高级检索

吸附法去除矿井水中F研究进展

唐佳伟, 张锁, 刘兆峰, 张海琴, 包一翔, 侯福林, 郭强, 曹志国, 李井峰

唐佳伟,张 锁,刘兆峰,等. 吸附法去除矿井水中F研究进展[J]. 煤炭科学技术,2023,51(5):269−283

. DOI: 10.13199/j.cnki.cst.2022-1835
引用本文:

唐佳伟,张 锁,刘兆峰,等. 吸附法去除矿井水中F研究进展[J]. 煤炭科学技术,2023,51(5):269−283

. DOI: 10.13199/j.cnki.cst.2022-1835

TANG Jiawei,ZHANG Suo,LIU Zhaofeng,et al. Research progress in the removal of fluoride ions from mine water by adsorption method[J]. Coal Science and Technology,2023,51(5):269−283

. DOI: 10.13199/j.cnki.cst.2022-1835
Citation:

TANG Jiawei,ZHANG Suo,LIU Zhaofeng,et al. Research progress in the removal of fluoride ions from mine water by adsorption method[J]. Coal Science and Technology,2023,51(5):269−283

. DOI: 10.13199/j.cnki.cst.2022-1835

吸附法去除矿井水中F研究进展

基金项目: 

国家能源集团科技创新资助项目(GJNY-21-129);煤炭开采水资源保护与利用全国重点实验室自主研发资助项目(SHGF-16-20)

详细信息
    作者简介:

    唐佳伟: (1992—),男,北京人,工程师,博士。Tel:010-57337332,E-mail:20062356@ceic.com

  • 中图分类号: X752

Research progress in the removal of fluoride ions from mine water by adsorption method

Funds: 

Technology Project of China Energy (GJNY-21-129); Independent Research and Development Project of National Key Laboratory of Coal Mining Water Resources Protection and Utilization (SHGF-16-20)

  • 摘要:

    氟离子广泛分布于我国的地表河流与地下水体中,尤其是在西部黄河流域的沿黄矿区,矿井水中普遍存在着氟超标的问题,对当地生态环境和人体健康造成潜在的威胁。我国的氟污染现状多处于低浓度污染水平,常规水处理技术难以有效去除。吸附法凭借其吸附效率高、操作便捷等优点被认为是去除低浓度氟离子的有效方法。综述了目前常用的炭基、矿物类、金属类及金属有机骨架类(MOFs)吸附材料去除氟离子的研究现状,归纳并总结了不同因素对吸附材料的除氟效率和吸附机理的影响。重点分析了吸附法在矿井水处理的应用效果与运行成本,展望了吸附法应用低浓度(<10 mg/L)、大水量的含氟矿井水处理中的发展方向。总体而言,针对吸附法去除氟离子的研究中仍存在较大的改进空间。在吸附机理方面,应从吸附材料特性、氟离子的赋存形态和吸附材料与氟离子之间的相互作用机制等方面继续深入探究。而在吸附法应用方面,应以实际工程需求为导向,开发绿色安全的低成本吸附材料。基于上述研究,提出了吸附法除氟应用矿井水处理的研发方向,在明确当地政策及水质水量的原则下,重点开发以天然/废弃(矿)物和炭基、铝基或其他新型高分子吸附材料为基础的低成本、高效率的环境友好型改性吸附剂。并保证吸附材料在制备加工、投产应用以及循环再生的全生命周期的稳定性、经济性与安全性,从而提高吸附法在实际含氟废水应用的竞争力,提升吸附法的应用潜力。

    Abstract:

    Fluoride ions are widely distributed in surface rivers and groundwater bodies in China, especially in the mining areas along the Yellow River in the western Yellow River basin that there is a widespread problem of excessive fluoride in the mine water, which poses a potential threat to the local ecological environment and human health. The status quo of fluoride pollution in China is mostly at a low concentration pollution level, which leads to it difficult to remove efficiently through conventional water treatment technologies. The adsorption method is considered to be an effective way to remove low concentration fluoride ions because of its high adsorption efficiency and convenient operation. The research status of fluoride removal by commonly used adsorption materials such as carbon based, minerals, metals and metal organic frameworks (MOFs) was reviewed and summarized before summarizing the influence of different factors on the fluoride removal efficiency and adsorption mechanism of these adsorption materials. Then the application effect and operation cost of adsorption method in mine water treatment were emphatically analyzed, and the development direction of adsorption method in the treatment of low concentration (<10 mg/L) and high water content fluorine-containing mine water was prospected. In general, there are still some deficiencies in the study of fluoride removal by adsorption. In terms of adsorption mechanism, it should be further investigated from three aspects which includes the characteristics of adsorption materials, the occurrence form of fluoride ions and the interaction mechanism between adsorption materials and fluoride ions. For the engineering application of adsorption method, the demand of engineering application should be regarded as the guidance. Based on the above discussion, the research and development direction of removing fluoride ions from mine water by adsorption method is proposed, which is to focus on the development of low cost and high efficiency environment-friendly modified adsorbents based on natural/waste (ore) and carbon-based, aluminum-based or other new polymer adsorption materials under the principle of clarifying local policies and water quality and quantity. In addition, it is necessary not to improve the selective adsorption performance of the modified adsorbent for fluoride ions, but also to ensure the stability, economy and safety of the adsorbent in the whole life cycle of preparation, processing, production and recycling, thereby improving its competitiveness of the adsorption method in the actual application of fluoride containing wastewater and enhancing the application potential of the adsorption method.

  • 冲击地压是采掘周围煤岩体积聚的弹性应变能瞬时释放而产生剧烈破坏的一种典型煤矿动力现象。随着我国煤炭资源开采深度和强度的不断增加,采掘部署趋向复杂化,矿井生产面临严峻的冲击地压灾害威胁[1]。煤层钻孔卸压法是一种通过施工钻孔将积聚弹性应变能的煤体破碎排出,利用形成局部高应力条件诱导破坏钻孔周围煤体,使煤层卸压、释放能量,从而预防冲击地压发生。该方法具有施工难度低、对生产影响小等优点,是目前现场应用最广的冲击地压防治技术[2-4]

    在煤层钻孔之后,钻孔围岩位移场、应力场、塑性区发生改变,围绕钻孔卸压机制及其布置参数对卸压效果的影响开展了大量研究工作。马斌文等[5]推导了钻孔卸压区的边界方程,分析了煤体性质、钻孔直径及应力环境对钻孔卸压区分布的影响。王书文等[6]提出以钻孔耗能率为评价指标,从能量角度定量评价钻孔防冲设计之间的优劣,研究表明钻孔防冲效果与钻孔孔径呈幂函数关系,与煤层强度呈负相关。煤层钻孔直径越大,防冲效果越好。然而,钻孔直径的增大对围岩扰动亦增大,随之易出现巷道围岩大变形,增加支护成本[7]。钻孔形成后在应力作用下会逐渐失稳破坏,破坏过程常表现为一种渐进性的破坏形式,与加载作用下含孔试样破坏过程具有明显的相似性[8]。从实验室尺度还原加载作用下含孔煤样变形、破坏过程,有助于揭示煤层钻孔卸压的具体实现机理。杨圣奇等[9-10]研究了含孔洞裂隙岩体的破坏行为、力学性能及裂纹演化机理。宫凤强等[11]总结梳理了预制钻孔和高应力实时钻孔在揭示钻孔卸压防治岩爆灾害机理方面的试验研究结果和进展,阐述了钻孔卸压防治岩爆灾害的合理性和有效性。张天军等[12-13]通过开展不同加载速率下含孔试样单轴压缩试验,以数字图像相关法为主要观测手段,分析了不同加载速率下含孔试样力学特性,孔周裂纹扩展模式及其破裂机制。但室内试验中试样多采用岩样或者相似材料,针对原煤试样的钻孔研究相对较少。

