高级检索

热冲击花岗岩力学响应及损伤特征显微CT试验研究

王嘉敏, 王守光, 李向上, 卜墨华, 栾兆龙, 张鹏

王嘉敏,王守光,李向上,等. 热冲击花岗岩力学响应及损伤特征显微CT试验研究[J]. 煤炭科学技术,2023,51(8):58−72

. DOI: 10.13199/j.cnki.cst.2023-0180
引用本文:

王嘉敏,王守光,李向上,等. 热冲击花岗岩力学响应及损伤特征显微CT试验研究[J]. 煤炭科学技术,2023,51(8):58−72

. DOI: 10.13199/j.cnki.cst.2023-0180

WANG Jiamin,WANG Shouguang,LI Xiangshang,et al. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. Coal Science and Technology,2023,51(8):58−72

. DOI: 10.13199/j.cnki.cst.2023-0180
Citation:

WANG Jiamin,WANG Shouguang,LI Xiangshang,et al. Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning[J]. Coal Science and Technology,2023,51(8):58−72

. DOI: 10.13199/j.cnki.cst.2023-0180

热冲击花岗岩力学响应及损伤特征显微CT试验研究

基金项目: 

国家自然科学基金资助项目(52204094);中国博士后科学基金资助项目(2021M701541);中国煤炭科工集团有限公司科技创新创业资金专项面上资助项目(2022-MS001)

详细信息
    作者简介:

    王嘉敏: (1994—),女,山西运城人,助理研究员,博士。E-mail:jasmin1029@163.com

    通讯作者:

    李向上: (1991—),男,河北石家庄人,助理研究员,博士。E-mail:xiangshang_li@126.com

  • 中图分类号: TD315

Study on mechanical properties and damage characteristics of granite under thermal shock based on CT scanning

Funds: 

National Natural Science Foundation of China (52204094); China Postdoctoral Science Foundation (2021M701541); General Funding Project for Science and Technology Innovation and Entrepreneurship Fund of China Coal Science and Industry Group Co., Ltd. (2022-MS001)

  • 摘要:

    在深部地热资源开发过程中,通常利用低温流体的冲击作用诱导高温岩石热破裂来提高储层的渗透特性。为了揭示热冲击作用下岩石的损伤破裂机理,对高温加热后的花岗岩(20 ℃、150 ℃、300 ℃、450 ℃、600 ℃和750 ℃)进行了自然冷却和水冷却处理,并对处理后的花岗岩开展了波速测试、单轴压缩试验和CT扫描试验,探讨了热冲击作用对花岗岩纵波波速、抗压强度、弹性模量等力学参数以及细观结构损伤的影响。研究结果表明:①随着热处理温度升高,花岗岩的纵波波速、抗压强度与弹性模量逐渐减小,峰值应变逐渐增加,且相比于自然冷却,水冷却作用后岩石的波速与力学性质劣化更显著。②通过CT扫描试验,获得了不同加热温度与热处理方式作用下花岗岩的孔裂隙结构空间分布特征,可以直观反映岩石细观结构的热损伤程度。当热处理温度小于等于450 ℃时,花岗岩扫描切片中的热致裂纹数量较少,裂隙连通性较差;超过450 ℃后,花岗岩内部微裂纹快速发育和扩展,并逐渐有形成裂隙网络的趋势,且水冷却对花岗岩的细观损伤致裂效果更明显。③基于三角网格离散技术,结合椭球模型重构算法和裂隙张量计算理论,对热冲击后花岗岩的三维裂隙场进行定量表征,并建立了裂隙组构张量与峰值强度的关系,进一步揭示了热冲击花岗岩细观结构对其力学性质的影响机理。

    Abstract:

    During the exploitation of deep geothermal resources, the thermal fractures of high-temperature rocks are usually induced by the impact of low-temperature fluids to improve the permeability of reservoir rocks. In order to reveal the damage and fracture mechanism of rock after thermal shock, the granites heated at high temperature (20 ℃, 150 ℃, 300 ℃, 450 ℃, 600 ℃ and 750 ℃) were treated by natural cooling and water cooling respectively, and the wave velocity test, uniaxial compression test and CT scanning were carried out on the treated granites. The mechanical effect of thermal shock on P-wave velocity, compressive strength and elastic modulus of granite were also discussed. The experimental results show that with the increase of heat treatment temperature, the P-wave velocity, compressive strength, and elastic modulus of rock gradually decrease, and the peak strain gradually increases. Compared with natural cooling, the wave velocity and mechanical properties of rock deteriorate more significantly after water cooling. Based on CT scanning, the spatial distribution characteristics of pore and fracture structure of granite under different heating temperatures and heat treatment methods were obtained, which can directly reflect the thermal damage degree of rock microstructure. When the heat treatment temperature is not higher than 450 ℃, the number and size of thermally induced cracks in granite scanning slices are less and the connectivity of cracks is relatively poor. When the temperature exceeds 450 ℃, the micro-cracks in granite develop and expand rapidly, and tend to form fracture network gradually, and the damage and cracking effect of water cooling on the microscomic-structure of granite is more obvious than that of natural cooling. In addition, based on triangular mesh discretization technique, ellipsoid model reconstruction algorithm and fracture tensor calculation theory, the three-dimensional fracture field of granite after thermal shock is quantitatively characterized, and the relationship between fracture fabric tensor and peak strength was established, which further reveals the influence mechanism of granite microscomic-structure on its mechanical properties under thermal shock.

