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基于深度神经网络的煤矿井下低光照图像增强算法

王满利 ，张　航 ，李佳悦 ，张长森
 （河南理工大学 物理与电子信息学院, 河南 焦作　454000）

摘　要：由于煤矿井下空间环境的复杂性与恶劣的光照条件，视觉设备获取的图像容易存在对比度不

足、纹理细节差等问题，严重影响了视觉设备的工作可靠性，限制了进一步的基于图像的智能视觉

应用。为提高矿井下低照度图像的对比度，同时强化其纹理细节，提出一种基于深度神经网络的矿

井下低光照图像增强模型，该模型包含有 3 个子网络，分别为分解网络、光照调整网络和反射重构

网络。分解网络将煤矿井下图像分解为光照分量和反射分量；光照调整网络利用深度可分离卷积结

构有效减少了模型的参数，强化了网络特征提取能力，此外，引入了 MobileNet 网络结构，进一步使

光照调整网络轻量化，同时保持其特征提取精度，有效实现光照分量对比度调整；反射重构网络引

入了残差网络结构，提升了网络特征学习性能与反射分量纹理细节恢复能力; 最后，将处理过后的光

照分量和反射分量基于 Retinex 理论融合，获得增强图像，实现矿井下图像的对比度提高与细节的增

强，克服了现有增强算法中所存在的增强图像细节丢失、边缘模糊、对比度和清晰度不足等问题。

数值试验表明，提出的模型能够在提高矿井下图像对比度的同时有效强化图像的纹理细节，并且具

有良好的稳定性和鲁棒性，能够很好地满足煤矿井下低光照图像增强的需求。

关键词：图像增强；图像分解；Retinex 理论；亮度调整；卷积神经网络
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Deep neural network-based image enhancement algorithm for low-illumination
images underground coal mines

WANG Manli, ZHANG Hang, LI Jiayue, ZHANG Changsen
 （School of Physics & Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China）

Abstract: Due to the complexity of the spatial environment and poor lighting conditions in underground coal mines, the images obtained
by vision devices are prone to problems such as insufficient contrast and poor texture details, which seriously affect the reliability of the

work of vision devices and limit further image-based intelligent applications. To improve the contrast of low-illumination images in under-

ground mines while enhancing their texture details, a deep neural network-based low-illumination image enhancement model is proposed,

which contains  three  sub-networks,  namely,  decomposition  network,  illumination  adjustment  network  and  reflection  reconstruction  net-

work. The decomposition network decomposes  the  underground coal  mine image into  light  and reflection components;  the  light  adjust-

ment network effectively reduces the parameters of the model using depth-separable convolutional structure and strengthens the feature ex-

traction ability of the network; in addition, the MobileNet network structure is introduced to further lighten the light adjustment network

while maintaining its feature extraction accuracy and effectively realizing the contrast adjustment of light components; the reflection re-

construction network  introduces  a  residual  network  structure  to  improve  the  contrast  adjustment  of  light  components.  Finally,  the   pro-

cessed illumination and reflection components are fused based on Retinex theory to obtain enhanced images, which achieve contrast en-

hancement and detail enhancement of underground mine images, overcoming the problems of detail loss, blurred edges, and lack of con-
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trast and clarity of the enhanced image that exist in existing enhancement algorithms. Numerical experiments show that the proposed mod-
el can effectively enhance the texture details of the image while improving the contrast of underground mine images, and has good stabil-
ity and robustness, which can well meet the needs of low-light image enhancement in coal mines.
Key words: image enhancement； image decomposition； retinex theory； illumination adjustment； convolutional neural networks

  

0　引　　言

随着煤炭科学开采理论的发展[1]，智能化无人开

采技术稳步推进，越来越多的数字图像、视频设备应

用于矿井下，用来进行煤炭识别、危险行为识别和灾

害警报等重要任务，但是由于这些设备需要依赖良

好的正常光输入图像，而矿井下环境复杂，光照条件

差，这些都可能会导致采集的图像对比度低、细节损

失严重，严重影响了数字图像、视频设备的工作可靠

性，为提高矿井下图像的质量，图像增强成为建设智

慧矿山需要攻克的关键环节。目前低光照图像增强

领域研究的热点主要包括基于模型的传统增强方法

和基于深度机器学习的增强网络。

基于模型的方法主要集中在直方图均衡化和基

于 Retinex 理论的方法。直方图均衡化的方法容易

引起图像过增强，影响图像的视觉质量，随着理论与

技术的不断发展，研究热点逐渐转移至基于 Ret-
inex 理论的方法。Retinex 理论认为成像设备采集到

的图像可分为光照分量和反射分量，反射分量由物

体本身的反射性质决定的，实现图像增强就是通过

去除图像的场景光照信息，消除光照分量的干扰，获

取反射图像分量。GUO 等[2] 基于 Ritinex 理论提出

LIME 算法，选取输入图像各像素通道中的最大值，

对光照图初始化处理，再用结构化的先验知识对光

照图进行处理，将反射图的输出作为增强结果，但容

易出现过增强的现象。SHU 等[3] 提出名为 NPE 的

算法，在增强图像对比度的同时保持了照明的自然

度，但没有考虑不同场景中照明的关系。CHULWOO 等[4]