    笔者采用室内试验研究单轴压缩条件下完整煤样和直径为4、6、8 mm的含孔煤样力学行为,并以数值模拟为辅助,分别从宏、细观角度研究不同孔径原煤试样应力应变曲线、能量演化规律、裂纹扩展破坏特征,以期为煤层卸压钻孔的参数选择与优化提供理论参考。

    试验取样地点为内蒙古后温家梁煤矿,将大块完整煤样用塑料薄膜密封,运至实验室精加工。采用钻芯切割一体机垂直煤样层理面制备成ø50 mm×50 mm的圆柱体煤样,并用细砂纸对煤样表面进行打磨,确保煤样两端面平整,且误差控制在标准之内。在完整圆柱煤样基础上,采用高压水刀对煤样进行钻孔,钻孔位于煤样中心,贯穿整个煤样,钻孔直径分别为4、6和8 mm,完整煤样及含孔煤样,如图1所示。

    图  1  含不同直径钻孔煤样
    Figure  1.  Coal samples with different hole diameters

    试验前,采用ZBL−U510非金属超声波检测仪测定煤样纵波波速,其主要由主机、压电传感器及信号传输线组成,如图2所示。检测时在压电传感器与煤样表面涂抹耦合剂,适当施力使两表面处于良好的耦合状态,待接收信号稳定后,立即测读记录。本次试验所用煤样平均纵波波速为1286.61 m/s,为避免煤样力学性质离散性,剔除掉有明显裂纹、纵波波速差异较大的煤样。

    图  2  ZBL−U510 非金属超声波检测仪
    Figure  2.  ZBL−U510 non-metallic ultrasonic detector

    试验设备采用深部煤矿采动响应与灾害防控国家重点实验室配备的100 kN微机控制UTM5105电子万能试验机,如图3所示。不同孔径煤样每种类型测试3个试样,进行单轴压缩试验,直至试样失去承载能力而发生破坏。加载方式为轴向位移控制,加载速率设置为2 mm/min。试验开始前,将煤样放置在上下承压板之间,试验机数据采集系统自动记录试验过程中的轴向载荷和位移数据(压力机数据采集频率为1 Hz),并实时显示试样应力−应变曲线。

    图  3  试验设备
    Figure  3.  Test equipment

    分别对不同孔径煤样进行单轴压缩试验,得到其全应力−应变曲线,如图4所示。

    图  4  不同孔径煤样全应力−应变曲线
    Figure  4.  Stress-strain curves of coal samples with different hole diameters

    不同孔径煤样应力−应变曲线包含初始压密、弹性变形、塑性屈服及峰后破坏4个阶段。通过应力应变曲线形态可以发现,完整煤样应力应变曲线光滑平整,峰前应力变化较为稳定,塑性屈服阶段不明显,峰后脆性特征突出,试样破坏后应力迅速跌落。而含孔煤样峰值应力明显低于完整煤样,且应力应变曲线在峰值应力之前均出现波动,呈“阶梯”状。分析原因为:对煤样预制钻孔,使其形成人为缺陷,在外荷载作用下,钻孔周围萌生微裂隙,煤样承载力下降,在应力应变曲线中造成应力突降。以往研究表明[9],单轴压缩下含孔洞砂岩峰前应力应变曲线也出现应力突降现象,随着孔径的增大,峰值附近甚至出现明显的屈服平台。

    由应力应变曲线获取不同孔径煤样单轴抗压强度、峰值应变及弹性模量,见表1

    表  1  不同孔径煤样力学性能
    Table  1.  Mechanical properties of coal samples with different hole diameters
    煤样状态峰值应力σ/MPa峰值应变ε弹性模量E/MPa
    完整煤样18.4760.02491073.34
    4 mm钻孔13.3500.0229817.08
    6 mm钻孔12.7530.0208873.27
    8 mm钻孔12.1470.0198816.46
    下载: 导出CSV 
    | 显示表格

    统计得到,完整煤样峰值强度为18.47 MPa,含孔煤样峰值强度分布在13.35 MPa (d=4 mm)、12.75 MPa (d=6 mm)、12.14 MPa (d=8 mm)范围内,相对于完整煤样峰值强度分别降低了27.7%、30.9%、34.2%。完整煤样峰值应变为0.0249,含孔煤样峰值应变分布在0.0229 (d=4 mm)、0.0208 (d=6 mm)、0.0198 (d=8 mm)范围内,相对于完整煤样峰值应变分别降低了8%、16.5%、20.5%。完整煤样弹性模量为1073.34 MPa,含孔煤样弹性模量分布在817.08 MPa (d=4 mm)、873.27 MPa (d=6 mm)、816.46 MPa (d=8 mm)范围内,相对于完整煤样弹性模量分别降低了23.8%、18.6%、23.9%。

    由此可以看出,含孔煤样的力学参数均显著低于完整煤样,降低幅度与钻孔直径密切相关。整体而言,随着钻孔直径的增加,含孔煤样的峰值强度、峰值应变及弹性模量均呈衰减趋势。这与来兴平等[14]研究发现的脆性孔洞煤样承载过程破坏中峰值应力及应变呈劣化规律相一致。

    煤样从加载直至破坏伴随着能量的储存和释放,根据能量守恒定律,假设煤样在加载过程中和外界没有热交换,那么能量关系式[15]如下:

    $$ U = {U^{\mathrm{d}}} + {U^{\mathrm{e}}} $$ (1)

    式中,U为外界输入的总能量;$U^{\mathrm{d}} $为耗散能;$U^{\mathrm{e}} $为弹性应变能。

    单轴加载条件下煤样从外界吸收的总能量,弹性应变能,耗散能公式分别为

    $$ U = \int_0^{\varepsilon 1} {{\sigma _1}} {\text{d}}{\varepsilon _1} $$ (2)
    $$ U\mathrm{^e}=\frac{1}{2E_0}\sigma_1^2 $$ (3)

    式中,σ1为主应力;ε1为主应变;E0为初始弹性模量。

    $$ {U^{\mathrm{d}}} = U - {U^{\mathrm{e}}} $$ (4)

    根据式(1)~(4),计算单轴压缩过程中不同孔径煤样吸收的总能量U,存储的弹性应变能$U^{\mathrm{e}} $,耗散能$U^{\mathrm{d}} $。不同孔径煤样各项能量演化曲线,如图5所示。

    图  5  不同孔径煤样能量曲线
    Figure  5.  Energy curves of coal samples with different hole diameters

    根据能量变化特征,可将能量演化曲线分为4个阶段:OA阶段:从外界吸收的能量主要用于煤样原始裂隙的闭合和晶体颗粒之间的滑动摩擦,此时煤样中存储的弹性能较少。AB阶段:煤样内部原始裂隙基本闭合,煤样从外界吸收的能量主要以弹性能的方式储存在煤样内部,同时有极少部分能量用于产生新的微裂隙而耗散。BC阶段:煤样中积累的弹性能迅速增多,且增长速率逐渐变大,耗散能增加趋势并不明显,表明在此阶段煤样内部裂隙发育不明显,内部破裂活动较少,只有少部分能量以裂纹表面能形式耗散。CD阶段:煤样达到应力峰值,弹性能储能也达到峰值,随后煤样发生突然破坏,丧失承载能力,耗散能急剧增加,表明煤样内部裂隙迅速发育、贯通,形成宏观破坏。

    图6为不同孔径煤样的总输入能及弹性能对比情况。

    图  6  不同孔径煤样能量柱状图
    Figure  6.  Energy histogram of coal samples with different hole diameters

    由柱状图可知,完整煤样总输入能为192 J,含孔煤样总输入能分布在160 J (d=4 mm)、135 J (d=6 mm)、113 J (d=8 mm)范围内,相对于完整煤样,总输入能分别降低了16.6%、29.6%、41.1%。完整煤样弹性能为158 J、含孔煤样弹性能分布在109 J (d=4 mm)、92 J (d=6 mm)、90 J (d=8 mm)范围内,相对于完整煤样,弹性能分别降低了31.0%、41.7%、43.0%。相较于前文研究所得含孔煤样的力学参数(峰值应力、峰值应变、弹性模量)均低于完整煤样,弹性能指标下降幅度更大。表明随着钻孔直径的增加,含孔煤样破坏所需要的能量越来越小,其破坏时能量释放的剧烈程度也随之降低。