  • 钻孔预抽煤层瓦斯一直是我国煤矿瓦斯灾害治理的最普适手段之一[1-3]。随着煤炭开采资源逐步向深部转移,煤层瓦斯压力、瓦斯含量逐渐增加,而煤层透气性逐渐降低,煤层瓦斯的抽采难度随之增大,表现为预抽浓度偏低、预抽瓦斯量衰减快。众所周知,透气性低是影响煤层瓦斯抽采效果、制约煤矿安全生产主要因素[4-6],因此,如何提高煤层的透气性是破解瓦斯治理难题的关键。近年来,随着煤矿瓦斯治理技术的不断发展,各种瓦斯增透措施被广泛地应用于瓦斯灾害的治理,主要包括水力冲孔、水力割缝、水力压裂等。其中,水力冲孔主要是利用高压水射流冲刷钻孔内壁,增加抽采钻孔的半径、增加原始煤体的暴露空间面积[7-9];水力割缝技术则是利用高压射流水作为介质对钻孔内的煤体进行切割,从而在钻孔内形成新的缝槽,实现增加煤层透气性、降低原岩煤层应力的目的[10-12];水力压裂技术是通过向地层中挤入高压压裂液使裂缝产生并向远端扩张,从而建立新的流通通道,实现煤层增透的目的[13-15]。以上3种煤层增透措施均有各自的优势,但也存在一定的不足。其中,水力冲孔压力通常在5~20 MPa,适用坚固性系数较小的软煤,形成的孔洞具有不可控性,容易造成垮孔、堵孔、瓦斯积聚等现象;水力压裂压力可达到50~80 MPa,适用于坚固性系数较大的坚硬煤层,但压裂后裂缝将有不同程度的闭合;水力割缝压力一般为30~60 MPa,适用于中等坚硬煤层,但割缝的深度一般不超过1 m,施工过程中频繁退钻严重影响施工效率[16-17]

    淮南矿业集团丁集煤矿11-2煤层开采深度达到900 m以深,瓦斯压力超过1.4 MPa,瓦斯含量超过8 m3/t,普通的煤巷条带穿层钻孔预抽达标时间需要90 d,造成矿井采掘接替紧张。11-2煤层坚固性系数为0.7左右,透气性系数为0.013 m2/MPa2·d,属于中等硬度低透气性煤层,鉴于此,研究了1套水射压力可达100 MPa的超高压钻-割一体化技术工艺,以期能够增大煤层透气性,缩短抽采达标时间,实现松软突出煤层快速卸压消突的目的。

    超高压水力割缝是通过超高压水(60~100 MPa)将煤壁进行快速切割形缝槽并排除煤屑的方法[18-19]。水力割缝形成的缝槽等于在钻孔周围小范围内形成了一层薄的保护层,使缝槽上下的煤体得到有效卸压,大幅提升了煤层的渗透能力;同时,缝槽四周的煤体向着切割槽内产生一定的位移和膨胀变形,新生裂隙与原有孔裂隙之间相互贯通形成缝网,将进一步增加卸压增透范围,提高抽采效果和降低抽采达标时间[20-22]

    GF-100型超高压水力割缝装置主要由金刚石水力割缝钻头、水力割缝浅螺旋钻杆、超高压旋转接头、超高压清水泵、高低压转换器、超高压橡胶管等组成[23],性能良好、结构简单、操作方便、使用效果好,可实现钻进、切割一体化。设备及配件如图1所示。

    图  1  超高压水力割缝设备及配件
    Figure  1.  Equipment and accessories of ultra-high pressure hydraulic slotting

    图2为超高压水力割缝工艺示意图,具体施工程序为:

    图  2  超高压水力割缝工艺示意
    1—金刚石水力割缝钻头;2—高低压转换器;3—水力割缝浅螺旋钻杆;4—超高压旋转接头;5—螺纹接头;6—超高压橡胶管;7—超高压清水泵;8—水箱
    Figure  2.  Schematic of ultra-high pressure hydraulic schack process

    1)用$\phi $113 mm金刚石复合片钻头,按钻孔设计参数施工至设计深度。根据煤孔段长度,按1m割1刀计算该钻孔需割缝刀数。

    2)关闭静压水,撤出一根钻杆,连接高压水管路,开启高压水泵,由低到高调节增大,最后从高低压转换器上的喷嘴射出,钻机旋转,通过高压水流对周边煤体进行切割,每刀割缝时间不小于10 min。

    3)割缝期间根据孔口返水返渣情况,确定关闭高压清水泵时间,待管路卸压后撤卸1根钻杆,重新接上高压管路。

    4)重复上述步骤,完成预计割缝刀数。割缝完成后,及时关闭超高压清水泵,待充分卸压后,撤卸钻杆、封孔完成割缝作业。

    试验地点为丁集煤矿1361(1)运输巷底板抽采巷,预抽煤层为11-2煤,煤层瓦斯压力1.43 MPa,瓦斯含量8.05 m3/t,透气性系数0.013 m2/(MPa2·d),煤层坚固性系数0.79;普通钻孔抽采效率低,抽采达标时间长,以往工作面巷道抽采达标时间长达90 d,严重制约了矿井采掘接替。

    丁集煤矿1361(1)运输巷底板抽采巷长2 556.3 m,设计标高:−950.5~−837.5 m,巷道宽4.6 m,高3.6 m,锚网索支护,距11-2煤底板法距23.1~25.6 m,与被掩护煤巷中对中平距30 m。每间隔40 m设计施工一个帮部钻场,钻场尺寸为5.5 m×4 m×3 m(长×宽×高),钻场内施工注浆锚索并进行喷注浆,每个钻场设计6~7组钻孔,每组钻孔11个孔,终孔间距走向为7.5 m,倾向为5 m。1361(1)工作面平面布置如图3所示。