提出一个用于低光照图像增强的多曝光融合框架，

采用双曝光融合算法，来提供准确的对比度和照度

增强，但增强结果亮度较低。LI 等[5] 基于 Retinex 理

论，提出 RRM 算法，它采用基于增广 Lagrange 乘子

的 ADM 算法代替对数变换，考虑噪声的影响，提出

Robust Retinex 模型，首次对噪声进行预测，同时估计

反射图和分段平滑的照明图来进行图像增强，但增

强结果不够清晰。基于去雾的算法[6] 利用了光照不

足的图像与有雾环境下图像之间的反向联系来达到

低光照图像增强的效果。

虽然传统的增强算法在图像增强领域取得了良

好的成效，但随着机器学习的快速发展，基于深度学

习的网络在图像增强视觉任务中表现出更为优越的

性能。其中，文献 [7] 在去噪自编码的基础上提出一

种堆叠式去噪自编码来实现低光照图像增强和去噪

功 能 ， 但 只 针 对 单 通 道 灰 度 图 。 文 献 [8] 提 出 的

MBLLEN 网络，通过 CNN 卷积层将图像丰富的特

征提前到不同的层次，使用多个子网同时进行增强，

最后将多分支输出的结果融合成最终的增强图像，

但算法的运行时间过长。文献 [9] 提出的 TBEFN 网

络，估计了两个分支的一个传递函数，可以得到两个

增强结果，然后采用一种简单的平均方法对两幅图

像进行融合，并通过一个细化单元进一步细化结果，

但 网 络 的 训 练 过 程 较 为 复 杂 。 文 献 [10] 提 出 的

GLAD 网络，首先基于全局先验和原始输入图像，再

采用卷积网络进行细节重建，得到增强结果，但增强

结果的清晰度不够。Retinex-Net 网络[11] 是基于 Ret-
inex 理论深度学习网络模型在低光照图像增强领域

的首次尝试，通过一个分解网络将图像分解成光照

图和反射图，然后对光照图单独进行增强，但增强结

果容易出现颜色失真的现象。同样受 Retinex 理论

的启发，文献 [12] 提出了一种新颖的渐进式 Ret-
inex 网络框架，而后文献 [13] 又在此基础上对反射

模块进行改进。文献 [14] 受到 Retinex 模型和信息

熵理论的启发，提出一个基于 Retinex 的最大熵模型

(DLN)，来分解光照度和反射率，但增强后的图像容

易出现细节损失。由于矿井下成像环境光照条件差，

导致目前的多数增强网络不能在提升图像对比度的

同时保持良好的纹理细节。

尽管有很多优越的低光照增强算法被提出，但

由于矿井下环境的复杂性、图像的特殊性，以及缺少

相应的数据集，未能出现一种效果显著的针对矿井

下图像增强的模型。

鉴于以上分析，提出一种基于深度神经网络的

矿井下低光照图像增强算法模型，该模型包含有 3
个子网络，分别为分解网络、光照调整网络和反射重

构网络。分解网络将输入的煤矿井下图像分解为对

应的光照图和反射图；光照调整网络结构利用深度

可分离卷积有效减少了模型的参数，强化了网络的

特征提取能力，从而对光照图进行更好的亮度调整；

此外，引入 MobileNet 网络结构，进一步使光照调整

网络轻量化，并保持其特征提取精度，有效实现光照
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分量对比度调整；反射重构网络加入了残差网络结