    煤样的变形和破坏是能量的积聚和释放的过程,也是内部损伤的发育和积累的过程,能量的耗散和内部损伤与强度的弱化有直接的关联。为了更好地研究耗散能在煤岩破坏过程中的占比,采用能量耗散比λ[16]分析单轴压缩过程中能量耗散特征,如下:

    $$ \lambda=\frac{U^{\mathrm{d}}}{U} $$ (5)

    不同孔径煤样能量耗散比变化曲线如图7所示。

    图  7  不同孔径煤样能量耗散比曲线
    Figure  7.  Energy dissipation ratio curves of coal samples with different hole diameters

    由图可知,能量耗散比随应变变化呈先增大后减小再增大的趋势。煤样刚开始加载时,外界输入的能量主要用于试样内部原始裂隙的闭合,能量基本以耗散能为主;之后能量耗散比持续降低,此阶段,弹性能开始积累,占比逐渐增多,煤样内部微裂隙稳定发育、扩展,能量耗散比逐渐减小,直至趋于零;随后进入失稳破坏阶段,耗散能占比急剧上升,峰后阶段能量大量耗散,煤样内部裂隙迅速发育,互相贯通,导致煤样最终破坏。不同孔径煤样的能量耗散比变化规律基本一致,其中钻孔直径越大,能量耗散比在最终急剧上升时对应的应变越小,从而越不容易积聚能量发生冲击性破坏。

    图8所示为单轴压缩下完整煤样和含钻孔煤样破坏特征。

    图  8  煤样破坏特征
    Figure  8.  Characterization of coal sample damage

    图8a可以看出完整煤样发生破坏后,沿着圆周有较大块体剥落,块体高度大致与煤样高度相当。有至少4条主破坏裂纹贯穿整个煤样,最终破坏类型为轴向劈裂拉伸破坏;图8b显示含孔煤样破坏特征与完整煤样类似,但块体剥落并没有完整煤样多。钻孔对裂纹萌生扩展具有一定导向作用,钻孔周围次生裂纹发育明显,其中一条贯穿主裂纹与钻孔连通。

    此外,试验过程中还发现完整煤样破坏瞬间声响较大,煤样破坏后,保留在载物台上煤样碎屑较少,掉落甚至弹射到载物台以外的煤样碎屑较多。而含钻孔煤样破坏时声响相对较小,保留在载物台上煤样碎屑占比较大,由此也可说明,钻孔的存在可以降低煤样破坏的剧烈程度,减弱煤样冲击倾向性。

    颗粒流离散元数值模拟软件PFC的基本构成单元由颗粒组成,不仅可以研究岩土工程中破裂和裂纹的发展,还可研究颗粒间的相互作用、大变形、断裂等问题[17],适合从本质上研究散体、黏结介质的力学特性。鉴于此,在实验室测试基础上,利用颗粒流软件开展含孔煤样单轴压缩数值模拟,从细观角度进一步研究不同孔径煤样力学性能与破坏模式。

    建立与室内试验试样尺寸相一致的含孔煤样数值模型,如图9所示。在颗粒流程序中平行黏结模型主要分析相邻颗粒间附着胶凝物质情况,此模型的有限刚度和接触点刚度以并联模式连接,加载至相邻2个颗粒的载荷将分配给接触弹簧以及平行黏结弹簧,传递力和力矩,适合模拟煤岩类材料力学性能。因此,模拟选用平行黏结模型开展数值模拟试验。

    图  9  数值模型
    Figure  9.  Numerical model

    为更真实地还原本次试验中煤样的力学特性,模拟计算时,还需要对颗粒的几何参数、力学参数与颗粒之间粘结的力学参数等相关参数进行定义。目前常用试错法标定模型细观力学参数,即对比数值模拟结果和室内试验结果,不断调整模型的细观力学参数,直到两者变化趋势基本一致[18]。经过不断调整优化,将标定好的力学参数赋予煤样模型,最终确定的煤样模拟细观参数,见表2

    表  2  数值模型细观参数
    Table  2.  Model parameter setting
    参数 数值
    最大颗粒半径/m 0.9×10−3
    最小颗粒半径/m 0.6×10−3
    平行黏结法向−切向刚度比 1.5
    抗拉强度/MPa 11.4
    黏结强度/MPa 9.9
    颗粒间弹性模量/GPa 0.85
    平行黏结弹性模量/GPa 0.85
    颗粒间摩擦因数 0.5
    颗粒密度/(kg·m−3 2000
    下载: 导出CSV 
    | 显示表格

    分别对不同孔径煤样模型进行单轴压缩数值模拟,结果如图10所示。

    图  10  数值模拟结果
    Figure  10.  Numerical simulation results

    图10a可以看出,数值模拟结果与室内试验应力应变曲线整体变化趋势基本一致,由于数值模型颗粒间接触相对密实,压密阶段不明显,峰值应变比室内试验略小,但数值模拟得到试样强度及破裂特征与室内试验结果吻合较好,均为裂纹贯通整个煤样,产生块体的剥落,是典型的脆性拉伸破坏,说明数值模拟结果可靠。

    图10b可以看出,完整煤样峰值强度明显高于含钻孔煤样,且随着钻孔直径的增大,峰值强度在不断降低。完整煤样在峰值前没有发生应力突降,含钻孔煤样在峰值之前均发生了应力突降,模拟中煤样没有设置原生裂隙,应力突降表现更加明显。并且随着钻孔直径的增大,应力突降出现时对应的应变越小,这与室内试验变化规律一致。

    通过在数值模型上等间距均匀布置应力测量圆,对模型垂直方向应力状态进行监测,将所监测的局部垂直应力数据导出,绘制出不同孔径煤样模型破坏前后垂直方向应力场图,如图11所示。

    图  11  不同孔径煤样破坏前后垂直方向应力场分布
    Figure  11.  Vertical stress field before and after failure of coal samples with different hole diameters

    在煤样破坏前应力云图中,用红色和蓝色的线分别圈出拉应力集中区和压应力集中区。未出现宏观裂隙时,不同孔径煤样模型拉、压应力分布较为均匀。随着加载,在钻孔附近出现应力集中现象,在钻孔的上下两端会出现拉应力集中区,呈对称分布,在钻孔两侧会出现压应力集中区,同样为左右对称分布,这与弹性解析圆形钻孔应力分布一致[19]。煤样模型在持续加载作用下,裂隙不断发育,拉应力区域逐渐增多,最终宏观裂隙贯通时,拉应力区域占据绝大部分区域,煤样模型基本丧失承载力,最终形成拉伸破坏,与王宇驰等[20]研究的不同倾角组合孔洞岩石力学特性及破坏特征中规律保持一致。同时对比破坏前后应力场分布云图可以看出,拉应力数值和分布范围均随钻孔直径增大而增大,表明钻孔直径对拉应力的大小和拉应力区域的扩展均有显著影响。

    此外,应力同样具有方向性,对裂隙的萌生、发育具有导向作用,因此从应力张量角度可以更好地分析某一点的裂隙演化细观机理,平面某一点的应力状态如图12所示[21]

    图  12  平面一点的应力状态
    Figure  12.  Stress state at a point in plane

    二维平面中一点的应力张量矩阵:

    $$ {\boldsymbol{\sigma}} = \left[ {\begin{array}{*{20}{c}} {{\boldsymbol{\sigma}}_ x}&{{\boldsymbol{\tau}} _{xy}} \\ {{\boldsymbol{\tau}} _{yx}}&{{\boldsymbol{\sigma}} _{y}} \end{array}} \right] $$ (6)

