 区

域将部分铺地柏错分为紫花苜蓿；g、i 区域则将部分

紫花苜蓿错分为铺地柏。上述结果分析表明，利用

RGB 影像进行植被分类会产生较多错分和漏分误差，

分类效果并不理想。

基于利用改进的人工特征选取方法所获得的两

期多特征融合影像，分别采用上述 3 种监督分类方

法进行地物分类，分类结果如图 6 所示。

如图 6 所示，以研究区域正射影像及实地调查

结果为参照，基于多特征融合影像的分类效果总体

上优于 RGB 影像，但也出现了部分错分误差和漏分

误差。2020-10-21 期影像分类结果中，A 区域将部分

紫穗槐错分为乔木，C 区域将部分高羊茅错分为紫穗

槐，而 F 区域并无明显错分和漏分误差；E 区域将大

量高羊茅错分为枯萎高羊茅；B、D 区域将少量的高

羊茅错分为裸地和枯萎高羊茅，而 G 区域并无明显

错分和漏分误差。2021-06-09 期影像分类结果中,a、
d、e 及 g 区域未能有效识别部分紫穗槐，而 h、i 及 j
区域则有效区分了大部分紫穗槐和紫花苜蓿；b 区域

将部分紫穗槐错分为紫锦木；c 区域将部分铺地柏错

分为紫花苜蓿；f 区域未能有效识别部分草本植被。

上述结果分析表明，支持向量机分类算法的分类效

果最好，没有明显错分和漏分误差出现。

以上分析均是以研究区域正射影像及实地调查

结果为标准，结合人工目视解译做出的初步判断。

为判断各分类结果是否准确，还应进行定量化精度

评价。 
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图 5    RGB 影像分类结果

Fig.5    Classification results based on RGB image
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3.2　精度评价

为削弱人为因素干扰，客观地对比各分类结果

的精度，采用总体分类精度和 Kappa 系数作为精度

评价指标对不同分类结果进行精度评价。具体方法

如下：根据不同类型地物的空间分布情况，选择适当

数量且分布均匀的地表真实感兴趣区（Ground Truth
ROIs）作为测试样本，计算其与各分类结果的混淆矩

阵，即可得出总体分类精度和 Kappa 系数。其中，测

试样本选取结果见表 1，混淆矩阵计算结果见表 4。

分析表 4 可知，不管采用何种分类方法，基于多

特征融合影像的分类结果的总体分类精度和 Kappa
系数均高于同期 RGB 影像。2020-10-21 期影像分

类结果中，多特征融合影像结合支持向量机分类方

法的精度最高，总体分类精度为 90.60%，Kappa 系数

为 0.878 0，较 RGB 影像分别提高了 9.74% 和 0.126 5；

最 大 似 然 分 类 方 法 精 度 次 之 ， 总 体 分 类 精 度 为

81.76%，Kappa 系数为 0.769 2，较 RGB 影像分别提

高了 1.16% 和 0.021 8；而神经网络分类方法精度最

低，总体分类精度为 76.11%，Kappa 系数为 0.696 5，

较 RGB 影像分别提高 3.93% 和  0.054 1。2021-06-
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图 6    多特征融合影像分类结果

Fig.6    Classification results based on multi-feature fusion image

 

表 4    植被分类精度评价结果

Table 4    Evaluation results of vegetation classification accuracy

影像期数 影像类型 分类方法 总体分类精度/% Kappa系数

2020-10-21

RGB影像

支持向量机 80.86 0.751 5

最大似然 80.06 0.747 4

神经网络 72.18 0.642 4

多特征融合影像

支持向量机 90.60 0.878 0

最大似然 81.76 0.769 2

神经网络 76.11 0.696 5

2021-06-09

RGB影像

支持向量机 84.07 0.789 8

最大似然 73.99 0.669 6

神经网络 80.77 0.746 0

多特征融合影像

支持向量机 88.49 0.849 1

最大似然 80.94 0.754 1

神经网络 83.79 0.788 8
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09 期影像分类结果中，同样是多特征融合影像结合