构，提升了网络特征学习性能与反射分量纹理细节

恢复能力。最后，将处理过后的光照图和反射图基

于 Retinex 理论进行融合，来实现矿井下图像的对比

度提高和细节的增强，克服了现有增强算法存在的

增强图像细节丢失、边缘模糊、对比度和清晰度不足

的问题，算法在提高增强图像的对比度情况下，充分

保留增强图像的细节与边缘信息。 

1　模型原理
 

1.1　总体网络结构

由于矿井下的复杂环境，导致矿井下图像容易

出现光照不足的问题和退化现象，为了解决这些问

题，构建出一种如图 1 所示的基于深度神经网络的

图像增强模型，该网络主要由 2 个分支组成，分别是

光照分量分支和反射分量分支，其中，光照分量分支

由分解网络模块 (Decomposition Module)、光照调整

网络模块 (Illumination Adjustment Module) 构成，反

射分量分支由分解网络模块和反射重构网路模块

(Reflection Restoration Module) 构成。输入的矿井下

图像进入分解网络模块，分解为光照图和反射图，再

分别通过光照调整网络模块和反射重构模块进行亮

度调整和细节增强。该网络在光照调整网络模块中

引入了深度可分离卷积，以便进行更好地提取特征；

在反射重构网络模块使用了残差结构，更好地保存

了原图的纹理细节。
  

光照
分量
分支

反射
分量
分支

Loss

Loss

Loss

Loss

反射图

反射重构模块

光照调整模块

光照图图像分解网络

图 1    矿井下增强网络结构

Fig.1    Underground mine enhancement network structure
 

Retinex 理论认为人们观测到的图像可以分解成

光照分量和反射分量：

S (x,y) = R(x,y)L(x,y) （1）

S (x,y) R(x,y)

L(x,y)

其中： 为原始图像； 为反射分量，描

述了观测图像的固有信息，可以被视为常量，与光照

无关； 为光照分量，描述了观测图像的不同光

照程度。由于没有真实图像的光照信息和反射信息

作为参考，这就导致了分解结果的不确定性，因此在

分解网络模块中正确使用先验正则化因子是很重要

的。假设图像没有退化现象，那么按照 Retinex 理论，

相同场景下所拍摄图像的反射图应相同，不同光照

条件则导致了光照图有很大的差别，但它们的结构

仍应具有一致性，且相对简单。所以，我们使用正常

光照条件下图像作为网络中各个模块的学习对象，

从成对的低光照和普通光照图像中自动学习参数。 

1.2　分解模块

分解网络模块存在于 2 个分支之中，用来提取

光照图和提取反射图，其中用来提取反射图的结构

[S l,S h]

[Rl,Rh]

[Ll,Lh]

是由经典的 U-Net 结构 [15] 和一个 1×1 的卷积层加

Sigmoid 激活函数组成；用来提取光照图的结构是由

一个 Conv+ReLU 层[16] 和一个 Conv 层组成，最后加

上一个 Sigmoid 层[17]，总体结构如图 2 所示。由于

使用了配对的低光照和正常光照的图像 做出

参考，同一场景的不同光照图像的反射图 一致，

而分解出来的 应该是分段平滑的。

此模块的损失函数设计为

LD = LD
re+ωrsLD

rs +ωmcLD
mc+ωisLD

is （2）

ωrs ωmc ωis其中， 、 和 分别为规范反射分量相似性、

光照分量平滑性和相互一致性损失的系数。

LD
re是重构误差函数，具体形式是：

LD
re = ∥S l−Rl⊗Ll∥1+ ∥S h−Rh⊗Lh∥1 （3）

S l S h

Rl Rh Ll Lh

∥·∥1
l1

其中， 和 分别为矿井下和正常光照条件下的

图像； 、 、 和 分别为矿井下和正常光照下的

图像分解出的反射分量和光照分量； 为采取的是

损失，重构误差函数约束了分解产生的反射分量和

光照分量重构之后尽量和分解前保持一致。
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LD
rs是用来规范反射分量的相似性，具体形式可

以表示为

LD
rs = ∥Rl−Rh∥1 （4）

LD
mc是相互一致性损失函数，矿井下低光照和正

常光的光照分量梯度和在较小或较大的时候表示此

时的光照在平滑物体表面 (分布均匀) 或者边缘 (光
照分布差异较大)，只有在梯度和不大不小时才惩罚，

也就是两个光照分量存在差异且差异不是特别大的

区域。具体形式为

LD
mc = ∥M⊗ exp(−cM)∥1 （5）

M = |∇Ll|+ |∇Lh|其中， 。

LD
is是光照分量平滑性函数，具体形式为

LD
is =

∥∥∥∥∥ ∇Ll

max(|∇S l| , ε)

∥∥∥∥∥
1
+

∥∥∥∥∥ ∇Lh

max(|∇S h| , ε)