    根据应力分量,最大主应力σ1和最小主应力σ3的计算如下:

    $$ {{\boldsymbol{\sigma}} _1} = \frac{1}{2}\left[ {{{\boldsymbol{\sigma}} _x} + {{\boldsymbol{\sigma}} _y} + \sqrt {{{\left( {{{\boldsymbol{\sigma}} _x} + {{\boldsymbol{\sigma}} _y}} \right)}^2} + 4{\boldsymbol{\tau}} _{xy}^2} } \right] $$ (7)
    $$ {{\boldsymbol{\sigma}} _3} = \frac{1}{2}\left[ {{{\boldsymbol{\sigma}} _x} + {{\boldsymbol{\sigma}} _y} - \sqrt {{{\left( {{{\boldsymbol{\sigma}} _x} + {{\boldsymbol{\sigma}} _y}} \right)}^2} + 4{\boldsymbol{\tau}} _{xy}^2} } \right] $$ (8)

    主应力方向角θ由下式求出:

    $$ \tan 2\theta = \frac{{2{{\boldsymbol{\tau}} _{xy}}}}{{{{\boldsymbol{\sigma}} _x} - {{\boldsymbol{\sigma}} _y}}} $$ (9)

    σx大于σy时,主应力方向角为θ,当σx小于σy时,主应力方向角为θ+π/2。

    钻孔直径为8 mm的煤样模型加载过程中的应力张量演化过程如图13所示。PFC模拟软件中规定拉应力为正,压应力为负。图中应力十字架的长轴代表最小主应力,短轴代表最大主应力,长轴倾角为最小主应力方向角。

    图  13  应力张量演化过程
    Figure  13.  Evolution process of stress tensor

    图中分别展示了煤样未加载、裂隙起裂、裂隙贯穿之前、煤样破坏之后等4个阶段的应力张量演化过程。在加载之前,煤样模型未受到压力,其内部的应力较小,且应力方向分布不规律,呈离散状态。在之后的阶段由于受到加载作用,最小主应力方向几乎平行于加载方向。在裂隙起裂阶段,模型内部主要以压应力为主,在钻孔周围存在应力集中区,和应力场云图相对应,钻孔左右两侧为最大受压区,上下两侧为最大受拉区,整个模型只有在钻孔附近发生小范围的应力偏转。

    在贯穿裂隙出现之前的阶段,在已经出现裂隙的区域应力十字架发生较大倾斜,这些区域主要以拉应力为主,当应力角度发生偏转时,相应的区域会出现裂隙,且以拉伸破坏为主。在模型即将破坏时,整个模型基本以拉应力为主,说明拉应力是导致裂隙萌生的主要原因,裂隙周围应力偏转明显。由于最大受拉区最先发生塑性屈服,裂隙沿着最大受拉区迅速扩展,与其他次生裂隙贯通,最后贯通整个模型,也使拉应力得到释放,发生重新分布。同时钻孔周围应力也有明显的偏转,说明钻孔对应力的分布及方向均有影响。

    图14为不同孔径煤样发生裂隙起裂、应力突降、达到峰值应力和破坏后4个阶段裂隙扩展情况。

    图  14  不同孔径煤样裂隙扩展情况
    Figure  14.  Crack propagation of coal samples with different hole diameters

    图14可知,不同孔径煤样裂隙起裂时,均是在煤样上下顶端首先出现,此处为煤样与加载板接触的地方,最先开始受力。完整煤样在裂隙迅速发育时,煤样上下两端先出现较大裂隙,然后向煤样中间贯通,最终形成贯穿整个煤样的裂隙,导致煤样失稳破坏。而含孔煤样,在裂隙迅速发育阶段,则是在钻孔周围先行贯穿,同时应力−应变曲线发生突降,之后裂隙迅速向上下两端扩展,最终贯穿整个煤样[22],裂隙贯穿方向与加载方向一致。

    煤样加载过程中裂隙萌生发育时拉伸和剪切裂隙数量较少,完整煤样表现为煤样中部首次出现较大裂隙时,拉伸裂隙开始比剪切裂隙多,而含孔煤样表现为钻孔周围首次出现裂隙时,即钻孔首次被裂隙贯通时,拉伸裂隙开始比剪切裂隙多。相同的是,不同孔径煤样在应力达到峰值时拉伸裂隙数量急剧上升,而剪切裂隙数量变化不大,最终煤样发生脆性拉伸破坏。

    图15为不同孔径煤样发生裂隙起裂、应力突降、达到峰值应力和破坏后4个阶段位移云图。

    图  15  不同孔径煤样位移过程
    Figure  15.  Displacement process of coal samples with different hole diameters

    图15可以看出,上下加载板刚开始对煤样进行加载时,煤样两端位移较大,中间位移较小。随着持续加载,当裂隙开始出现时,由于裂隙的产生使煤样结构面发生滑移,裂隙周围的颗粒位移会增大,尤其是钻孔周围,此时伴随孔周围的应力集中现象,率先发生小范围损伤破坏,此时煤样还具有一定的承载能力。裂隙顺着滑移的结构面持续扩展,随着轴向载荷进一步增大,颗粒位移逐渐增大,裂隙最终贯穿整个煤样。从8 mm钻孔煤样模型颗粒位移及裂纹扩展的方向可以看出,颗粒位移及裂纹扩展的方向与图13的应力偏转方向一致,表明应力偏转对颗粒的位移和裂纹扩展均具有导向作用。

    煤矿常用地质钻机钻头直径为:ø65~153 mm,最新还研发了针对冲击地压煤层的一次成孔300 mm大直径钻孔技术装备。钻孔直径作为钻孔卸压技术中的关键参数,对卸压效果有着显著的影响。

    开展了单轴压缩下不同孔径煤样力学试验与数值模拟,不同孔径煤样力学参数变化,如图16所示。

    图  16  不同孔径煤样力学参数变化
    Figure  16.  Variation of mechanical parameters of coal samples with different pore sizes

    可以发现,随着钻孔直径的增大,煤样的峰值强度、峰值应变、弹性能等均呈衰减趋势。当钻孔直径增大时,钻孔周围的应力集中现象更为显著,诱导裂纹萌生扩展,煤体内部应力进而得以更充分地释放,可以实现更好的卸压效果。由此可知,钻孔的存在,破坏了煤体的完整性,使煤体的内部结构和力学性质发生了改变。

    然而,钻孔直径过大会增加施工难度和成本,同时施工钻孔后煤体强度变低,可能导致巷道浅部围岩承压能力减弱,围岩稳定性降低,巷道变形增大,抗冲击性变差,如图17所示。如何减小钻孔对巷道浅部围岩的扰动,减小对巷道支护的影响,是现场工程应用亟待解决的难点问题。

    图  17  煤层钻孔卸压机理
    Figure  17.  Mechanism of unloading pressure in a coal seam drill hole

    试验集中于静载单轴应力条件,这与现场采动应力分布规律存在较大差异。下步将针对巷帮浅部应力释放区和深部应力集中区围岩实际应力状态,设计不同应力加载路径试验,开展进一步研究工作。

    1)不同孔径煤样单轴压缩试验表明,含孔煤样的力学参数均显著低于完整煤样,随钻孔直径的增加,含孔煤的峰值强度、峰值应变与弹性模量均呈衰减趋势。加载过程中含孔煤样在峰值应力前均出现应力突降现象,表明钻孔的存在破坏了煤样的原始结构,使其承载力发生弱化,并且降低了煤样的破坏剧烈程度。

    2)不同孔径煤样能量演化规律基本一致,在达到峰值强度前,以弹性能积聚为主,达到峰值强度后,耗散能急剧增加。随钻孔直径的增加,煤样破坏所需要的能量减小,其破坏时能量释放的剧烈程度也随之降低,能量耗散比急剧上升时对应的应变越小,煤样越不容易积聚能量发生冲击性破坏。

    3)不同孔径煤样破坏前后拉应力数值和分布范围均随钻孔直径增大而增大,钻孔周围也有明显应力偏转现象。完整和含孔煤样破坏形式均为拉伸破坏,完整煤样是上下两端先开始出现较大裂隙向中间贯通,形成贯穿整个煤样的裂隙,含钻孔煤样则是在钻孔周围先出现裂隙向上下两端扩展,最终贯穿整个煤样。

