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Molecular dynamics simulation of the effect of SDS / SDBS on the

wettability of anthracite
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Abstract: In order to explore the microscopic mechanism of anionic surfactants in coal mine dust removal. Using molecular dynamics
simulation methods, two commonly used anionic surfactants, sodium dodecyl sulfate (SDS) and sodium dodecylbenzene sulfonate
(SDBS), were selected to study their effects on the wettability of anthracite. The surface roughness and interaction energy of the surfactant
anthracite adsorption system were calculated. The relative concentration distribution and radial distribution function (RDF) of the water
surfactant anthracite system were analyzed. The microscopic reasons for the wettability change of anthracite were discussed.The results
show that there are two ways of adsorption of anionic surfactants on anthracite, the adsorption of the head group toward the surface of the
anthracite and the adsorption toward the liquid phase; this adsorption is physical adsorption, and van der Waals interaction plays a leading
role in the adsorption process; The presence of benzene ring in SDBS leads to tighter adsorption on the surface of anthracite, and the ad-
sorption configuration is more stable. The results of RDF and coordination number further show that the hydrophobicity of SDS near the
ketone group of anthracite is similar to that of SDBS; the hydrophobicity of SDBS near the hydroxyl group is stronger than that of SDS,
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which is the main reason for the stronger hydrophobicity and greater wettability change of anthracite after adsorption by SDBS; Benzene

ring plays an important role in the change of wettability of anthracite. This provides a certain basis for the selection of surfactants in coal

mine dust removal. The basic theory of wettability of anthracite has been enriched and developed. The molecular dynamics simulation

evaluation of the adsorption behavior and wettability changes of these two anionic surfactants is in good agreement with the existing exper-

imental data.

Key words: anthracite; sodium dodecyl sulfate (SDS); sodium dodecyl benzene sulfonate (SDBS); molecular dynamics; wettability
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Fig.1 Molecular structure of the selected anionic surfactant
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1] "dﬂ‘ 1

RO | 2% |

\ﬁ ";-:J,Pf; ‘ QX“‘F?&&% ¢ | |

L B WL

e A N |

QD « ‘ :

x’,j'.\,(‘x j. . E‘; !

et .

% i o ¥ 3

‘“‘3 AL -%

NP ~ &

L7

. ;.1 I A S (R D
(a) SDS (b) SDBS

B 5 AR AR A AL ey A G AR
Fig.5 Side view and top view of final adsorption configurations

188

PEFAETC AR T Y SR AR S A W], SDBS 43 Z [H]
A B A AUREEE Sy, RAEFR T %, 7E UM R TP
L SO AR S5 4, el A5 L 55 7K 55 TC AR =2 1] 1Y
FHEAEFRE S 5%
212 HEAEAL

FETH I MR 55 R B S A A BRI R, R LA
AT 25 W B R B8 A B AR BB 67 AR SR g
Z, W R s g et RS X A
A I RBAN A 2 2R 11 176 4 7] 55 I A 2% T AR B A i
B, NG TR B RE, A EAE AR R /i
SR G OPIEE = Gl R (i1 AN
2 (H)—= Q) HEER.

total

—-Ey,, —-Ev, (1)
- (2)
E=Ey+E, (3)
Hrp, Ey G 8 B AEHTRE: B, i A B
YENIBE; E N B BAEHRE; E o R TG MR 5 0
TR BE L5 Eeou ICHHIERE I, E. h 32 T T 14 511
fett. FHAR T IRIHE THREE E oo

(c) SDBS ¥4

(d) SDBS # %

H Perl i 5 i AR AL UBIA, IR USRI AERE
RE RSS2 L3R 1, W] LU 203 W5 P T M A A 5
H AR B T REX 45 TARSERE, ;X R E M2 1)
BT BT B9 A 2, B TS AR XTI 85 3 1o v 1
700 0 A R A B T, 1T AN A~ R

OB S AR LA FH RE &t , SDBS—JC MR M1 & B
LR HTRE AR, 3R BA I W B o A o o A
T2, T R B T R, E R I R R TR AR, X
BT €l e S N

b m] LU B, AR AH AR T RE A T A
HARRIBE, 75 JCHHAE-5 2 7% 4790 % B rp e 32 4
Mo IRy, w AR EAE S T RAA AR, 7R
FIRE R LK, S RIS R 1 JE B B 2% F,



MRz R 55 . SDS/SDBS Xt JCAHAE I M52 M 1) 43 3l 1 224548 2022 4 12 1)

F1 REEEFSTEEZ EHEEERRE

Table 1 Interaction energy between surfactant and anthracite

A Ey/(kJ-mol™") E/(kJ-mol™") E/(kJ-mol ") Epor/(kJ-mol ™)
SDS-TCARIE: -707.3 -9.24 -716.5 -716.5
SDBS-JE/ -822.8 -12.18 -835.0 -835.0
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