∥∥∥∥∥
1
（6）

∇ ∇x ∇y其中， 为一阶导，包含了 (水平方向) 和 (垂直方

ε

|·|
向)， 是一个很小的正常数，为了避免 0 作为被除数，

表示绝对值。理想的光照分量应该在纹理细节上

尽可能地平滑，同时在整体结构上

S

L S L

应该得到较好的保留，这个平滑性的测量光照

是基于输入图像的结构来说的，其中在输入图像 中，

边缘位置的 惩罚较小，而 中的平坦区域位置， 的

惩罚就会变大，采用式 (6) 中的结构，可以减少边界

过度平滑的风险，因为它会以原始输入图像作为参

考，光照在平滑的物体上分布应平滑。

分解网络训练时初始学习率大小设置为 10−6，
训练轮数设置为 100，批处理图像数量为 48，训练时

损失函数曲线如图 3 所示。由图 5 可知，网络训练

至 60 轮时，损失值趋于稳定，达到收敛状态。

  

0 20 40

轮数

60 80 100

0.1

0.2

0.3损
失

值 0.4

0.5

0.6

0.7

图 3    分解网络损失函数曲线

Fig.3    Loss function graph of decomposition network
  

1.3　光照调整模块

光照调整网络模块网络结构采用了 MobileN-
et 结构[18]，它拥有更小的体积，更少的计算量，更高

的精度，在轻量级神经网络中拥有极大的优势。其

采用了深度可分离卷积 (Depthwise separable convo-
lution)[19] 构成的卷积层作为特征提取网络结构，深

度可分离卷积结构如图 4 所示，它相较于普通卷积，

大幅减少了模型的参数，并加深了特征提取网络的

深度，整个 MobileNet 模块结构如图 5 所示，其中的

depthwise  conv  block 就 是 分 层 卷 积 ， 之 后 会 经 过

Batch normalization 层和 ReLU 激活函数层，在之后

添加一个 1×1 的卷积进行通道处理。而光照调整模

块采用 MobileNet 网络进行 5 个特征层的提取，然后

再分别进行上采样和特征层的融合，最终通过 Sig-
moid 激活函数输出，总体结构如图 6 所示。此模块

的损失函数设计为

LA = EMS (L̂,Lk)+EMS (∇L̂,∇Lk) （7）

Lk Ll Lh L̂ EMS

f (x) y

其中， 为 或 ， 为光照调整模块的输出，

为均方误差，它是预测值 与目标值 之间差值平

方和的均值，其计算公式为

 

分解模块

Conv 3×3 & LreLu

Conv 3×3 & LreLu Conv 3×3 & LreLu

Conv 3×3 & LreLu

Upsample & concat

Upsample & concat

Concat

Sigmoid
Sigmoid

Conv 3×3 & LreLu

Conv 3×3 & LreLu

Conv 1×1 Conv 1×1

MaxPooling

MaxPooling

图 2    分解模块结构

Fig.2    General diagram of decomposition module structure
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EMS=

n∑
i=1

[
( f (x)− y)

]2
n

（8）
 

1.4　反射重构模块

基于 Retinex 理论，从数学的角度出发，退化的

低光照图像可以表示为

S (x,y) = R(x,y)∗L(x,y)+E(x,y)
= R̃(x,y)∗L(x,y)
= (R+ Ẽ)∗L(x,y)

（9）

R̃ E

E(x,y) = Ẽ(x,y)∗L(x,y)

E ∼ N(0,σ2) Ẽ i L
σ2

Li

式中， 为存在退化现象的反射图； 为图像解耦

后的退化现象，其中 。假设此

时的退化由加性高斯白噪声 (AWGN) 引起 [20]，则

，那么 即与每个像素点 上的 、 等值

密切相关。这就说明，反射图的恢复并不能在整个

图像上均匀地处理，而需要光照图的引导和参考。

反射重构网络模块利用更清晰的反射率作为混

乱反射率的参考，类似于层分解子网中更深层次的

反射分支。退化在反射上的分布复杂，且强烈依赖

于照明分布，将光照信息和退化的反射一起引入到

恢复网络中，可以解决颜色失真的问题，进而去除黑

暗区域的退化，实现图像细节的重构。针对矿井下

环境的特殊性，图像纹理信息较弱，容易出现对比度

低、细节损失，边缘信息丢失等问题，并提升网络的

特征表达能力，在网络结构中加入了残差层模块，具

体结构如图 7 所示，它使得网络层空置不会使得网

络性能下降，然而实际上的输出特征存在一定的数

值，使网络在除输出特征外还能学到新的特征，在图

 

3×3 depthwise Conv

BN & ReLu

BN & ReLu

Depthwise convolutional filters Pointwise convolutional filtersDepthwise separable convolution

1×1 Conv

图 4    深度可分离卷积块结构

Fig.4    Deeply separable convolutional block structure
 

Input

Conv block/s=2

MobileNet

Output

Output

Output

Output

Output

Depthwise conv block

Depthwise conv block/s=2

Depthwise conv block

Depthwise conv block

Depthwise conv block

Depthwise conv block/s=2

Depthwise conv block/s=2

Depthwise conv block/s=2

5*depthwise conv block

图 5    MobileNet 模块结构

Fig.5    MobileNet module structure

 