  • 图  1   镧改性活性炭中的镧固定机制及其除氟机理[14]

    Figure  1.   The mechanism of lanthanum fixation and fluoride removal in lanthanum modified activated carbon [14]

    图  2   Al2O3-Fe3O4-EG吸附剂制备过程及Cu2O-RGO吸附剂循环除氟性能[25,27]

    Figure  2.   Al2O3-Fe3O4-EG nano interlayer adsorbent and cyclic performance test of fluorine removal of Cu2O-RGO[25,27]

    图  3   CNT、HAP及CNT-HAP吸附剂的SEM图像及HA-MWCNTs吸附剂添加量对F去除率影响[27,32]

    Figure  3.   SEM images of CNT, HAP and CNT-HAP absorbents and the effect of HA-MWCNTs adsorbent addition on F removal effiency [27,32]

    图  4   FeZr改性天然沸石去除F的性能分析[33]

    Figure  4.   Performance analysis of FeZr modified natural zeolite for fluoride removal[33]

    图  5   磷酸改性方解石的3种氟吸附机制示意[48]

    Figure  5.   Schematic of three F adsorption mechanisms of phosphoric acid-modified calcite[48]

    图  6   LC与Ce和F吸附结合机制示意[50]

    Figure  6.   Schematic of the mechanism of LC binding to Ce and F adsorption[50]

    图  7   吸附法去除F的吸附机理示意

    Figure  7.   Schematic of the adsorption mechanism for removal of fluoride by adsorption

    图  8   吸附法应用矿井水除氟技术发展前景

    Figure  8.   Development prospect of the application of adsorption method in the mine water fluoride removal technology

    表  1   常见吸附材料在实际废水中的应用效果[26,29,40,46,80,83-93]

    Table  1   Application effect of common adsorbent materials in actual wastewater[26,29,40,46,80,83-93]

    废水
    类别
    F初始质
    量浓度/
    (mg·L−1
    吸附材料应用效果参考文献废水
    类别
    F初始质
    量浓度/
    (mg·L−1
    吸附材料应用效果参考文献
    工业
    废水
    550 氢氧化钙
    纳米棒
    处理了高酸性电镀工业废水,可以达到99.27%的F去除效率 [83] 工业
    废水
    5 改性膨润土 处理了含氟矿井水,当吸附剂剂量为1 g/L时,去除率可以达到87.8%,氟化物浓度为0.63 mg/L [90]
    工业
    废水
    148.2 铝土矿纳
    米复合
    材料
    在高酸性铅锌冶炼废水中进行了评估,结果表明,当Cl、SO4 2−浓度超过1 000 mg/L和其他重金属(Zn、Pb和Mn)共存时,初始F的吸附量也能达到80 mg/g [84] 工业
    废水
    5 辉沸石 处理了埃塞俄比亚地区的高浓度含氟废水,去除率可以达到30% [86]
    工业
    废水
    98.05 镧改性沸石 处理了工业硫酸锌废水,当吸附剂用量为15 g/L时,可以使初始F浓度从98.05 mg/L降低至
    44.09 mg/L
    [80] 地下水 > 4000 AC/Al2O3
    复合材料
    吸附容量和去除效率仅为0.48 mg/g和5.05% [91]
    工业
    废水
    24.38 活性炭 处理了玻璃行业废水,除氟效率为66.11% [85] 地下水 29.05 镧改性膨润土 处理了天然地下水,使F浓度从29.05 mg/L降低至1.61 mg/L [40]
    工业
    废水
    20.6 辉沸石 处理了埃塞俄比亚地区的高浓度含氟废水,去除率可以达到20% [86] 地下水 4 AC-Al(OH)3(AC由枣茎合成) 处理了地下水,可使F浓度降低至0.98 mg/L [92]
    工业
    废水
    20 改性沸石 处理了矿井水,氟化物去除率达72.7% [87] 地下水 3.10 胺官能化GO 处理了实际地下水样品,使实际F浓度从3.10 mg/L降低至1.24 mg/L [26]
    工业
    废水
    11 活性炭 处理了造船行业废水,除氟效率为65.45% [85] 地表水 3.29 壳基HAP吸附剂 当吸附剂剂量为6 g/L,吸附时间为12 h时,去除效率65% [46]
    工业
    废水
    8.79 HA-MWCNTs 处理了兰州铀浓缩厂的实际废水,可使F浓度由8.79 mg/L降低至
    0.25 mg/L
    [88] 饮用水 4.50 GO/纳米复合材料 F浓度从4.50 mg/L降低至(0.202 ± 0.05) mg/L [88]
    工业
    废水
    8.79 羟基磷灰石/多壁碳纳米管 处理了实际核工业废水,从8.79 mg/L降低至0.25 mg/L(去除率为97.15%) [29] 饮用水 0.2~1.2 多壁碳纳米管 去除效率为
    71.8%~83.3%
    [93]
    工业
    废水
    7.59 沸石−锆粉 处理了玻璃工业废水,用沸石−锆粉在脉冲超声、连续超声和搅拌的模式下,分别使F浓度降低至1.48、1.59和1.71 mg/L [89]
    下载: 导出CSV

    表  2   除氟实际工程应用案例分析

    Table  2   Practical engineering application of defluorination

    来水
    水质
    出水水质吸附
    材料
    工艺流程工艺规模及
    成本分析
    评价参考

    文献
    矿井水,C(F)>
    1 mg/L
    C(F) >
    1 mg/L
    活性氧化铝 总投资2 870.11万元,占地面积2 025 m2,运行成本1.959 元/t,再生成本0.825 3 元/t 易受水中HCO3 的干扰,出水F浓度难以达到《地表水环境质量标准》(GB3838—2002)Ⅲ类标准 [94]
    C(F) <
    1 mg/L
    羟基磷灰石 总投资1 872.66万,占地面积1 055.25 m2,运行成本1.159 元/t,再生成本0.004 7 元/t 占地面积更小,一次性投资成本低,出水F浓度可达到《地表水环境质量标准》(GB3838—2002)Ⅲ类标准 [94]
    含氟矿井水,C(F) >
    8 mg/L,
    水量2万 m3/d
    C(F) <
    1 mg/L
    聚合氯化铝 单独使用聚合氯化铝,达标排放成本 2.6元/t 可能产生水中TDS 质量浓度超过1 000 mg /L [95]
    羟基磷灰石 单独使用羟基磷灰石,达标排放成本3.39 元/t 羟基磷灰石吸附能力有限,可能造成水质波动时出水不达标的问题,需设置二级吸附系统
    聚合氯化铝+羟基磷灰石 聚合氯化铝+羟基磷灰石梯级联用,综合运行成本3.76 元/t 可避免过量加药导致的TDS显著增高和水质波动导致出水不达标的
    问题
    矿井水,C(F) >1 mg/L,水量
    5 000 m3/d
    C(F) <
    1 mg/L
    高效碳基磷
    石灰石
    全工艺综合运行成本1.5 元/t,其中需要配备除氟调酸系统、除氟再生系统、高氟废水化学预沉器、再生废水钙基化除氟加药装置等配套设施,一次投资费用较高 [5]
    下载: 导出CSV
  • [1] 张 颖,张 磊,李喜林. 纳米ZrO2-SRB颗粒对酸性铬和氟污染地下水的修复[J]. 环境工程学报,2020,14(5):1170−1179. doi: 10.12030/j.cjee.201907187

    ZHANG Ying,ZHANG Lei,LI Xilin. Repair of chromium and fluorine contaminated groundwater by nanoparticles ZrO2-SRB[J]. Chinese Journal of Environmental Engineering,2020,14(5):1170−1179. doi: 10.12030/j.cjee.201907187

    [2] 顾大钊,李井峰,曹志国,等. 我国煤矿矿井水保护利用发展战略与工程科技[J]. 煤炭学报,2021,46(10):3079−3089.