支持向量机分类方法精度最高，总体分类精度为

88.49%，Kappa 系数为 0.849 1，较 RGB 影像分别提

高了 4.42% 和 0.059 3；而神经网络方法次之，总体分

类精度为 83.79%，Kappa 系数为 0.788 8，较 RGB 影

像分别提高了 3.02% 和 0.042 8；最大似然分类方法

精度最低，总体分类精度为 80.94%，Kappa 系数为

0.754 1，但较 RGB 影像分别提高了 6.95% 和 0.084 5。

由于两期影像分属秋夏两季，山体植被种类、植被长

势的不同会使得无人机影像中各类植被的纹理、结

构、光谱等特征有所区别，进而两期影像的分类特征

筛选结果并不一致，最终导致分类结果精度有所偏

差，但基于改进的人工特征选取方法的植被提取精

度均高于原始影像提取结果。

上述精度评价结果表明，基于改进的人工特征

选取方法所筛选的色彩、结构及纹理等特征可有效

提高煤矸石山植被种类识别分类的精度。其中，多

特征融合影像结合支持向量机分类方法的识别分类

效果最佳。 

3.3　不同季节植被动态变化分析

煤矸石山作为一种人工构建的特殊生态环境，

其立地条件与自然环境有所区别，不同季节优势植

被种类也相应不同。因此，基于 2020−10−21 期（秋

季）和 2021−06−09 期（夏季）影像的最优分类结果统

计各类地物面积占比，同时结合实地调查结果分析

不同季节常村煤矸石山植被动态变化。

由表 5 可知：①秋季优势植被种类主要包括高

羊茅、紫穗槐和铺地柏，面积分别占 55.3%、9.8% 和

9.7%，而夏季主要包括紫花苜蓿、紫穗槐和铺地柏，

面积分别占 54.3%、11.6% 和 9.2%；②由于秋季降水

减少、植被枯死，导致裸地占比高于夏季，同时紫穗

槐、草本、乔木等植被的占比均低于夏季；③铺地

柏作为常绿植被，生长态势较好，其占比并无较大

变化。 

表 5    不同季节各类地物面积占比统计结果

Table 5    Statistical result of the area proportions of various
ground features in different seasons

地物类型
不同影像期数各类地物面积占比/%

2020-10-21 2021-06-09

道路 16.5 16.7

建筑物 0.1 0.1

裸地 7.1 2.8

紫穗槐 9.8 11.6

草本 0.4 0.7

乔木 0.9 2.6

铺地柏 9.7 9.2

紫藤 0.2 —

高羊茅 42.4 —

枯萎高羊茅 12.9 —

紫花苜蓿 — 54.3

金叶女贞 — 1.3

紫锦木 — 0.7
  

3.4　植被修复效果评价

基于上述两期影像的最优分类结果，从植被覆

盖度及植被配置模式 2 个角度对常村煤矸石山植被

修复效果进行评价分析。 

3.4.1　植被覆盖度分析

根据上述研究结果可知，多特征融合影像结合

支持向量机分类方法可高精度识别不同植被信息。

因此，分别选择 2020−10−21 期和 2021−06−09 期多

特征融合影像的 SVM 方法的分类结果进行类别合

并，合并结果中仅包含植被和非植被 2 种类型，结果

如图 7 所示。

如图 7a 所示，2020-10-21 期影像中，煤矸石山西

侧及南侧下破位出现了较多的非植被像元，结合研

究区域正射影像及实地调查结果可知，该区域的部

分植被枯死及植被栽植密度较低导致部分土壤裸露
 

(a) 2020-10-21 (b) 2021-06-09

植被

非植被

N

图 7    植被与非植被像元提取结果

Fig.7    Extraction result of vegetation and non-vegetation pixels
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在外。如图 7b 所示，2021-06-09 期影像中，煤矸石山