光照调整模块

Loss

Loss

2×conv3×3

& Lrelu

2*conv3×3

& Lrelu

Radio

Concat

Concat

Upsample
& concat

…

…

Conv 3×3 & Lrelu

Concat

Conv 3×3 & Lrelu

MobileNet

Upsample

& concat

Sigmoid

Out1 Out2 Out3 Out4 Out5

图 6    光照调整模块网络结构

Fig.6    Illumination adjustment module network structure
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像重建的过程中利用底部细节，提升了对网络的细

节处理能力。采用了 LN(Layer Normalization) 的归

一化方法，使每一层的维度分布更稳定并起到了正

则化的作用，使得模型不容易出现过拟合的现象。

最后通过 Swish 激活函数获得输出结果。反射重构

网络总体结构如图 8 所示。
  

Resblocks

Forward

Cov 3×3 Lrelu LN

Cov 3×3 LN

图 7    残差块结构

Fig.7    Residual block structure
  

Concat

…

Concat

…

反射重构网络

Conv 3×3 & Lrelu

Conv 3×3 & Lrelu

& Maxpooling 2×2&LN

Conv 3×3 & Lrelu

& Maxpooling 2×2 &LN

Conv 3×3 & Lrelu

Conv 3×3 & Lrelu

& Maxpooling 2×2

&LN

Conv 3×3 & Lrelu

& Maxpooling 2×2

&LN

Conv 3x3 & Lrelu& LN

Conv 3x3 & Lrelu& LN

Conv 3x3 & Lrelu

& upsample

Conv 3x3 & Lrelu& LN

Conv 3x3 & Lrelu

&  LN*4

Conv 1×1

Loss

Loss

图 8    反射重构网络结构

Fig.8    Reflection reconfiguration network structure
 

激活函数的选取十分关键，因为它是深度学习

的核心单元，即使激活函数只有少量的提升，但它也

会因为大量的使用而获得极大的收益。现在深度神

经网络中常用的激活函数为 Sigmoid 激活函数，它可

以把输入的连续实值变换为 0～1 间的输出，具有单

调连续的特点。但它存在一定的缺陷，在深度神经

网络中梯度反向传导时，可能会出现梯度爆炸和梯

度消失的现象，其中梯度爆炸发生的概率较小，而梯

度消失发生的概率比较大。而且 Sigmoid 函数不是

关于原点中心对称的，这会导致后面一些网络层的

输入也不是以 0 为中心的，从而对梯度下降的运作

产生影响。同时 Sigmoid 函数需要进行指数运算，计

算耗时较长。考虑到上述原因，选取 Swish 来取代

Sigmoid 作为网络的激活函数。

Swish 激活函数为一种复合的激活函数，它的表

达式为

f (x) = xσ(x) （10）

σ(x)

f (x) ∞ f (x)

其 中 ， 为 Sigmoid 激 活 函 数 ， 因 为 Sig-
moid 函数的饱和性，会导致梯度消失的发生，当 x 非

常大时，就有 趋近于 x，但当 x 趋于− 时，则

趋于 0，从而解决了梯度消失的问题。同时，Swish
函数的有助于防止慢速训练期间，梯度逐渐趋近于

0 导致饱和，它的优势在于无上界有下界、非单调且

平滑的特性，在模型的优化和泛化中起到重要作用，

并在深层模型上的效果表现较好。

此模块的损失函数设计为

LR =
∑
∥ R̂−Rh ∥22−SSIM(R̂,Rh)+ ∥ ∇R̂−∇Rh ∥22

（11）

R̂其中， 为恢复后的重构图；SSIM[21] 为低光照

图像增强后与对应的正常光图像之间的 SSIM 值。 

2　数值试验

由于矿井下采集的低光照图像没有对应正常光

照图像，无法直接获得低光照−正常光照成对数据集，

经过大量试验发现，利用多种杰出的低光照图像增

强算法增强矿井低光照图像，根据 NIQE 评价指标，

选取 NIQE 指标最优图像与矿井原低光照图像构成

训练数据集对，可近似获得矿井低光图像成对数据

集（Mine-data），作为网络的训练集与验证集。试验

中选用的杰出算法包括：LIME 、RRM、MBLLEN、

Retinex-Net[11] 、KinD[12] 、DLN 与 KIND_plus，经过

测试，NIQE 指标最佳的图像主要分布于 3 种算法，

分别是 KIND、DLN、KIND_plus，占比大致分别为

23％、22％、11％。制作的 Mine 数据集由大小为

600×400 的近似正常光照图像和低光照图像对组成，

数据集包含 240 组图像对。
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10−6试验中网络的初始学习率设置为 ，训练轮数