    GU Dazhao,LI Jingfeng,CAO Zhiguo,et al. Technology and engineering development strategy of water protection and utilization of coal mine in China[J]. Journal of China Coal Society,2021,46(10):3079−3089.

    [3] 顾大钊,李 庭,李井峰,等. 我国煤矿矿井水处理技术现状与展望[J]. 煤炭科学技术,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002

    GU Dazhao,LI Ting,LI Jingfeng,et al. Current status and prospects of coal mine water treatment technology in China[J]. Coal Science and Technology,2021,49(1):11−18. doi: 10.13199/j.cnki.cst.2021.01.002

    [4] 张海琴,包一翔,唐佳伟,等. 神东矿区天然矿物中的氟化物浸出规律研究[J]. 煤炭科学技术,2023,51(2):436−448.

    ZHANG Haiqin,BAO Yixiang,TANG Jiawei,et al. Study on fluoride leaching regularity of natural minerals in Shendong Mining Area[J]. Coal Science and Technology,2023,51(2):436−448.

    [5] 苏双青, 赵 焰, 徐志清, 等. 我国煤矿矿井水氟污染现状及除氟技术研究[J]. 能源与环保, 2020, 42(11): 5−10.

    SU Shuangqing, ZHAO Yan, XU Zhiqing, et al. Status quo of fluoride pollution of coal mine water in China and research onfluoride removal technology[J]. China Energy and Environmental Protection 2020, 42(11): 5−10.

    [6] 桑树勋,袁 亮,刘世奇,等. 碳中和地质技术及其煤炭低碳化应用前瞻[J]. 煤炭学报,2022,47(4):1430−1451.

    SANG Shunxun,YUAN Liang,LIU Shiqi,et al. Geological technology for carbon neutrality and its application prospect for low carbon coal exploitation and utilization[J]. Journal of China Coal Society,2022,47(4):1430−1451.

    [7]

    HUANG H,LIU J,ZHANG P,et al. , Investigation on the simultaneous removal of fluoride, ammonia nitrogen and phosphate from semiconductor wastewater using chemical precipitation[J]. Chem Eng J,2017,307:696−706. doi: 10.1016/j.cej.2016.08.134

    [8]

    SAMADI M T,ZARRABI M,SEPSHR M N,et al. Removal of fluoride ions by ion exchange resin: kinetic and equilibrium studies[J]. Environ Eng Manag J,2014,13(1):205−214. doi: 10.30638/eemj.2014.025

    [9]

    MENG C,ZHENG X,HOU J,et al. Preparation and defluoridation effectiveness of composite membrane sorbent MFS-AA-PVDF[J]. Water Air Soil Poll,2020,231(2):1−10.

    [10]

    DEHGHANI M H,HAGHIGHAT G A,YETILMEZSOY K,et al. Adsorptive removal of fluoride from aqueous solution using single- and multi-walled carbon nanotubes[J]. J Mol Liq,2016,216:401−410. doi: 10.1016/j.molliq.2016.01.057

    [11]

    BRAIK S,AMOR T B,MICHELIN L,et al. Natural water defluoridation by adsorption on Laponite clay[J]. Water SCI Technol,2022,85(6):1701−1719. doi: 10.2166/wst.2022.091

    [12]

    GAI W Z, DENG Z Y, A comprehensive review of adsorbents for fluoride removal from water: performance, water quality assessment and mechanism[J]. Environ SCI-Wat Res, 2021, 7, 1362−1386.

    [13]

    RASHID U S, BEZBARUAH A N, Citric acid modified granular activated carbon for enhanced defluoridation[J]. Chemosphere, 2020, 252: 126639.

    [14]

    VENCES-ALVAREZ E,VELAZQUEZ L H,CHAZARO-RUIZ L F,et al. Fluoride removal in water by a hybrid adsorbent lanthanum–carbon[J]. J Colloid Interf SCI,2015,455:194−202. doi: 10.1016/j.jcis.2015.05.048

    [15]

    CHOONG C E,KIM M,YOON S,et al. Mesoporous La/Mg/Si-incorporated palm shell activated carbon for the highly efficient removal of aluminum and fluoride from water[J]. J Taiwan Insf Chem E,2018,93:306−314. doi: 10.1016/j.jtice.2018.07.035

    [16]

    SAINI A,MAHESHWARI P H,TRIPATHY S S,et al. Processing of rice straw to derive carbon with efficient de-fluoridation properties for drinking water treatment[J]. J Water Process Eng,2020,34:101136. doi: 10.1016/j.jwpe.2020.101136

    [17]

    LEYVA-RAMOS R,RIVERA-UTRILLA J,MEDELLIN-CASTILLO N A,et al. Kinetic modeling of fluoride adsorption from aqueous solution onto bone char[J]. Chem Eng J,2010,158(3):458−467. doi: 10.1016/j.cej.2010.01.019

    [18]

    NIGRI E M,MAYER D A,MARIA A P C,et al. Cow bones char as a green sorbent for fluorides removal from aqueous solutions: batch and fixed-bed studies[J]. Environ SCI Pollut R,2017,24(3):2364−2380. doi: 10.1007/s11356-016-7816-5

    [19]

    ALKURDI S S A,AL-JUBOORI R A,BUNDSCHUH J,et al. Effect of pyrolysis conditions on bone char characterization and its ability for arsenic and fluoride removal[J]. Environ Pollut,2020,262:114221. doi: 10.1016/j.envpol.2020.114221

    [20]

    ZHAO P,HAN E H,SONG Y,et al. Synergistic effect of Fions and scratch on the dynamic corrosion behavior of ZTi60[J]. Corrosion Sci,2022,203:110355. doi: 10.1016/j.corsci.2022.110355

    [21]

    ZUNIGA-MURO N M,BONILLA-PETRICIOLET A,MENDOZA-CASTILLO D I,et al. Fluoride adsorption properties of cerium-containing bone char[J]. J Fluorine Chem,2017,197:63−73. doi: 10.1016/j.jfluchem.2017.03.004

    [22]

    DELGADILLO-VELASCO L,HERNANDEZ-MONTOYA V,CERVANTES F J,et al. Bone char with antibacterial properties for fluoride removal: Preparation, characterization and water treatment[J]. J Environ Manage,2017,201:277−285. doi: 10.1016/j.jenvman.2017.06.038

    [23]

    NIGRI E M, BHATNAGAR A, ROCHA S D F. Thermal regeneration process of bone char used in the fluoride removal from aqueous solution[J]. J Clean Prod, 2017, 142: 3558−3570.

    [24]

    MIRETZKY P,CIRELLI A F. Fluoride removal from water by chitosan derivatives and composites: a review[J]. J Fluorine Chem,2011,132(4):231−240. doi: 10.1016/j.jfluchem.2011.02.001

    [25]

    XU C,LI J,HE F,et al. Al2O3-Fe3O4-expanded graphite nano-sandwich structure for fluoride removal from aqueous solution[J]. Rsc Adv,2016,6:97376−97384. doi: 10.1039/C6RA19390K

    [26]

    JEYASEELAN A,GHFAR A A,NAUSHAD M,et al. Design and synthesis of amine functionalized graphene oxide for enhanced fluoride removal[J]. J Environ Chem Eng,2021,9(4):105384. doi: 10.1016/j.jece.2021.105384

    [27]

    BOTSA S M, BASAVAIAH K, Defluoridation in aqueous solution by a composite of reduced graphene oxide decorated with cuprous oxide via sonochemical[J]. Arab J Chem, 2020, 13(11): 7970−7977.