南侧下坡位出现较多非植被像元，结合实地调查结

果可知，该区域紫穗槐呈明显条带状分布，且带间并

未栽植其他植被，故出现较多裸露土壤。同时，除道

路及建筑物外，两期影像中植被栽植区域基本实现

了植被全覆盖。基于式（3）分别计算两期影像的植

被覆盖度，其中 2020-10-21 期为 76.35%，2021-06-09
期为 80.46%，夏季矸石山植被覆盖度略高于秋季。

上述结果分析表明，常村煤矸石山植被修复的整体

效果较好。 

3.4.2　植被配置模式分析

基于上述两期影像的最优分类结果，简要分析

常村煤矸石山的植被配置模式，并以此评价植被修

复效果。分别选取 2020-10-21 期和 2021-06-09 期影

像各 3 处典型植被覆盖区域对植被配置模式进行分

析，如图 8 所示。
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图 8    植被配置模式分析

Fig.8    Analysis of vegetation configuration patterns
 

如图 8 所示，矸石山体不同坡位采用了不同的

植被配置模式进行植被修复且实地情况与分类结果

基本相符。其中，A 区域采用草、灌型配置模式，主

要以栽植紫穗槐为主，并搭配少量高羊茅等草本植

物；C、F 区域也采用草、灌型配置模式，但主要以栽

植铺地柏为主，其他草本植物较少；D 区域亦采用草、

灌型配置模式，但主要以条带形式栽植紫穗槐，带间

种植紫花苜蓿等草本植物。以上 4 个区域均采用草、

灌型配置模式，该模式主要用于固坡或熟化土壤，防

止水土流失，增加土壤有机质，提高土壤肥力，为引

入乔木打下基础。B、E 区域采用纯植草型配置模式，

主要栽植高羊茅、紫花苜蓿等草本植被，植被多样性

较差，该模式能够起到防止降水冲刷的护坡作用，特

别是矸石山边坡常采用植草护坡措施以减少水土

流失。

根据上述分析结果可知，常村煤矸石山采用覆

土绿化技术进行植被修复，但不同坡位覆土厚度有

所不同，植被配置模式也相应不同。其中，大部分区

域受限于覆土厚度，采用草、灌型以及纯植草型配置

模式，并取得较好的修复效果。

综上所述，从植被覆盖度和植被配置模式 2 个

角度分析可知，常村煤矸石山植被修复整体效果较

好。同时，验证了利用无人机遥感技术可实现煤矸

石山植被种类的快速识别分类，为植被修复效果的

快速评价提供参考依据。 

4　讨　　论

研究成果表明，基于无人机遥感技术可实现煤

矸石山植被信息快速、准确的识别分类，但仍存在一

定的问题和局限性：

1）基于改进的人工特征选取方法所筛选的最优

分类特征对不同分类算法的精度提升有较大区别，

其 中 SVM 分 类 方 法 总 体 分 类 精 度 最 多 可 提 高

9.74%，而 NNC 和 MLC 分类方法最多可分别提高

3.93% 和 6.95%。分析这种差异产生的原因，主要是

由于当数据量较小时，SVM 分类器性能强于 NNC
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及 MLC 分类器，会取得较好的分类效果。在后续研

究中，可适当增加数据量以验证改进的人工特征选

取方法对不同分类算法是否具有良好普适性。

2）改进的人工特征选取方法是否适用于其他区

域的地物识别分类，如大田农作物分类、城市土地利

用现状普查、森林资源调查等还有待验证。

3）当不同类型植被的色彩、结构、纹理等特征相

似时，会产生较多错分和漏分误差，后续研究可考虑

加入其它特征信息，如植被指数、DSM 及多光谱信

息等以增强植被种类之间的差异性程度进而获得更

好的精细化分类结果。

4）研究仅获取了煤矸石山的可见光影像，影像

数据类型较为单一，且并未在现场实测反映植被长

势的其他参数，如叶面积指数、叶绿素含量等，仅从

植被覆盖度和植被配置模式 2 个角度对煤矸石山植

被修复效果进行评价，内容较为薄弱。在后续研究

中，可采集煤矸石山的多光谱或高光谱影像并现场

实测叶面积指数、叶绿素含量等数据以反映矸石山

整体植被长势，最终实现对煤矸石山植被修复效果

更加准确、全面的评价。 

5　结　　论

1）色彩空间转换结合纹理滤波可有效构建煤矸

石山地物分类特征信息集。

2）改进的人工特征选取方法可简单、快速、高效

地筛选出最优分类特征，所选特征不仅能够有效反

映各类地物的差异性，同时可降低特征信息冗余，从

而提高后续影像分类处理的精度及效率。

3）基于改进的人工特征选取方法所获得的多特

征融合影像的分类效果均优于原始 RGB 影像。其

中，SVM 分类方法结合优选特征的分类精度最高，总

体分类精度最高可达 90.60%，相应 Kappa 系数为

0.878 0， 较 同 期 RGB 影 像 分 别 提 高 了 9.74% 和

0.126 5；而 MLC 和 NNC 分类方法精度提升较少，总

体分类精度最多可分别提高 6.95% 和 3.93%，相应

Kappa 系数分别提高 0.084 5 和 0.054 1。

4）常村煤矸石山采用了包括纯植草型和草、灌

型等多种植被配置模式进行植被修复，且秋夏两季

植被覆盖度均高于 75%，整体修复效果较好。
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