高级检索

生物柴油捕收剂强化粉煤灰浮选脱炭试验研究

代世琦, 张锐, 刘秦杉, 刘金成, 包西程, 邢耀文, 桂夏辉

代世琦,张 锐,刘秦杉,等. 生物柴油捕收剂强化粉煤灰浮选脱炭试验研究[J]. 煤炭科学技术,2023,51(S2):336−343

. DOI: 10.13199/j.cnki.cst.2023-0190
引用本文:

代世琦,张 锐,刘秦杉,等. 生物柴油捕收剂强化粉煤灰浮选脱炭试验研究[J]. 煤炭科学技术,2023,51(S2):336−343

. DOI: 10.13199/j.cnki.cst.2023-0190

DAI Shiqi,ZHANG Rui,LIU Qinshan,et al. Experimental study on biodiesel collector enhanced coal fly ash flotation decarbonization[J]. Coal Science and Technology,2023,51(S2):336−343

. DOI: 10.13199/j.cnki.cst.2023-0190
Citation:

DAI Shiqi,ZHANG Rui,LIU Qinshan,et al. Experimental study on biodiesel collector enhanced coal fly ash flotation decarbonization[J]. Coal Science and Technology,2023,51(S2):336−343

. DOI: 10.13199/j.cnki.cst.2023-0190

生物柴油捕收剂强化粉煤灰浮选脱炭试验研究

基金项目: 

国家自然科学基金面上资助项目(52174265)

详细信息
    作者简介:

    代世琦: (1999—),男,山西太原人,博士。E-mail:1092936777@qq.com

  • 中图分类号: TD923;TD984

Experimental study on biodiesel collector enhanced coal fly ash flotation decarbonization

Funds: 

National Natural Science Foundation of China(52174265)

  • 摘要:

    粉煤灰颗粒表面氧化程度高,疏水性差,易形成稳定的水化膜。常规烃类油捕收剂难以有效地吸附在粉煤灰颗粒表面从而提高粉煤灰表面疏水性,造成粉煤灰浮选药耗量大,脱炭困难,严重制约粉煤灰回收利用。为解决传统捕收剂在粉煤灰浮选脱炭中选择性差,分选效率低及环境污染严重的问题,采用生物柴油作捕收剂进行粉煤灰浮选脱炭试验。通过包覆角、饱和吸附量、颗粒团聚行为、红外光谱、气相色谱-质谱联用等测试方法进一步分析了生物柴油捕收剂强化粉煤灰浮选脱炭机理。试验结果表明,相比于常规烃类油捕收剂,生物柴油捕收剂具有较优的选择性,均可改善浮选效果,其中1600型和1030型捕收剂质量复配比为3∶1,用量为200 g/t时,浮选效果最佳,单一1600型和1030型捕收剂效果相当。不同捕收剂处理后,包覆角大小为柴油<1600型捕收剂<1030型捕收剂<复配药剂,对去离子水的吸附量大小为柴油>1030型捕收剂>1600型捕收剂>复配药剂,0.045~0.010 mm颗粒团聚尺寸为复配>柴油>原样。机理分析表明,生物柴油捕收剂中的酯、羧酸和醇类化合物的极性端基团与粉煤灰表面含氧官能团之间形成氢键从而吸附在粉煤灰表面,使其疏水端暴露在矿浆中,提高粉煤灰表面疏水性,使其细颗粒更易团聚,从而提高了粉煤灰的可浮性以及降低了泡沫产品的灰分。研究成果为开发适用于粉煤灰绿色、高效浮选脱炭捕收剂提供策略和指导。

    Abstract:

    The high degree of oxidation and poor hydrophobicity of fly ash particles result in the formation of stable hydration films that impede the effective adsorption of conventional hydrocarbon-based collectors onto the particle surfaces. Conventional hydrocarbon oil collector can slightly improve the surface hydrophobicity of coal fly ash due to its low adsorption on the surface of coal fly ash particles, resulting in large consumption of flotation agent and difficulty in decarbonization of coal fly ash, thus seriously restricts the recovery and utilization of coal fly ash. In order to solve the problems of poor selectivity, low separation efficiency and serious environmental pollution of traditional collectors in the flotation decarbonization of coal fly ash, biodiesel was selected as the collector for the flotation decarbonization test of coal fly ash. The mechanism of enhanced decarbonization of coal fly ash by biodiesel collector was further analyzed by means of coating angle, saturated adsorption capacity, particle agglomeration behavior, infrared spectrum, gas chromatography-mass spectrometry and other test methods. The test results show that compared with conventional hydrocarbon oil collectors, biodiesel has better selectivity and can improve the flotation effect. When the blend ratio of 1600 and 1030 is 3∶1 and the dosage is 200 g/t, the flotation effect is the best, and the effect of single 1600 and 1030 collectors is comparable. After treatment with different collectors, the coating angle is diesel<1600<1030<composite agent, and the adsorption capacity of deionized water is diesel>1030>1600>composite agent. The particle aggregation size of 0.045~0.010 mm is composite agent>diesel>original sample. Mechanism analysis shows that the polar end groups of esters, carboxylic acids and alcohols in the biodiesel collector form hydrogen bonds with the oxygen-containing functional groups on the surface of coal fly ash to adsorb on the surface of coal fly ash, exposing the hydrophobic end of coal fly ash to slurry, improving the surface hydrophobicity of coal fly ash, making its fine particles easier to agglomerate, thus improving the floatability of coal fly ash and reducing the ash content of foam products. It provides strategies and guidance for the development of green and efficient flotation and decarbonization collectors suitable for coal fly ash.

  • 图  1   粉煤灰表面C1s分峰拟合

    Figure  1.   The C1s fitting spectra of coal fly ash surface

    图  2   捕收剂种类和用量对粉煤灰浮选指标的影响

    Figure  2.   Influence of collector type and dosage on flotation index of coal fly ash

    图  3   不同复配比捕收剂对粉煤灰浮选指标的影响

    Figure  3.   Influence of collector with different compounding ratio on flotation index of coal fly ash

    图  4   复配捕收剂用量对粉煤灰浮选指标的影响

    Figure  4.   Influence of compound collector dosage on flotation index of coal fly ash

    图  5   不同捕收剂处理后包覆角测试结果

    Figure  5.   Test results of wrap angle after treatment with different collectors

    图  6   不同捕收剂处理后饱和吸附量测试结果

    Figure  6.   Test results of saturated adsorption capacity after treatment with different collectors

    图  7   颗粒团聚行为测试结果

    注:△T为透射光强度变化量;△BS为背散射光强度变化量。

    Figure  7.   Test results of particle agglomeration behavior

    图  8   颗粒团聚分析

    Figure  8.   Particle agglomeration analysis

    图  9   粉煤灰与不同捕收剂的红外光谱

    Figure  9.   FTIR spectrum of coal fly ash and different collectors

    表  1   粉煤灰粒度组成分析

    Table  1   Size composition analysis of coal fly ash

    粒级/mm 产率/% 烧失量/%
    +0.5 1.06 14.75
    0.5~0.25 6.67 18.34
    0.25~0.125 22.70 14.58
    0.125~0.074 17.31 10.83
    0.074~0.045 14.59 12.52
    −0.045 37.68 10.94
    合计 100.00 12.51
    下载: 导出CSV

    表  2   粉煤灰表面C1s拟合结果

    Table  2   The C1s fitting results of coal fly ash surface

    基团 C—C/C—H C—O C=O O=C—O
    含量/% 47.47 33.23 5.13 14.17
    下载: 导出CSV

    表  3   1600型捕收剂的气相色谱-质谱分析结果

    Table  3   GC/MS analysis of 1600 collector

    保留时间/min 物质 质量分数/%
    15.101 正十六烷 4.57
    17.313 正十七烷 30.17
    17.376 植烷 2.69
    20.245 正二十一烷 37.97
    21.136 正二十二烷 3.26
    23.613 碳酸二乙基己酯 6.04
    25.107 14-羟基十八酸 3.64
    26.023 20-羟基二十烷酸 2.89
    28.215 油酸十四烷醇酯 8.77
    下载: 导出CSV

    表  4   1030型捕收剂的气相色谱-质谱分析结果

    Table  4   GC/MS analysis of 1030 collector

    保留时间/min 物质 质量分数/%
    20.386 反-9-十八碳烯酸甲酯 40.88
    20.533 硬酯酸甲酯C18 3.83
    22.057 顺-13-二十烯酸甲酯 6.93
    22.279 花生酸甲酯 8.83
    23.671 芥酸甲酯 2.86
    23.872 山嵛酸甲酯 6.60
    25.176 cis-15-十四酸甲酯 2.42
    25.348 木蜡酸甲酯 5.25
    26.467 正三十六烷 2.04
    30.268 β-谷甾醇 2.11
      注:仅统计分析质量分数大于2%的物质。
    下载: 导出CSV
  • [1] 张旭,杜涛. 粉煤灰的高效利用及粉煤灰基Al-MCM-41的制备[A]. 第十一届全国能源与热工学术年会论文集[C]. 中国安徽马鞍山,2021:200−214.