    [28]

    ZHANG J,CHEN N,SU P,et al. Fluoride removal from aqueous solution by Zirconium-Chitosan/Graphene Oxide Membrane[J]. React Funct Polym,2017,114:127−135. doi: 10.1016/j.reactfunctpolym.2017.03.008

    [29]

    RUAN Z,YIAN Y,RUAN J,et al. Synthesis of hydroxyapatite/multi-walled carbon nanotubes for the removal of fluoride ions from solution[J]. Appl Surf SCI,2017,412:578−590. doi: 10.1016/j.apsusc.2017.03.215

    [30]

    TANG Q,DUAN T,LI P,et al. Enhanced defluoridation capacity from aqueous media via hydroxyapatite decorated with carbon nanotube[J]. Front Chem,2018,6:104. doi: 10.3389/fchem.2018.00104

    [31]

    SUJANA M G,ANAND S. Fluoride removal studies from contaminated ground water by using bauxite[J]. Desalination,2011,267(2-3):222−227. doi: 10.1016/j.desal.2010.09.030

    [32]

    ARCIBAR-OROZCO,ARCIBAR-OROZCO J A,FLORES-RANGEL J R,et al. Synergistic effect of zeolite/chitosan in the removal of fluoride from aqueous solution[J]. Environ Technol,2018,41(12)

    [33]

    VELAZQUEZ-PENA G C,OLGUIN-GUTIERREZ M T,SOLACHE-RIOS M J,et al. Significance of FeZr-modified natural zeolite networks on fluoride removal[J]. J. Fluorine Chem,2017,202:41−53.

    [34]

    YANG B,SUN G,QUAN B,et al. An Experimental Study of Fluoride Removal from Wastewater by Mn-Ti Modified Zeolite[J]. Water-Sui,2021,13(23):3343.

    [35]

    TEUTLI-SEQUEIRA A,SOLACHE-RiOS M,MARTINEZ-MIRANDA V,et al. Behavior of fluoride removal by aluminum modified zeolitic tuff and hematite in column systems and the thermodynamic parameters of the process[J]. Water Air Soil Poll,2015,226(8):1−15.

    [36]

    ZHANG Z, TAN Y, ZhONG M, Defluorination of wastewater by calcium chloride modified natural zeolite[J]. Desalination, 2011, 276(1−3): 246−252.

    [37]

    PENG S,ZENG Q,GUO Y CH,et al. Technology, Biotechnology, Defluoridation from aqueous solution by chitosan modified natural zeolite[J]. J Chem Technol Biotechnol,2013,88(9):1707−1714.

    [38]

    TIAN Z, GAN Y. In situ synthesis of structural hierarchy flowerlike zeolite and its application for fluoride removal in aqueous solution[J]. J Nanomater, 2019, 3: 1−11.

    [39]

    MUDZIELWANA R,GITARI W M,AKINYEMI S A,et al. Synthesis, characterization, and potential application of Mn 2+-intercalated bentonite in fluoride removal: adsorption modeling and mechanism evaluation[J]. Appl Water Sci,2017,7:4549−4561. doi: 10.1007/s13201-017-0608-3

    [40]

    THAKRE D,RAYALU S,KAWADE R,et al. Magnesium incorporated bentonite clay for defluoridation of drinking water[J]. J Hazard Mater,2010,180(1-3):122−130. doi: 10.1016/j.jhazmat.2010.04.001

    [41]

    KAYGUSUZ H,COSKUNIRMAK M H,KAHYA N,et al. Aluminum alginate–montmorillonite composite beads for defluoridation of water[J]. Water Air Soil Poll,2015,226(1):1−9.

    [42]

    MUSCHIN T, ZULCHIN H, JIA M J C, Adsorption Behavior of Polyhydroxy‐Iron‐Modified Coal‐Bearing Kaolin for Fluoride Removal[J]. ChemistrySelect, 2021, 6(13): 3075−3083.

    [43]

    SANI T,ADEM M,FETTER G,et al. Defluoridation performance comparison of nano-hydrotalcite/hydroxyapatite composite with calcined hydrotalcite and hydroxyapatite[J]. Water Air Soil Poll,2016,227(3):1−8.

    [44]

    AYINDE W B,GITARI W M,MUNKOMBWE M,et al. Green synthesis of Ag/MgO nanoparticle modified nanohydroxyapatite and its potential for defluoridation and pathogen removal in groundwater[J]. Phys Chem Earth, Parts A/B/C,2018,107:25−37. doi: 10.1016/j.pce.2018.08.007

    [45]

    FERNANDO M S,WIMALASIRI A,RATNAYAKE S P,et al. Improved nanocomposite of montmorillonite and hydroxyapatite for defluoridation of water[J]. RSC Adv,2019,9(61):35588−35598. doi: 10.1039/C9RA03981C

    [46]

    MTAVANGU S G,MAHENE W,MACHUNDA R L,et al. Cockle (Anadara granosa) shells-based hydroxyapatite and its potential for defluoridation of drinking water[J]. Results in Engineering,2022,13:100379. doi: 10.1016/j.rineng.2022.100379

    [47]

    LYU Y,SU X,ZHANG S,et al. Preparation and characterization of La (III)-Al (III) co-loaded hydrothermal palygorskite adsorbent for fluoride removal from groundwater[J]. Water Air Soil Poll,2016,227(12):1−9.

    [48]

    WANG J,REN C,WANG H,et al. Mechanisms of fluoride uptake by surface-modified calcite: A 19F solid-state NMR and TEM study[J]. Chemosphere,2022,294:133729. doi: 10.1016/j.chemosphere.2022.133729

    [49] 周 珊, 武明丽. 粉煤灰−石灰法处理含氟废水的研究[J]. 煤炭科学技术, 2006(2): 60−62.

    Zhou Shan, Wu Mingli. Research on fly ash limestone method to treat waste water with fluorine content[J]. Coal Science and Technology. 2006(2): 60−62.

    [50]

    BEHERA B, SAHU H. Modified mine waste as an adsorbent for fluoride removal from contaminated water[J]. Petrol Sci Technol, 2022, 41(4): 493−506.

    [51]

    MORIYAM R,TAKEDA S,ONOZAKI M,et al. Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution[J]. Fuel,2005,84(12/13):1455−1461.

    [52] 王代芝,周 珊,赵桂芳. 用改性粉煤灰处理含氟废水的试验[J]. 粉煤灰综合利用,2005(4):26−28. doi: 10.3969/j.issn.1005-8249.2005.04.010

    WANG Daizhi,ZHOU Shan,ZHAO Guifang. Removal of fluoride from wastewater by adsorption of modified fly ash[J]. Fly Ash Comprehensive Utilization,2005(4):26−28. doi: 10.3969/j.issn.1005-8249.2005.04.010

    [53]

    BAVDA A R,BAPAT P S,JOSHI V B,et al. Investigating the chemistry of alumina based defluoridation using safe H+ source[J]. Int. J. Hydrogen Energy,2018,43(47):21699−21708. doi: 10.1016/j.ijhydene.2018.07.054

    [54]

    CHAUDHARY M, BHATTACHARYA P, MAITI A. Synthesis of iron oxyhydroxide nanoparticles and its application for fluoride removal from water[J], Journal of Enviromental Chemical Engineering, 2016 (4): 4897−4903.

    [55]

    KUMAR E,BHATNAGAR A,JI M,et al. Defluoridation from aqueous solutions by granular ferric hydroxide (GFH)[J]. Water Res,2009,43(2):490−498. doi: 10.1016/j.watres.2008.10.031

    [56] 杨小洪,魏世勇,李永峰. 几种铁氧化物吸附氟的能力及影响因素的研究[J]. 湖北民族学院学报(自然科学版),2009,27(3):248−253.

    YANG Xiaohong,WEI Shiyong,LI Yongfeng. Fluoride adsorption capacity and influence factors of several iron oxides[J]. Journal of Hubei Minzu University (Natural Sci Edition),2009,27(3):248−253.

    [57]

    DU J,SABATINI D A,Butler E C,et al. Synthesis, characterization, and evaluation of simple aluminum-based adsorbents for fluoride removal from drinking water[J]. Chemosphere,2014,101:21−27.

    [58]

    YU C, LIU L, WANG X, et al. Fluoride removal performance of highly porous activated alumina[J]. J. Sol-Gel Sci Technol, 2023, 106, 471–479.