    图  3  1361(1)工作面平面布置
    Figure  3.  Layout plan of 1361 (1) working face

    1361(1)运输巷底板抽采巷11号~15号钻场为第三预抽评价单元,长度227 m,采用高压水力割缝增透措施。1361(1)运输巷底板抽采巷第二预抽评价单元,钻场号为6~10号钻场,单元长度213 m,采用矿井低压水冲孔增透措施。水力冲孔压力控制在5~20 MPa之间,超高压水力割缝压力控制在60 MPa以上。为了确保考察对比客观,2个预抽评价单元钻孔封孔方式均采用“两堵一注”带压注浆,抽采负压基本一致。

    1361(1)运输巷底板抽采巷2020-08-01开始在11号钻场进行高压水力割缝作业,第三预抽单元完成割缝钻孔共计240个。其中对11号钻场割缝情况进行统计考察,平均每刀割煤量10袋,因见煤段长度及割缝刀数差异,每孔割缝煤量不一样,具体割出煤量见表1

    表  1  1361(1)运输巷底板抽采巷11号钻场割缝情况统计
    Table  1.  Statistical of seam cutting in No.11 drilling yard of 1361 (1) transportation channel floor roadway
    孔号煤段
    长度/m
    割缝
    刀数
    割缝
    煤量/t
    割缝
    时间/min
    施工
    时间
    66-14.941.3412020-08-01夜
    66-34.641.2452020-08-01早
    66-53.630.9332020-08-02中
    66-73.330.8312020-08-01中
    66-92.720.5252020-08-01中
    66-112.720.6232020-08-02夜
    67-15.141.4402020-08-05夜
    67-33.220.7222020-08-05早
    67-53.830.9332020-08-05早
    67-72.920.6232020-08-05中
    67-92.620.7202020-08-05中
    67-112.320.6212020-08-06夜
    68-13.831.0352020-08-08中
    68-33.120.6222020-08-07中
    68-53.630.9242020-08-08夜
    68-72.520.7222020-08-08早
    68-92.520.6212020-08-08早
    68-112.220.5232020-08-08中
    下载: 导出CSV 
    | 显示表格

    根据统计分析,高压水力割缝每孔割2~4刀,割缝时间20~40 min,平均每刀割缝时间10.7 min,单孔割出煤量约0.8 t,单刀出煤量0.31 t。割缝高度按照平均4 cm计算,等效割缝半径约1.38 m。

    按照设计方案要求钻孔施工完毕以后,将所有设计钻孔接入瓦斯抽采系统进行瓦斯流量参数测定,利用多功能瓦斯参数测定仪对瓦斯流量进行测定,同时,对2种方案中的监测结果进行对比分析,监测内容包括抽采瓦斯体积分数、抽采流量等。

    对2个预抽评价单元抽采负压、浓度、混量及纯量进行考察记录,见表2表3

    表  2  1361(1)运输巷底板抽采巷第二评价单元抽采数据
    Table  2.  Extraction data of the second evaluation unit of 1361 (1) transportation channel floor roadway
    日期(月-日)抽放负压/
    kPa
    抽采浓度/
    %
    混合流量/
    (m3·min−1)
    纯量/
    (m3·min−1)
    07-2021.230.25.171.56
    07-2121.030.05.171.55
    07-2221.328.05.431.52
    07-2321.229.05.281.53
    07-2421.128.25.531.56
    07-2521.028.05.391.51
    07-2621.028.45.421.54
    07-2720.827.05.741.55
    07-2821.227.25.631.53
    07-2920.626.65.861.56
    07-3020.726.25.921.55
    07-3121.226.05.921.54
    08-0121.125.06.121.53
    08-0221.025.55.961.52
    08-0320.225.85.931.53
    08-0420.825.66.091.56
    08-0521.225.26.191.56
    08-0621.125.06.081.52
    08-0720.724.26.281.52
    08-0821.224.66.181.52
    08-0921.124.46.271.53
    08-1021.023.86.551.56
    08-1120.723.66.611.56
    08-1221.223.26.721.56
    08-1321.122.66.861.55
    08-1421.023.06.701.54
    08-1520.723.06.651.53
    08-1621.222.66.731.52
    08-1721.122.26.891.53
    08-1821.022.07.091.56
    08-1920.222.46.961.56
    08-2020.821.07.431.56
    08-2120.721.07.431.56
    08-2221.221.27.171.52
    08-2321.121.67.041.52
    08-2420.721.07.241.52
    08-2521.220.07.651.53
    08-2621.119.87.881.56
    08-2721.019.67.961.56
    08-2820.219.18.171.56
    08-2920.819.28.071.55
    08-3021.219.07.951.51
    下载: 导出CSV 
    | 显示表格
    表  3  1361(1)运输巷底板抽采巷第三评价单元抽采数据
    Table  3.  Extraction data of the third evaluation unit of 1361 (1) transportation channel floor roadway
    日期(月-日)抽采负压/
    kPa
    抽采浓度/
    %
    混合流量/
    (m3·min−1)
    纯量/
    (m3·min−1)
    08-2021.071.03.702.63
    08-2121.070.03.802.66
    08-2220.268.23.872.64
    08-2320.868.03.902.65
    08-2420.766.04.142.73
    08-2521.266.23.872.56
    08-2621.165.03.942.56
    08-2720.763.04.052.55
    08-2821.260.24.532.73
    08-2920.660.24.582.76
    08-3020.758.24.792.79
    08-3121.258.84.862.86
    09-0121.159.04.812.84
    09-0221.060.04.772.86
    09-0320.258.64.952.90
    09-0420.856.85.162.93
    09-0521.156.05.002.80
    09-0621.055.05.152.83
    09-0721.056.25.092.86
    09-0820.855.15.142.83
    09-0921.252.25.542.89
    09-1020.652.05.462.84
    09-1121.254.25.282.86
    09-1221.152.45.532.90
    09-1321.053.05.532.93
    09-1420.753.25.663.01
    09-1521.252.65.512.90
    09-1621.252.25.612.93
    09-1721.153.05.282.80
    09-1821.052.65.382.83
    09-1921.253.45.362.86
    09-2021.153.05.532.93
    09-2121.053.05.452.89
    09-2221.153.25.512.93
    09-2320.853.05.642.99
    09-2421.252.05.652.94
    09-2521.152.05.692.96
    09-2620.653.05.472.90
    09-2720.753.25.512.93
    09-2821.253.05.472.90
    09-2921.053.05.512.92
    09-3021.252.05.672.95
    下载: 导出CSV 
    | 显示表格