    ZHANG Xu,DU Tao. Efficient utilization of coal fly ash and CFA-based Al-MCM-41 preparation [A]. Proceedings of the 11th National Energy and Thermal Engineering Academic Annual Meeting[C]. Ma'anshan,Anhui,China,2021:200−214.

    [2] 李 琴,杨岳斌,刘 君,等. 我国粉煤灰利用现状及展望[J]. 能源研究与管理,2022(1):29−34.

    LI Qin,YANG Yuebin,LIU Jun,et al. Present status and Prospect of fly ash utilization in China[J]. Energy Research and Management,2022(1):29−34.

    [3] 李国胜. 浮选泡沫的稳定性调控及粉煤灰脱炭研究 [D]. 徐州:中国矿业大学,2013.

    LI Guosheng. Regulation of flotation froth stability and removal of unburned-carbon from coal fly ash [D]. Xuzhou:China University of mining and technology,2013.

    [4] 朱广利,王浩宇,李海龙,等. 粉煤灰脱炭研究进展及展望[J]. 洁净煤技术,2017,23(1):110−114.

    ZHU Guangli,WANG Haoyu,LI Hailong,et al. Methods of fly ash decarbonization[J]. Clean Coal Technology,2017,23(1):110−114.

    [5]

    UçURUM M,TORAMAN Ö Y,DEPCI T,et al. A Study on characterization and use of flotation to separate unburned carbon in bottom ash from cayirhan power plant [J]. Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2011,33(6):562−574.

    [6]

    YANG L,LI D,ZHU Z,et al. Effect of the intensification of preconditioning on the separation of unburned carbon from coal fly ash[J]. Fuel,2019,242:174−183. doi: 10.1016/j.fuel.2019.01.038

    [7] 廖寅飞,任厚瑞,安茂燕,等. 新型纳米粒子捕收剂强化低阶煤浮选机理[J]. 煤炭学报,2021,46(9):2767−2775.

    LIAO Yinfei,REN Hourui,AN Maoyan,et al. Mechansim of enhancing low rank coal flotation using nanoparticles as a novel collector[J]. Journal of China Coal Society,2021,46(9):2767−2775.

    [8] 夏文成,胡志伟,李懿江,等. 煤焦油基捕收剂强化长焰煤的浮选及机理[J]. 中国矿业大学学报,2021,50(1):176−182.

    XIA Wencheng,HU Zhiwei,LI Yijiang,et al. Coal tar-based collector enhancing the flotation of long flame coal and its mechanism[J]. Journal of China University of Mining and Technology,2021,50(1):176−182.

    [9] 王 磊,李孟乐,常国慧,等. 非离子型复配捕收剂强化长焰煤浮选试验研究[J]. 煤炭科学技术,2022,50(2):323−333.

    WANG Lei,LI Mengle,CHANG Guohui,et al. Study on mechanism of non-ionic compound collector for enhancing flotation of long flame coal[J]. Coal Science and Technology,2022,50(2):323−333.

    [10]

    XING Y,GUO F,XU M,et al. Separation of unburned carbon from coal fly ash:A review[J]. Powder Technology,2019,353:372−384. doi: 10.1016/j.powtec.2019.05.037

    [11]

    EISELE T C,KAWATRA S K. Use of froth flotation to remove unburned carbon from fly ash[J]. Mineral Processing and Extractive Metallurgy Review,2002,23(1):1−10. doi: 10.1080/08827500214516

    [12]

    HARRIS T,WHEELOCK T D. Process conditions for the separation of carbon from fly ash by froth flotation[J]. International Journal of Coal Preparation and Utilization,2008,28(3):133−152. doi: 10.1080/19392690802098446

    [13]

    DRZYMALA J,GORKE J T,WHEELOCK T D. A flotation collector for the separation of unburned carbon from fly ash[J]. Coal Preparation,2005,25(2):67−80. doi: 10.1080/07349340590927404

    [14]

    YANG L,LI D,ZHANG L,et al. On the utilization of waste fried oil as flotation collector to remove carbon from coal fly ash[J]. Waste Management,2020,113:62−69. doi: 10.1016/j.wasman.2020.05.045

    [15]

    LI Y,HU Z,XIA W,et al. Application of compound reagent H511 in the flotation removal of unburned carbon from fly ash[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2020,595:124699.