设置为 3 000，批量大小设置为 16。试验采用 Python
编写算法代码，使用 Adam 作为优化器，基于 Tensor-
flow 框架实现，在 NVIDIA GeForce RTX 3090 GPU
下进行训练。

为了验证算法的有效性与实用性，进行了矿井

下图像增强效果的对比；为了验证制作的煤矿井下

图像数据集的有效性，分别进行了不同数据集测试

图像的主观视觉效果对比与客观指标对比；为了验

证算法的适应性与可行性，进行了各算法在不同数

据集中增强图像的指标对比；为了验证每部分网络

结构的必要性，进行了相关的消融试验；为了验证算

法的实时性，进行了各算法耗时性的对比。 

2.1　矿井下图像的增强效果对比

通过将此网络的增强结果和目前最先进的低光

照增强算法进行比较来说明该网络的有效性和实用

性，比较算法包括：BIMEF、GLAD、MBLLEN、RRM、

DLN、 Retinex-Net、 LIME 和 KinD。 采 用 PSNR、

SSIM、NIQE 和 LOE 作为图像质量评价指标。其中

峰值信噪比 PSNR 和结构相似度 SSIM 这两个指标，

是广泛使用的 2 种图像质量指标，都需要有对应的

正常图像作为参考，值都是越大越好；自然图像质量

评估器 NIQE，用于评估真实图像恢复，不需要其他

图像作为参考，值越小越好；亮度顺序误差 LOE，表

示增强后图像自然度的亮度顺序误差，LOE 值越小，

说明该图像亮度顺序保持得越好，也就是说该图像

的质量越高。

对矿井下低照度图像进行测试，在由矿井下低

照度图像组成的 MI 数据集中随机抽取 T1、T2、T3
图像增强效果如图 9 所示。

  

DLN LIME KinD OursRetinex-Net

Input BIMEF GLAD MBLLEN RRM

DLN LIME KinD OursRetinex-Net

Input BIMEF GLAD MBLLEN RRM

DLN LIME KinD OursRetinex-Net

Input BIMEF GLAD MBLLEN RRM

(a) T1

(b) T2

(c) T3

图 9    矿井下测试图像增强效果

Fig.9    Image enhancement effect of underground test in mine
 

图 9a、图 9b、图 9c 中的第 1 行从左到右依次对

应 输 入 的 矿 井 下 低 照 度 图 像 ， BIMEF， GLAD，

MBLLEN，RRM 增强图像；第 2 行从左到右依次对

应 DLN、LIME、Retinex-Net、KinD 与本文算法对应
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的增强图像。