    2种不同抽采方法的单元平均瓦斯浓度统计结果如图4所示。从图4中可知,在41 d抽采时间内,单元平均瓦斯抽采浓度均为逐渐减小的变化趋势,高压水力割缝试验钻孔浓度在23 d时趋于稳定,水力冲孔试验钻孔浓度始终降低。其中,超高压水力割缝单元瓦斯浓度在52%~71%,平均为56.97%;水力冲孔试验单元平均瓦斯浓度分布在19.0%~30.2%,平均为24.07%。

    图  4  1361(1)运输巷底板抽采巷预抽单元浓度对比
    Figure  4.  Comparison of concentrations of pre-pumping units of 1361 (1) transportation channel floor roadway

    经对比分析可得,高压水力割缝试验钻孔浓度是水力冲孔试验钻孔浓度的2.37倍,高浓稳定抽采持续时间长,衰减慢。分析其原因主要为:超高压水力割缝相当于首先开采一到多层薄的保护层,使煤层多次膨胀变形,可极大地增加原始煤层的暴露表面积和瓦斯流动微通道连通性,从而使瓦斯压力达到充分的卸压,有效降低瓦斯压力梯度,提高煤层透气性。

    2种不同抽采方法的单孔平均纯量统计结果如图5所示。从图5中可知,在41 d 抽采时间内,高压水力割缝单元单孔平均瓦斯抽采纯量呈逐渐增大趋势,水力冲孔单元单孔平均瓦斯抽采纯量基本保持不变。其中,高压水力割缝单元单孔平均瓦斯抽采纯量在10.67~12.46 L/min, 平均为11.8 L/min;水力冲孔试验单元平单孔平均瓦斯抽采纯量分布在3.87~4 L/min,平均为3.95 L/min。经对比分析可得,超高压水力割缝单元单孔平均瓦斯抽采纯量是水力冲孔的2.99倍,这进一步说明超高压水力割缝增透抽采效果较好。

    图  5  1361(1)运输巷底板抽采巷预抽单元单孔抽采纯量对比
    Figure  5.  Comparison of single-hole extraction purity of the pre-pumping unit 1361 (1) transportation channel floor roadway

    依据试验区域单元瓦斯抽采达标条件的要求,按照2个预抽单元抽采纯量核算,所得结果显示,1361(1)运输巷底板抽采巷预第二预抽评价单元抽采达标时间约51 d,而1361(1)运输巷底板抽采巷预第二预抽评价单元抽采达标时间约23 d,采用超高压水力割缝增透技术比普通钻孔和水力冲孔技术抽采达标时间分别缩短了74.4%和54.9%。

    1)超高压水力割缝相当于首先开采一到多层薄的保护层,使煤层多次膨胀变形,可极大地增加原始煤层的暴露表面积和瓦斯流动微通道连通性,从而使瓦斯压力达到充分卸压,有效提高瓦斯抽采效果。

    2)超高压水力割缝单元平均瓦斯浓度为56.97%,单孔平均瓦斯抽采纯量为11.8 L/min,分别是水力冲孔的2.37倍和2.99倍。超高压水力割缝单元抽采达标时间约23 d,分别比普通钻孔和水力冲孔技术抽采达标时间缩短了74.4%和54.9%。

    3)超高压水力割缝增透技术在同等抽采效果情况下可极大地减少钻孔施工数量,有效缩短钻孔施工时间,显著减少瓦斯达标抽采时间,在瓦斯灾害治理应用效果显著,有效解决了瓦斯抽采难和达标时间漫长的问题。

  • 图  1   花岗岩试验样品

    Figure  1.   Experimental granite samples

    图  2   试验设备与试验方法

    Figure  2.   Experimental equipment and method

    图  3   CT扫描图像定量分析流程

    Figure  3.   Flow of quantitative analysis of CT scanning images

    图  4   热冲击作用后花岗岩表观颜色变化

    Figure  4.   Color change of granite after thermal shock

    图  5   热冲击作用下花岗岩的纵波波速变化规律

    Figure  5.   Variation of longitudinal wave velocity of granite after thermal shock

