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Deep neural network-based image enhancement algorithm for low-illumination

images underground coal mines

WANG Manli, ZHANG Hang, LI Jiayue, ZHANG Changsen
(School of Physics & Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454000, China)

Abstract: Due to the complexity of the spatial environment and poor lighting conditions in underground coal mines, the images obtained
by vision devices are prone to problems such as insufficient contrast and poor texture details, which seriously affect the reliability of the
work of vision devices and limit further image-based intelligent applications. To improve the contrast of low-illumination images in under-
ground mines while enhancing their texture details, a deep neural network-based low-illumination image enhancement model is proposed,
which contains three sub-networks, namely, decomposition network, illumination adjustment network and reflection reconstruction net-
work. The decomposition network decomposes the underground coal mine image into light and reflection components; the light adjust-
ment network effectively reduces the parameters of the model using depth-separable convolutional structure and strengthens the feature ex-
traction ability of the network; in addition, the MobileNet network structure is introduced to further lighten the light adjustment network
while maintaining its feature extraction accuracy and effectively realizing the contrast adjustment of light components; the reflection re-
construction network introduces a residual network structure to improve the contrast adjustment of light components. Finally, the pro-
cessed illumination and reflection components are fused based on Retinex theory to obtain enhanced images, which achieve contrast en-

hancement and detail enhancement of underground mine images, overcoming the problems of detail loss, blurred edges, and lack of con-
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trast and clarity of the enhanced image that exist in existing enhancement algorithms. Numerical experiments show that the proposed mod-

el can effectively enhance the texture details of the image while improving the contrast of underground mine images, and has good stabil-

ity and robustness, which can well meet the needs of low-light image enhancement in coal mines.

Key words: image enhancement; image decomposition; retinex theory; illumination adjustment; convolutional neural networks
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Fig.9 Image enhancement effect of underground test in mine
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Fig.10 Mine-data test image enhancement results
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Fig.11 PSNR and SSIM values of the Mine-data test image enhancement results
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Table 1 Comparison of underground image quality index data

Metrics BIMEF GLAD MBLLEN RRM DLN LIME Retinex-Net KinD Ours
PSNR?T 14.73 17.73 20.25 14.93 16.57 13.31 18.38 24.11 24.40
SSIM 1 0.42 0.74 0.76 0.44 0.74 0.43 0.77 0.87 0.86
NIQE | 3.78 3.71 4.87 432 3.63 3.65 4.42 3.52 3.47
LOE | 409.98 251.79 226.22 447.23 289.11 514.82 467.91 237.65 228.72
&2 LOL HiEEEGREERILR
Table 2 Comparison of image quality indicators in LOL dataset
Metrics BIMEF GLAD MBLLEN RRM DLN LIME Retinex-Net KinD Ours
PSNR1 13.84 19.72 14.13 13.88 19.15 16.76 16.77 19.8 19.77
SSIM 1 0.58 0.7 0.49 0.66 0.71 0.56 0.56 0.77 0.79
NIQE | 7.52 6.94 4.73 5.94 4.79 9.13 9.73 4.7 4.51
LOE | 305.2 714.8 280.9 958.7 1210.8 817.2 1712.6 977.3 304.46

T MR EEBIORYT s | 2R R VBT .

239



2023 4F5 9 11

# £ M FH K 551 %

Bk, Mg it KinD Bk, BAE Sk, BIEEA
] 2 G AR L B 25 A R AL

X LIME. NPE %dfs 4 1 MI £0di 42, i Ti%
AT HMSEER . HIt, SCRH NIQE JeifAfi &1
AR Z B R 2E 5, IR E5 R 2% 3,

®3 BURKEGREEREELR

Table 3 Comparison of image quality index data among
different datasets
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Table 4 Comparison of alation experiments

Model w/o part PSNR? SSIM? NIQE| LOE|
Mobile-Net 19.59 0.81 3.82 23057
Resblocks 15.62 0.81 311  247.89
Proposed  Mobile-Net and
2031 0.89 321 263.24
Resblocks

— 24.39 0.9 2.93 213.41
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Table 5 Time consuming comparison of all algorithms

NIQE
Algorithm
LIME-data NPE-data MiI-data
BIMEF 4.26 4.19 34
GLAD 4.12 3.98 2.87
MBLLEN 4.51 4.54 491
RRM 4.64 4.84 4.64
DLN 4.51 432 2.97
LIME 4.15 4.26 4.64
Retinex-Net 4.59 4.56 3.76
KinD 425 4.12 3.09
Ours 4.07 4.05 3.03
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Method FERT/s
BIMEF 2.931
GLAD 0.232
MBLLEN 17.518
RRM 18.809
DLN 0.142
LIME 15.256
Retinex-Net 0.183
KinD 0.286
Ours 0.237
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