视觉分析图 9a 可以看出，增强 T1 时，传统的增

强算法中，LIME 相较于 BIMEF、RRM 视觉效果表

现较好，但它增强过后灯光处的明亮区域被过度增

强，BIMEF 增强后的图像的饱和度和对比度过强，导

致图像整体偏暗，地板的黑暗处并没有得到很好的

增强。RRM 对低光照图像的亮度改善有所欠缺，墙

上部分细节模糊。而深度学习算法中，Retinex-Net
增 强 后 ， 整 张 图 像 出 现 了 较 为 严 重 的 颜 色 失 真 ；

GLAD 增强后的图像中地板和墙壁周围仍存在噪声，

部分区域的颜色和边缘也出现了一定的失真现象；

MBLLEN 增强过后的图像对比度过强，亮度增强的

效果不明显，尤其是在图像中的角落等黑暗处；KinD
的结果在边缘存在伪影，会影响了增强效果的视觉

美感；DLN 对图像色调的恢复程度较高，但对图像色

彩的恢复程度较低。算法增强后的图像较为清晰，

并且增强图的整体色调和细节恢复程度较为理想。

视觉分析图 9b 知，增强 T2 时，LIME 算法在视

觉上的增强效果仍然是最好的，但它增强过后的强

光区域仍会出现过度增强的现象，而其他的传统算

法 BIMEF、RRM 增强后的图像效果相近，图像整体

偏暗，增强效果不明显。而基于深度学习的 Retinex-
Net 网络对图像的色彩恢复程度明显比较弱，一定程

度上引起了图像的颜色出现不均与失真；从图中放

大区域看出，GLAD 增强后的图像仍存在噪声，对比

度提升不明显；MBLLEN 增强过后的图像仍然出现

了亮度增强的效果不明显的情况；由局部放大图可

知，KinD 增强后结果在图 9b 的通道右侧出现伪影，

对视觉效果产生影响；DLN 增强后的图像存在色差，

饱和度提升不明显。由图 8b 的局部放大图可看出，

本文算法增强后的图像纹理细节更加丰富，增强效

果较为理想。

视觉分析图 9c 可以看出，传统的增强算法中，

LIME 在图 9c 的明亮区域出现了明显的过增强现象，

对视觉效果产生一定的影响，但增强效果比 BIMEF
与 RRM 增强后的图像的效果好，BIMEF 和 RRM 增

强后的图像整体偏暗。在深度学习算法中，由图 9c
中局部放大图可知，Retinex-Net 对图像的色彩恢复

能力较差，容易出现颜色失真的现象；GLAD 增强后

的图像噪声含量大，在图像边缘细节处较为模糊；

MBLLEN 增强过后的图像对比度过强，亮度增强的

效果不明显；由图 9c 中局部放大图可知，KinD 增强

后的结果在地面上有仍会出现伪影，这同样对增强

效果的视觉美感产生了影响；DLN 增强后的图像引

起了较大的色差，在强光区域出现了过度增强的现

象。算法增强后的图像对比度、清晰度与纹理细节

相较 KinD 都有不同程度的提高，整体增强效果较为

理想。

考察煤矿井下图像[22] 可以发现，图像的质量与

NIQE 指标密切相关，NIQE 指标越低的图像质量越

好，故这里从各算法的增强结果中选取 NIQE 指标最

佳的图像作为正常光参考图像，组成煤矿井下图像

数据集，作为训练集与测试集。为验证其有效性，从

该数据集中随机抽取了 T4、T5 图像进行测试，并将

它们与其他 8 种算法的结果进行对比，具体效果如

图 10 所示。

从图 10 可以看出各算法在矿井下测试图像增

强中出现的问题，在煤矿数据集 (Mine-data) 中同样

存在，由于 Mine-data 选取了各增强算法中 NIQE 指

标最佳的图像，作为对应的正常光照下的图像进行

参考，所以可以计算出它们的 PSNR 和 SSIM 值，从

图 11 能够直观地看出，提出的算法在 PSNR 值的对

比中列居首位，在 SSIM 值的对比中列居第 2，而排

在前位的还有 GLAD、KIND、DLN、MBLLEN，而相

对来说结果不太理想的算法是 BIMEF、RRM、LIME
和 Retinex-Net 算法。

为了防止抽取图像的随机性和偶然性，这里又

将 Mine-data 数据集中低照度图像作为测试图像，

分别计算出它们的 PSNR、SSIM 的值，并与其他 8
种算法做出比较，通过不同图像质量指标数据，来对

这些算法的增强性能进行比较，具体数据如见表 1。

分析表 1 中数据可知，提出的算法在 PSNR 和

NIQE 两个指标中均位于 9 种算法的首位，KinD 算

法均排行第 2，而在 SSIM 指标上仅以微弱的差距落

后于 KinD 算法，在 LOE 指标上，仅低于 MBLLEN
算法，而优于 KinD 算法。综合分析，提出的算法无

论是从视觉效果上还是指标分析上都表现出很大的

优势。 

2.2　不同数据集图像增强对比

为验证算法的适应性与可行性，将 LOL 数据集

作为测试图像，分别计算出它们的 PSNR、SSIM、

NIQE 和 LOE 的值，并与其他 8 种算法做出比较，通

过 4 个图像质量指标数据分析这些算法的增强性

能[23]，具体数据见表 2。

分析表 2 中数据可知，提出的算法在 SSIM 和

NIQE 两个指标中均位于 9 种算法的首位，KinD 算

法均排行第 2，而在 PSNR 指标上仅以微弱的差距落

后于 KinD 算法，在 LOE 指标上，仅低于 MBLLEN
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图 10    煤矿数据集测试图像增强结果

Fig.10    Mine-data test image enhancement results
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图 11    Mine 数据集测试图像增强结果的峰值信噪比和 SSIM 值

Fig.11    PSNR and SSIM values of the Mine-data test image enhancement results
 

表 1    矿井下图像质量指标数据比较

Table 1    Comparison of underground image quality index data

Metrics BIMEF GLAD MBLLEN RRM DLN LIME Retinex-Net KinD Ours

PSNR↑ 14.73 17.73 20.25 14.93 16.57 13.31 18.38 24.11 24.40

SSIM ↑ 0.42 0.74 0.76 0.44 0.74 0.43 0.77 0.87 0.86

NIQE ↓ 3.78 3.71 4.87 4.32 3.63 3.65 4.42 3.52 3.47

LOE ↓ 409.98 251.79 226.22 447.23 289.11 514.82 467.91 237.65 228.72

 