    图  6   热冲击作用下花岗岩的应力−应变曲线

    Figure  6.   Stress−strain curve of granite after thermal shock

    图  7   花岗岩的单轴抗压强度随温度变化规律

    Figure  7.   Variation of uniaxial compressive strength of granite with temperature

    图  8   花岗岩单轴压缩试验破坏

    Figure  8.   Failure of granite under uniaxial compression test

    图  9   花岗岩的弹性模量随温度变化规律

    Figure  9.   Variation of elastic modulus of granite with temperature

    图  10   花岗岩的峰值应变随温度变化规律

    Figure  10.   Variation of peak strain of granite with temperature

    图  11   热冲击花岗岩的CT扫描切片

    Figure  11.   CT scanning images of granite after thermal shock

    图  12   热冲击花岗岩的三维裂隙重构模型

    Figure  12.   3D fracture reconstruction model of granite after thermal shock

    图  13   热冲击花岗岩CT扫描切片逐层面孔隙率分布规律

    Figure  13.   Porosity distribution of CT scanning slices of granite after thermal shock

    图  14   热冲击花岗岩体积孔隙率变化规律

    Figure  14.   Variation of volume porosity of granite after thermal shock

    图  15   自然冷却组花岗岩的孔裂隙体积分布频数

    Figure  15.   Frequency of pore volume distribution of granite after natural cooling

    图  16   水冷却组花岗岩的孔裂隙体积分布频数

    Figure  16.   Frequency of pore volume distribution of granite after water cooling

    图  17   自然冷却组花岗岩的孔裂隙体积分布占比

    Figure  17.   Pore volume distribution ratio of granite after natural cooling

    图  18   水冷却组花岗岩的孔裂隙体积分布占比

    Figure  18.   Pore volume distribution ratio of granite after water cooling

    图  19   自然冷却组花岗岩的裂隙张量分析

    Figure  19.   Fracture tensor analysis of granite after natural cooling

    图  20   水冷却组花岗岩的裂隙张量分析

    Figure  20.   Fracture tensor analysis of granite after water cooling

    图  21   花岗岩裂隙组构张量的迹随热处理温度的变化规律

    Figure  21.   Trace of fracture fabric tensor of granite with heat treatment temperature

    图  22   花岗岩裂隙组构张量的迹与峰值强度的相关关系

    Figure  22.   Correlation between trace of granite fracture fabric tensor and peak strength

    表  1   热冲击花岗岩的力学性质指标

    Table  1   Mechanical property parameters of granite after thermal shock

    热处理温度/℃冷处理方式极限荷载F/kN抗压强度σ/MPa峰值应变ε/10−2弹性模量E/GPa
    20未处理18.61236.921.9921.54
    150自然冷却18.25232.352.0519.67
    300自然冷却16.60211.332.1219.24
    450自然冷却16.05204.392.2418.82
    600自然冷却11.12141.542.4812.79
    750自然冷却8.93113.702.539.38
    150水冷却18.77240.982.0521.28
    300水冷却16.29207.352.1918.44
    450水冷却14.88189.412.4716.95
    600水冷却9.48120.682.7910.23
    750水冷却8.11103.253.018.91
    下载: 导出CSV
  • [1] 汪集暘,胡圣标,庞中和,等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报,2012,30(32):25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    WANG Jiyang,HU Shengbiao,PANG Zhonghe,et al. Estimate of geothermal resources potential for hot dry rock in the continental area of China[J]. Science and Technology Review,2012,30(32):25−31. doi: 10.3981/j.issn.1000-7857.2012.32.002

    [2] 王贵玲,刘彦广,朱 喜,等. 中国地热资源现状及发展趋势[J]. 地学前缘,2020,27(1):1−9.

    WANG Guiling,LIU Yanguang,ZHU Xi,et al. The status and development trend of geothermal resources in China[J]. Earth Science Frontiers,2020,27(1):1−9.

    [3] 郭建春,肖 勇,蒋 恕,等. 深层干热岩水力剪切压裂认识与实践[J]. 地质学报,2021,95(5):1582−1593. doi: 10.3969/j.issn.0001-5717.2021.05.019

    GUO Jianchun,XIAO Yong,JIANG Shu,et al. Understanding and practice of hydraulic shearing in deep hot dry rocks[J]. Acta Geologica Sinica,2021,95(5):1582−1593. doi: 10.3969/j.issn.0001-5717.2021.05.019

    [4]

    WEI Xin,FENG Zijun,ZHAO Yangsheng. Numerical simulation of thermo-hydro-mechanical coupling effect in mining fault-mode hot dry rock geothermal energy[J]. Renewable Energy,2019,139:120−135. doi: 10.1016/j.renene.2019.02.070

    [5] 邓 潇. 温度交变对干热岩的损伤实验研究[D]. 北京: 中国石油大学(北京), 2017: 32−49.

    DENG Xiao. Experimental study of the influence of cyclic heating-cooling on hot dry rock[D]. Beijing : China University of Petroleum, Beijing, 2017: 32−49.

    [6] 许天福,张延军,于子望,等. 干热岩水力压裂实验室模拟研究[J]. 科技导报,2015,33(19):35−39. doi: 10.3981/j.issn.1000-7857.2015.19.004

    XU Tianfu,ZHANG Yanjun,YU Ziwang,et al. Laboratory study of hydraulic fracturing on hot dry rock[J]. Science and Technology Review,2015,33(19):35−39. doi: 10.3981/j.issn.1000-7857.2015.19.004

    [7] 张洪伟,万志军,周长冰,等. 干热岩高温力学特性及热冲击效应分析[J]. 采矿与安全工程学报,2021,38(1):138−145.

