EWAE BN X RE

SIAA:

FWFs, BN, RS BT U RENLARARE A SR i UL, SRR HOR, 2023, 51(4): 149-156

WANG Huaixiu, FENG Siyi, LIU Zuiliang. Geological structure recognition model based on improved random forest algorithm[J]. Coal
Science and Technology, 2023, 51(4): 149-156.

TELR B2 View online: https:/doi.org/10.13199/j.cnki.cst.2021-0754

AT ARG HAh SCEE

Articles you may be interested in

ST MR 2 R PR S OR B R A TE AR R 1 07 1

Coal seam roadway identification method based on seismic multi—attribute fusion technology

JERBL2FRIAR. 2021, 49(6): 235-241  http://www.mtkxjs.com.cn/article/id/78b5d837-da58-43c0-b39f-51305af7fc 16

FeT C-FJ7 3k =4 o RS RURS BE P AT 5
Study on accuracy evaluation of 3D geological model based on C—F Method
PRl A 2017(11)  http://www.mtkxjs.com.cn/article/id/2c6{6a74-3639-4ef6—-9e58—-822afah597fe

B RETT Rz W T A T b SRS B BB SR A SIS

Experimental study on cascade optimization of geological models in intelligent mining transparency working face

JREIRBLEFIAR. 2020, 48(7)  http://www.mtkxjs.com.cn/article/id/623337¢8-793e—4eeb—acf6-95ef8F50260e

FEF st OTSUSRIL ) R TR B VR B 26 7 11 LR )

Recognition of out—of—production houndary of crops in mining subsidence arable land based on improved OTSU algorithm

TREIRBHEFIAR. 2020, 48(4)  http://www.mtkxjs.com.cn/article/id/d03a7d75-e1f0-46d1-9h95-4412652e7408

KRBT VRES AT R AR S R B BE AL T S AR A 5
Fuzzy random reliability model establishment of freezing shaft lining structure under big data environment

JERBI2FFIAR. 2019(11)  http://www.mtkxjs.com.cn/article/id/1ebd5496-069f-4102-h1a8-338574b84bee

BT T BORAIE A 28 1 U R R A 5
Study on outburst early warning model based on gas geological features

JERBIEFFIAR. 2018(12)  http://www.mtkxjs.com.cn/article/id/6ff983h7—e43b—4f9e—he1d-016bce340365

KHEMIFE AT, RAFHHEZTHRER


http://www.mtkxjs.com.cn/
https://doi.org/10.13199/j.cnki.cst.2021-0754
http://www.mtkxjs.com.cn/article/id/78b5d837-da58-43c0-b39f-51305af7fc16
http://www.mtkxjs.com.cn/article/id/78b5d837-da58-43c0-b39f-51305af7fc16
http://www.mtkxjs.com.cn/article/id/2c6f6a74-3639-4ef6-9e58-822afab597fe
http://www.mtkxjs.com.cn/article/id/2c6f6a74-3639-4ef6-9e58-822afab597fe
http://www.mtkxjs.com.cn/article/id/623337c8-793e-4eeb-acf6-95ef8f50260e
http://www.mtkxjs.com.cn/article/id/623337c8-793e-4eeb-acf6-95ef8f50260e
http://www.mtkxjs.com.cn/article/id/d03a7d75-e1f0-46d1-9b95-4412652e7408
http://www.mtkxjs.com.cn/article/id/d03a7d75-e1f0-46d1-9b95-4412652e7408
http://www.mtkxjs.com.cn/article/id/1ebd5496-069f-4102-b1a8-338574b84bee
http://www.mtkxjs.com.cn/article/id/1ebd5496-069f-4102-b1a8-338574b84bee
http://www.mtkxjs.com.cn/article/id/6ff983b7-e43b-4f9e-be1d-016bce340365
http://www.mtkxjs.com.cn/article/id/6ff983b7-e43b-4f9e-be1d-016bce340365

E51 548 CA =3 N Vol. 51 No. 4

2023 4F 4 H Coal Science and Technology Apr. 2023

ENRT5, MG, Xt TR LR AR 0 M SR s URBE I )], EBRLAEOAR, 2023, 51(4): 149-156.
WANG Huaixiu, FENG Siyi, LIU Zuiliang. Geological structure recognition model based on improved random
forest algorithm[J]. Coal Science and Technology, 2023, 51(4): 149—156.