表 2    LOL 数据集图像质量指标比较

Table 2    Comparison of image quality indicators in LOL dataset

Metrics BIMEF GLAD MBLLEN RRM DLN LIME Retinex-Net KinD Ours

PSNR↑ 13.84 19.72 14.13 13.88 19.15 16.76 16.77 19.8 19.77

SSIM ↑ 0.58 0.7 0.49 0.66 0.71 0.56 0.56 0.77 0.79

NIQE ↓ 7.52 6.94 4.73 5.94 4.79 9.13 9.73 4.7 4.51

LOE ↓ 305.2 714.8 280.9 958.7 1 210.8 817.2 1 712.6 977.3 304.46

　　注：↑表示数值越大越好；↓表示数值越小越好。
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算法，而远远超过 KinD 算法。总体看来，算法在不

同客观指标上的综合表现较好。

对于 LIME、NPE 数据集和 MI 数据集，由于没

有可用的参考图像。因此，仅采用 NIQE 来评估各个

算法的之间的性能差异，试验结果见表 3。
  

表 3    各数据集图像质量指标数据比较

Table 3    Comparison of image quality index data among
different datasets

Algorithm
NIQE

LIME-data NPE-data MI-data

BIMEF 4.26 4.19 3.4

GLAD 4.12 3.98 2.87

MBLLEN 4.51 4.54 4.91

RRM 4.64 4.84 4.64

DLN 4.51 4.32 2.97

LIME 4.15 4.26 4.64

Retinex-Net 4.59 4.56 3.76

KinD 4.25 4.12 3.09

Ours 4.07 4.05 3.03
 

分析表 3 数据可知，在 NIQE 指标的对比中，本

文所提出的算法位列首位，GLAD 算法排名第 2，对

于 NPE 数据集，排名仅次于 GLAD 算法，对于 MI 数

据集，排名第 1 的是 GLAD 算法，DLN 排名第 2，本

文提出的算法排名第 3。

综上分析，提出的算法在不同数据集上表现良

好，从而证实了此算法的适应性、可行性与优越性。 

2.3　消融试验

文中的网络结构中加入了 Mobile-Net 与残差块

等结构，为体现每部分网络结构对最终生成增强图

像的影响，进行了相关的消融试验，来验证每部分网

络结构的必要性和有效性，所选测试质量指标的图

片取自于矿井下低光照图像数据集（Mine-data）中的

部分图像，消融试验每种情况下的数值质量指标对

比结果见表 4。

从表 4 中的数据可以直观看出，缺少网络的任

一部分都会对最终增强图像的指标质量产生不同程

度的影响，这也证明了每一部分网络结构的必要性

和有效性。 

2.4　算法耗时性分析

为比较 9 种增强算法的平均耗时，分别使用 9
种算法增强 50 幅 600×400 的测试图像，统计其增强

单幅图像的平均耗时，具体数据比较结果见表 5。 

表 4    消融试验指标对比

Table 4    Comparison of alation experiments

Model w/o part PSNR↑ SSIM↑ NIQE↓ LOE↓

Proposed

Mobile-Net 19.59 0.81 3.82 230.57

Resblocks 15.62 0.81 3.11 247.89
Mobile-Net and

Resblocks
20.31 0.89 3.21 263.24

− 24.39 0.9 2.93 213.41
 
  

表 5    各算法耗时性比较

Table 5    Time consuming comparison of all algorithms

Method 耗时/s

BIMEF 2.931

GLAD 0.232

MBLLEN 17.518

RRM 18.809

DLN 0.142

LIME 15.256

Retinex-Net 0.183

KinD 0.286

Ours 0.237
 

由表 5 数据可知，本文算法平均计算速度 0.237 s，
略低于 DLN、Retinex-Net、GLAD，位居第四，算法运

行速度较好。 

3　结　　论

1）该网络为双分支结构，分别与 Retinex 理论的

光照分量和反射分量相对应，在光照分量网络分支

和反射分量网络分支分别实施光照分量调整和反射

分量重构。

2）光照调整网络利用深度可分离卷积强化轮廓

特征提取能力；反射重构网络利用残差网络结构强

化纹理细节信息提取，提升重构反射分量纹理细节

清晰度。

3）试验表明，文中针对矿井图像纹理细节弱特

征，构建的深度神经网络模型，相比目前公认 8 种图

强增强方法，更加适合矿井下低光照图像的增强，本

文模型增强图像在细节信息增强、对比度提高方面

具有一定的优势。
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