    ZHANG Hongwei,WAN Zhijun,ZHOU Changbing,et al. High temperature mechanical properties and thermal shock effect of hot dry rock[J]. Journal of Mining and Safety Engineering,2021,38(1):138−145.

    [8] 成泽鹏,郤保平,杨欣欣,等. 热冲击作用下花岗岩渗透性演变规律试验研究[J]. 太原理工大学学报,2021,52(2):198−202.

    CHENG Zepeng,XI Baoping,YANG Xinxin,et al. Experimental study on the evolution of granite permeability under thermal shock[J]. Journal of Taiyuan University of Technology,2021,52(2):198−202.

    [9]

    GAO Yanan, WANG Yunlong, LU Taiping, et al. An experimental study on the mechanical properties of high-temperature granite under natural cooling and water cooling[J]. Advances in Materials Science and Engineering, 2021: 9018462.

    [10] 蔡承政,任科达,杨玉贵,等. 液氮压裂作用下页岩破裂特征试验研究[J]. 岩石力学与工程学报,2020,39(11):2183−2203. doi: 10.13722/j.cnki.jrme.2020.0202

    CAI Chengda,REN Keda,YANG Yugui,et al. Experimental research on shale cracking characteristics due to liquid nitrogen fracturing[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(11):2183−2203. doi: 10.13722/j.cnki.jrme.2020.0202

    [11] 周 磊,董玉清,朱哲明,等. 高温对花岗岩细观及宏观力学断裂特性的影响[J]. 中南大学学报(自然科学版),2022,53(4):1381−1391.

    ZHOU Lei,DONG Yuqing,ZHU Zheming,et al. Influence of high temperature on micro and macro mechanical fracture characteristics of granite[J]. Journal of Central South University(Science and Technology),2022,53(4):1381−1391.

    [12]

    FAN Lifeng,GAO Jingwei,DU Xiuli,et al. Spatial gradient distributions of thermal shock-induced damage to granite[J]. Journal of Rock Mechanics and Geotechnical Engineering,2020,12(5):917−925. doi: 10.1016/j.jrmge.2020.05.004

    [13] 金爱兵,王树亮,魏余栋,等. 不同冷却条件对高温砂岩物理力学性质的影响[J]. 岩土力学,2020,41(11):3531−3539.

    JIN Aibing,WANG Shuliang,WEI Yudong,et al. Effect of different cooling conditions on physical and mechanical properties of high-temperature sandstone[J]. Rock and Soil Mechanics,2020,41(11):3531−3539.

    [14]

    SHEN Yanjun,HOU Xin,YUAN Jiangqiang,et al. Thermal deterioration of high-temperature granite after cooling shock: multiple-identification and damage mechanism[J]. Bulletin of Engineering Geology and the Environment,2020,79(10):5385−5398. doi: 10.1007/s10064-020-01888-7

    [15]

    QIN Yan,TIAN Hong,XU Nengxiong,et al. Physical and mechanical properties of granite after high-temperature treatment[J]. Rock Mechanics and Rock Engineering,2020,53:305−322. doi: 10.1007/s00603-019-01919-0

    [16] 徐小丽,高 峰,张志镇. 高温后围压对花岗岩变形和强度特性的影响[J]. 岩土工程学报,2014,36(11):2246−2252. doi: 10.11779/CJGE201412012

    XU Xiaoli,GAO Feng,ZHANG Zhizhen. Influence of confining pressure on deformation and strength properties of granite after high temperatures[J]. Chinese Journal of Geotechnical Engineering,2014,36(11):2246−2252. doi: 10.11779/CJGE201412012

    [17] 黄中伟,温海涛,武晓光,等. 液氮冷却作用下高温花岗岩损伤实验[J]. 中国石油大学学报(自然科学版),2019,43(2):68−76.

    HUANG Zhongwei,WEN Haitao,WU Xiaoguang,et al. Experimental study on cracking of high temperature granite using liquid nitrogen[J]. Journal of China University of Petroleum,2019,43(2):68−76.

    [18] 郤保平,吴阳春,王 帅,等. 青海共和盆地花岗岩高温热损伤力学特性试验研究[J]. 岩石力学与工程学报,2020,39(1):69−83.

    XI Baoping,WU Yangchun,WANG Shuai,et al. Experimental study on mechanical properties of granite taken from Gonghe basin, Qinghai province after high temperature thermal damage[J]. Chinese Journal of Rock Mechanics and Engineering,2020,39(1):69−83.

    [19] 靳佩桦,胡耀青,邵继喜,等. 急剧冷却后花岗岩物理力学及渗透性质试验研究[J]. 岩石力学与工程学报,2018,37(11):2556−2564.

    JIN Peihua,HU Yaoqing,SHAO Jixi,et al. Experimental study on physico-mechanical and transport properties of granite subjected to rapid cooling[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(11):2556−2564.

    [20] 王登科,张 平,浦 海,等. 温度冲击下煤体裂隙结构演化的显微CT实验研究[J]. 岩石力学与工程学报,2018,37(10):2243−2252.

    WANG Dengke,ZHANG Ping,PU Hai,et al. Experimental research on cracking process of coal under temperature variation with industrial micro-CT[J]. Chinese Journal of Rock Mechanics and Engineering,2018,37(10):2243−2252.