    [16]

    ZHOU F,YAN C,WANG H,et al. The result of surfactants on froth flotation of unburned carbon from coal fly ash[J]. Fuel,2017,190:182−188. doi: 10.1016/j.fuel.2016.11.032

    [17] 胡振文,郭远新,林祥玲,等. 高炭粉煤灰浮选脱炭试验研究[J]. 硅酸盐通报,2021,40(3):907−913.

    HU Zhenwen,GUO Yuanxin,LIN Xiangling,et al. Experimental research on decarbonization of high-carbon fly ash by flotation[J]. Bulletin of the Chinese Ceramic Society,2021,40(3):907−913.

    [18]

    XING Y,XU M,GUO F,et al. Role of different types of clay in the floatability of coal:Induction time and bubble-particle attachment kinetics analysis[J]. Powder Technology,2019,344:814−818. doi: 10.1016/j.powtec.2018.12.074

    [19]

    XIA Y,YANG Z,ZHANG R,et al. Performance of used lubricating oil as flotation collector for the recovery of clean low-rank coal[J]. Fuel,2019,239:717−725. doi: 10.1016/j.fuel.2018.11.086

    [20]

    LIU W,LIU W,WEI D,et al. Synthesis of N,N-Bis(2-hydroxypropyl)laurylamine and its flotation on quartz[J]. Chemical Engineering Journal,2017,309:63−69. doi: 10.1016/j.cej.2016.10.036

    [21]

    YAO Q,LI Y,TANG X,et al. Separation of petroleum ether extracted residue of low temperature coal tar by chromatography column and structural feature of fractions by TG-FTIR and PY-GC/MS[J]. Fuel,2019,245:122−130. doi: 10.1016/j.fuel.2019.02.074

    [22]

    MIAO Z,XING Y,GUI X,et al. Anthracite coal flotation using dodecane and Nonyl Benzene[J]. International Journal of Coal Preparation and Utilization,2018,38(8):393−401. doi: 10.1080/19392699.2016.1277209

    [23] 周长春,阎 波,刘炯天. 芳烃捕收剂的结构对浮选性能的影响[J]. 中国矿业大学学报,2012,41(1):82−85.

    ZHOU Changchun,YAN Bo,LIU Jiongtian. Effects of the structures of aromatic collectors on flotation performance[J]. Journal of China University of Mining and Technology,2012,41(1):82−85.

    [24] 王福丽,王 颖. 实验室气质联用(GC/MS)常见问题及处理方法[J]. 中国检验检测,2021,29(4):87−88.

    WANG Fuli,WANG Ying. Common Problems and solutions of laboratory GC/MS[J]. China Inspection Body and Laboratory,2021,29(4):87−88.

  • 期刊类型引用(3)

    1. 何淑欣,杨科,何祥,文志强. 正态分布矸石侧限压缩特征与声发射特征研究. 地下空间与工程学报. 2024(03): 827-837 . 百度学术
    2. 张田录,鞠明和,卢方舟,朱涵. 静载煤巷破裂失稳致冲的侧向应力影响规律研究. 中国矿业. 2024(08): 136-146 . 百度学术
    3. 李子波,张国华,李豫波,秦涛,陈刚,李佳臻,邹军鹏. 切顶留巷矸石帮演化过程及侧向压力分析. 煤炭科学技术. 2024(08): 23-35 . 本站查看

    其他类型引用(1)

图(9)  /  表(4)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  6
  • PDF下载量:  14
  • 被引次数: 4
出版历程
  • 收稿日期:  2023-02-21
  • 网络出版日期:  2024-03-04
  • 刊出日期:  2023-12-29

目录

    /

    返回文章
    返回