BB R [ i3

EF it Batl AR B ARt Ry E iR Al R A

THAE, BER EE
(1 AbET@FF RS E 8 TRERE, LET 1026165 2. SR BB RERHE £ A R E, 176 FHR  045000)

1 EEBRWE R A RBATHEMEABIUN, A SRR — R B TN R 6 S ik e R A T
ey B, RRME % B Rk R xP s s BEAT A RTRM . R T 2 e hU3E 5 3] LA
FoEAA, R T ARt ARSI A S A E B AT RS Rk, HRE S BRRSH AR
L e LR Lk 6, 5 TR T A MLk 0 3b A AR DL BT TR
TALA RN 8] i Z R RAF A BT R R IR, AT =40 EHIRRRRRE6) 12 A E Bk, idid st
12 Fb B AT By AR K M AT A BRAF A T T AT, ARIELERARG T 230 12 AP B AT )5 409 B 1
Ao A AR EIEIE G 69 W R MW7 B Ae G A A AARE, B R — A MR R AL ok,
B R BB 5 EAR A KRR AR RS BT B AT WA &, AT Python &5 -F & & 5 5k
A, ek ARG 09 SRR A T A BB 97%, ZiE SRR EE, JEU T AR T
WA A B ER IS e KA LAY Sk, Bt UG 69 RAULAR AR Sk A 9 B A A Ok R R M R M i
W RS R EAEFF R, BRAEREEG, EERARI )L,
KB : e AR ; W B P AR Gy AL AR AR ik s 3 AR A
HE 532 S: TDI63 SRR RS A N EHS: 0253-2336(2023)04-0149-08
Geological structure recognition model based on improved random

forest algorithm
WANG Huaixiu', FENG Siyi', LIU Zuiliang
(1.8chool of electrical and information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 102616, China,
2. Huayang New Material Technology Group Co., Ltd., Yangquan 045000, China)
Abstract: Seismic attributes are often used for structural interpretation and prediction. In order to overcome the problems of multiple solu-
tions and uncertainty caused by single seismic attribute prediction, seismic multi-attribute fusion technology is used to interpret and pre-
dict geological structures. Based on the classical machine learning random forest algorithm model, an improved random forest algorithm is
proposed to fuse and classify multiple seismic attributes. Combining the seismic multi-attribute fusion technology with the improved ran-
dom forest algorithm, a geological structure recognition model based on the improved random forest algorithm is established. Taking the
second mining area of the second belt of Shanxi Xinyuan Coal Co., Ltd. as the research area, based on the twelve seismic attributes extrac-
ted from the three-dimensional seismic exploration results, through the attribute correlation analysis and feature importance analysis of the
twelve attributes, according to the results, all twelve attributes are retained for subsequent attribute fusion. Using the exposed and verified
geological structure faults and collapse columns as sample labels, an improved grid search optimization algorithm is proposed. The num-
ber of classifiers and the maximum feature number of a single decision tree are combined to search the grid. The algorithm model is estab-
lished based on Python language platform. The experimental results show that the prediction accuracy of the improved algorithm model
reaches 97%, After subsequent model verification, it is proved that compared with several algorithms such as logistic regression, gradient

lifting and decision tree, the improved random forest algorithm can more effectively identify abnormal bodies such as faults and collapse
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columns in geological structures, with higher recognition accuracy and wider applicability.

Key words: geological structure identification; seismic attribute fusion; random forest algorithm; geological model
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Table 4 Validation of optimization algorithm for random

forest parameters
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7 0.88511 0.89756
8 0.760 43 0.78297
9 0.91545 0.93159
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