    [21]

    ZHAO Zhihong,DOU Zihao,XU Haoran,et al. Shear behavior of Beishan granite fractures after thermal treatment[J]. Engineering Fracture Mechanics,2019,213:223−240. doi: 10.1016/j.engfracmech.2019.04.012

    [22] 韦文术,ZHANG Jeffery,张健恺,等. 煤矿井下水处理反渗透膜的污染机理研究[J]. 煤炭科学技术,2021,49(4):103−110.

    WEI Wenshu,ZHANG Jeffery,ZHANG Jiankai,et al. Study on mechanism of reverse osmosis membrane pollution of water treatment in underground coal mine[J]. Coal Science and Technology,2021,49(4):103−110.

    [23] 赵阳升, 孟巧荣, 康天合, 等. 显微CT试验技术与花岗岩热破裂特征的细观研究[J]. 岩石力学与工程学报, 2008, 27(1): 28−34.

    ZHAO Yangsheng, MENG Qiaorong, KANG Tianhe, et al. Micro-CT Experimental technology and meso-investigation on thermal fracturing characteristics of granite[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 28−34.

    [24]

    YANG Zhen,YANG Shengqi,TIAN Wenling. Peridynamic simulation of fracture mechanical behaviour of granite specimen under real-time temperature and post-temperature treatments[J]. International Journal of Rock Mechanics and Mining Sciences,2021,138:104573. doi: 10.1016/j.ijrmms.2020.104573

    [25] 贾 蓬,杨其要,刘冬桥,等. 高温花岗岩水冷却后物理力学特性及微观破裂特征[J]. 岩土力学,2021,42(6):1568−1578.

    JIA Peng,YANG Qiyao,LIU Dongqiao,et al. Physical and mechanical properties and related microscopic characteristics of high-temperature granite after water-cooling[J]. Rock and Soil Mechanics,2021,42(6):1568−1578.

    [26]

    ISAKA B L A,RANJITH P G,RATHNAWEERA T D,et al. Quantification of thermally-induced microcracks in granite using X-ray CT imaging and analysis[J]. Geothermics,2019,81:152−167. doi: 10.1016/j.geothermics.2019.04.007

    [27]

    GOMAH M E,LI Guichen,BADER Salah,et al. Damage evolution of Granodiorite after heating and cooling treatments[J]. Minerals,2021,11(7):779. doi: 10.3390/min11070779

    [28]

    WU Xinghui,GUO Qifeng,ZHU Yu,et al. Pore structure and crack characteristics in high-temperature granite under water-cooling[J]. Case Studies in Thermal Engineering,2021,28:101646. doi: 10.1016/j.csite.2021.101646

    [29] 邓申缘,姜清辉,商开卫,等. 高温对花岗岩微结构及渗透性演化机制影响分析[J]. 岩土力学,2021,42(6):1601−1611.

    DENG Shenyuan,JIANG Qinghui,SHANG Kaiwei,et al. Effect of high temperature on micro-structure and permeability of granite[J]. Rock and Soil Mechanics,2021,42(6):1601−1611.

    [30] 蔺文静,陈向阳,甘浩男,等. 东南沿海厦门湾-漳州盆地地热地质特征及干热岩勘查方向[J]. 地质学报,2020,94(7):2066−2077. doi: 10.3969/j.issn.0001-5717.2020.07.014

    LIN Wenjing,CHEN Xiangyang,GAN Haonan,et al. Geothermal, geological characteristics and exploration direction of hot dry rocks in the Xiamen bay-Zhangzhou basin, southeastern China[J]. Acta Geologica Sinica,2020,94(7):2066−2077. doi: 10.3969/j.issn.0001-5717.2020.07.014

    [31] 滕吉文,司 芗,庄庆祥,等. 漳州盆地精细壳、幔异常结构与潜在干热岩探讨[J]. 地球物理学报,2019,62(5):1613−1632. doi: 10.6038/cjg2019L0595

    TENG Jiwen,SI Xiang,ZHUANG Qingxiang,et al. Fine structures of crust and mantle and potential hot dry rock beneath the Zhangzhou basin[J]. Chinese Journal of Geophysics,2019,62(5):1613−1632. doi: 10.6038/cjg2019L0595

    [32]

    FAN Lifeng,LI Han,XI Yan. Evaluation of the effects of three different cooling methods on the dynamic mechanical properties of thermal-treated sandstone[J]. Bulletin of Engineering Geology and the Environment,2022,81:154. doi: 10.1007/s10064-022-02630-1

    [33]

    KUMAR Susheel,VARMA Atul Kumar,MENDHE Vinod Atmaram,et al. Multi-scale pore characterization of Barakar shale in the Mand-Raigarh Basin, India: scientific upshots from geochemical approaches and imaging techniques[J]. Arabian Journal of Geosciences,2021,14:2188. doi: 10.1007/s12517-021-08585-z

    [34] 毛伟泽,吕 庆,郑 俊,等. 基于CT图像的花岗岩矿物组分与细观结构分析[J]. 工程地质学报,2022,30(1):216−222.

    MAO Weize,LYU Qing,ZHENG Jun,et al. Analysis of mineral composition and meso-structure of granite using CT images[J]. Journal of Engineering Geology,2022,30(1):216−222.

    [35] 王守光,穆鹏宇,王嘉敏,等. CT扫描的煤岩面裂隙椭球模型重构与张量表征及其应用[J]. 煤炭学报,2022,47(7):2593−2608.

    WANG Shouguang,MU Pengyu,WANG Jiamin,et al. Ellipsoid reconstruction and tensor characterization of planar fractures in coal obtained by CT-scanning and the applications[J]. Journal of China Coal Society,2022,47(7):2593−2608.

    [36]

    ZHU Zhennan,KEMPKA Thomas,RANJITH Pathegama Gamage,et al. Changes in thermomechanical properties due to air and water cooling of hot dry granite rocks under unconfined compression[J]. Renewable Energy,2021,170:562−573. doi: 10.1016/j.renene.2021.02.019

    [37] 闫国亮,孙建孟,刘学锋,等. 储层岩石微观孔隙结构特征及其对渗透率影响[J]. 测井技术,2014,38(1):28−32.

    YAN Guoliang,SUN Jianmeng,LIU Xuefeng,et al. Characterization of microscopic pore structure of reservior rock and its effect on permeability[J]. Well Logging Technology,2014,38(1):28−32.

    [38]

    ODA M. A method for evaluating the effect of crack geometry on the mechanical behavior of cracked rock masses[J]. Mechanics of Materials,1983,2(2):163−171. doi: 10.1016/0167-6636(83)90035-2

    [39]

    YANG Qiang,CHEN Xin,ZHOU Weiyuan. Effective stress and vector-valued orientational distribution functions[J]. International Journal of Damage Mechanics,2008,17:101−121. doi: 10.1177/1056789506067938

  • 期刊类型引用(19)

    1. 魏建平,校朋伟,张慧栋,陈长江,刘勇. 磨料水射流旋转切割煤岩最优参数匹配模型研究. 煤炭科学技术. 2025(01): 192-202 . 本站查看
    2. 陈芳. 水力冲孔技术在九鑫煤矿的应用研究. 能源与环保. 2025(02): 81-88 . 百度学术
    3. 聂百胜,包松,柳先锋,刘鹏,张豪,何珩溢,李孜健,周皓文,贾雪祺,何学秋. 地面煤层气高强电爆震体积致裂技术及工程试验. 煤炭学报. 2025(01): 546-563 . 百度学术
    4. 左伟芹,武圣杰,刘彦伟,龙丽群,贾浩杰,苗健,张世禧. 自吸环空流体式自激脉冲射流打击力时频特性试验研究. 煤炭科学技术. 2025(04): 300-311 . 本站查看
    5. 张鹏冲. 无保护层开采超高压水力增透抽采半径研究. 煤矿机械. 2025(06): 53-57 . 百度学术
    6. 武强. 切顶留巷Y形通风方式下采空区漏风规律研究. 陕西煤炭. 2025(05): 47-50 . 百度学术
    7. 刘勇,张汶定,陈长江,魏建平,徐向宇,张宏图,南勤聪,校朋伟. 松软煤层无水化增透理论及技术发展趋势. 煤炭学报. 2025(04): 2123-2146 . 百度学术
    8. 郭瑜,杨程涛,马彦操,王飞,韩晓明,刘超峰,武腾飞. 底抽巷钻冲作业恒压供水系统在古汉山矿的应用. 能源与环保. 2025(05): 7-12 . 百度学术
    9. 曹建军,刘军,王中华. 陕西省煤矿瓦斯灾害防治现状及对策研究. 中国煤炭. 2024(02): 35-43 . 百度学术
    10. 季飞. 松软煤层水力割缝缝槽形态控制技术研究及应用. 能源与环保. 2024(02): 29-33+39 . 百度学术
    11. 李树清,吕晨辉,黄飞,钱运来,黄向韬,赵天哲,汤铸,杨凤玲,王晨. 金刚石串珠绳锯切割煤层卸压增透效应研究. 煤炭学报. 2024(02): 785-800 . 百度学术
    12. 王博,侯恩科,马良,孙四清,杜新峰,杨建超,王正喜,单元伟. 顶板水平井分段分簇压裂治理掘进巷道瓦斯模式研究. 煤炭科学技术. 2024(05): 114-126 . 本站查看
    13. 邹军. 低透气性突出煤层群首采层水力割缝卸压抽采技术研究. 中国煤炭. 2024(06): 52-58 . 百度学术
    14. 郭勇. 可控冲击波强化增透技术在林华煤矿高瓦斯低渗透煤层的应用. 内蒙古煤炭经济. 2024(10): 168-170 . 百度学术
    15. 刘永三. 超高压水射流割压联合技术试验分析. 陕西煤炭. 2024(07): 20-23+37 . 百度学术
    16. 王想刚,张世范,许继宗,张吉福,陈国红,陈玉东,马占海. 高应力特厚突出煤层水力割缝卸压防突技术研究. 中国煤炭. 2024(10): 48-56 . 百度学术
    17. 刘杰,赵长鑫,张浩,李志斌,王斌荣,潘如小. 白羊岭煤矿底抽巷穿层水力冲孔技术研究与应用. 煤炭科技. 2024(05): 169-175 . 百度学术
    18. 双海清,张星,李宝军,林海飞,周斌,高海东,崔名威. 水射流割缝-注氮驱替联合促抽瓦斯模拟. 西安科技大学学报. 2024(06): 1030-1040 . 百度学术
    19. 迟跃彬,褚俊洁,贾京飞,刘帅. 桑树坪二号井难抽采煤层瓦斯突出特征与防治. 陕西煤炭. 2023(05): 110-114 . 百度学术

    其他类型引用(8)

图(22)  /  表(1)
计量
  • 文章访问数:  189
  • HTML全文浏览量:  31
  • PDF下载量:  63
  • 被引次数: 27
出版历程
  • 收稿日期:  2023-02-15
  • 网络出版日期:  2023-07-11
  • 刊出日期:  2023-08-24

目录

/

返回文章
返回