    [59]

    YANG C,GAO L L,WANG Y X,et al. Fluoride removal by ordered and disordered mesoporous aluminas[J]. Microporo Mesop Mat,2014,197(10):156−163.

    [60]

    HUANG L,YANG Z H,ZHANG Z X,et al. Enhanced surface hydroxyl groups by using hydrogen peroxide on hollow tubular alumina for removing fluoride[J]. Microporo Mesop Mat,2020,297:110051. doi: 10.1016/j.micromeso.2020.110051

    [61]

    KABIR H,GUPTA A K,DEBNATH D. Synthesis, optimization and characterization of mesoporous Mg-Al-Fe tri-metal nanocomposite targeting defluoridation: Synergistic interaction of molar ratio and thermal activation[J]. J Mol Liq,2018,268:376−385. doi: 10.1016/j.molliq.2018.07.073

    [62]

    NEHRA S,RAGHAV S,KUMAR D. Biomaterial functionalized cerium nanocomposite for removal of fluoride using central composite design optimization study[J]. Environ Pollut,2020,258:113773. doi: 10.1016/j.envpol.2019.113773

    [63]

    LIAO Z,ZHAO S,DAI Y,et al. Removal of Fluorine from Zinc Electrolyte by Cerium Silicate[J]. J Sustain Metall,2021,7(4):1425−1433. doi: 10.1007/s40831-021-00449-w

    [64]

    DONG S,WANG Y. Characterization and adsorption properties of a lanthanum-loaded magnetic cationic hydrogel composite for fluoride removal[J]. Water Res,2016,88:852−860. doi: 10.1016/j.watres.2015.11.013

    [65]

    ZHAO W,CHEN Y,ZHANG W. J. A. P. J. o. C. E. Rapid and convenient removal of fluoride by magnetic magnesium-aluminum-lanthanum composite: Synthesis, performance and mechanism[J]. Aaia-Pac J Chem Eng,2017,12(4):640−650.

    [66]

    ZAIDI R,KHAN S,FAROOQI I,et al. Investigation of kinetics and adsorption isotherm for fluoride removal from aqueous solutions using mesoporous cerium–aluminum binary oxide nanomaterials[J]. Rsc Adv,2021,11(46):28744−28760. doi: 10.1039/D1RA00598G

    [67]

    SINGH P K,SAHARAN V K,GEOEGE S. Studies on performance characteristics of calcium and magnesium amended alumina for defluoridation of drinking water[J]. J Environ Chem Eng,2018,6(1):1364−1377. doi: 10.1016/j.jece.2018.01.053

    [68]

    KUMARI U,BEHERA S K,MEIKAP B C. A novel acid modified alumina adsorbent with enhanced defluoridation property: Kinetics, isotherm study and applicability on industrial wastewater[J]. J Hazard Mater,2019,365:868−882. doi: 10.1016/j.jhazmat.2018.11.064

    [69]

    OLADOJA N A,CHEN S,DREWES J E,et al. Characterization of granular matrix supported nano magnesium oxide as an adsorbent for defluoridation of groundwater[J]. Chem Eng J,2015,281:632−643. doi: 10.1016/j.cej.2015.07.007

    [70]

    XU N,LIU Z,DONG Y,et al. Controllable synthesis of mesoporous alumina with large surface area for high and fast fluoride removal[J]. Ceram Int,2016,42(14):15253−15260. doi: 10.1016/j.ceramint.2016.06.164

    [71]

    LYU L,HE J,WEI M,et al. Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides[J]. J Hazard Mater,2006,133:119−128.

    [72]

    ZHAO X,ZHENG M,GAO X,et al. The application of MOFs-based materials for antibacterials adsorption, Coord[J]. Chem. Rev.,2021,440:213970.

    [73]

    LIU B, LIU M, XIE Z, LI Y, ZHANG A. Performance of defective Zr-MOFs for the adsorption of anionic dyes[J], J Mater Sci, 2022, 57: 5438−5455.

    [74] 赵瑨云,胡家朋,刘瑞来,等. La-金属有机骨架化合物的制备及其除氟性能研究[J]. 化学通报,2021,84(1):75−80.

    ZHAO Jinyun,HU Jiapeng,LIU Ruilai,et al. Fabrication of La-MOFs adsorbents and its fluorine removal performance[J]. Chemistry,2021,84(1):75−80.

    [75] 朱 晖. Al-MOF吸附材料的制备及其去除水中氟离子的研究[D]. 镇江: 江苏科技大学, 2021.

    ZHU Hui. Study on the preparation of Al-MOF adsorption material and its removal of fluoride from water[D]. Zhenjiang: Jiangsu University of Science and Technology, 2021.

    [76] 张 曼,李多松,王 可. 吸附法去除火电厂冲灰水氟离子的研究[J]. 广东化工,2011,38(3):152−153.

    ZHANG Man,LI Duosong,WANG Ke. Study on removing fluoride ion in ash sluicing water of thermal power plant by adsoption process[J]. Guangdong Chemical Industry,2011,38(3):152−153.

    [77] 郜玉楠,茹雅芳,王 静,等. 微米氧化锆/沸石分子筛处理高氟地下水的研究[J]. 中国给水排水,2020,36(3):49−53.

    GAO Yunan,RU Yafang,WANG Jing,et al. Treatment of high fluoride groundwater by micron zirconia/zeolite molecular sieve[J]. China Water & Wastewater,2020,36(3):49−53.

    [78] 凌 梅. 两种La2O2CO3吸附剂对氟离子的吸附研究[D]. 哈尔滨: 哈尔滨工业大学, 2016.

    LING Mei. Research on F adsorption by two types of La2O2CO3 adsorbent[D]. Harbin Institute of Technology, 2016.

    [79] 张艳素. 铁锆复合氧化物去除砷氟的性能研究及机制探讨[D]. 北京林业大学, 2012.

    ZHANG Yansu. Arsenic and Fluoride Removal from Water by an Iron-Zirconium Oxide: Performance and Mechanism[D]. BeiJing Forestry University, 2012.

    [80]

    LAI Y,KAI Y,CHAO Y,et al. Thermodynamics and kinetics of fluoride removal from simulated zinc sulfate solution by La(III)-modified zeolite[J]. T Nonferr Metal Soc,2018,28(4):783−793. doi: 10.1016/S1003-6326(18)64711-9

    [81]

    CHEN P,ZHANG W,LI M,et al. Facile synthesis of magnetic La-Zr composite as high effective adsorbent for fluoride removal[J]. Rsc Adv,2016,6(42):35859−35867. doi: 10.1039/C5RA27929A

    [82] 刘 航,彭 稳,陆继长,等. 吸附法处理含氟水体的研究进展[J]. 水处理技术,2017,43(9):13−18. doi: 10.16796/j.cnki.1000-3770.2017.09.003

    LIU Hang,PENG Wen,LU Jizhang,et al. Research progress of fluoride-containing wasterwater treatment by adsorption method[J]. Technology of Water Treatment,2017,43(9):13−18. doi: 10.16796/j.cnki.1000-3770.2017.09.003

    [83]

    CHAUDHARY M,and MAITI A. Defluoridation by highly efficient calcium hydroxide nanorods from synthetic and industrial wastewater[J]. Colloid Surface A,2019,561:79−88. doi: 10.1016/j.colsurfa.2018.10.052

    [84]

    ALHASSAN S I,WANG H,HE Y,et al. Fluoride remediation from on-site wastewater using optimized bauxite nanocomposite (Bx-Ce-La@500): Synthesis maximization, and mechanism of F- removal[J]. J Hazard Mater,2022,430:128401. doi: 10.1016/j.jhazmat.2022.128401

    [85]

    BONYADI Z,KUMAR P S,FORONTAN R,et al. Ultrasonic-assisted synthesis of Populus alba activated carbon for water defluorination: application for real wastewater[J]. Korean J Chem Eng,2019,36(10):1595−1603. doi: 10.1007/s11814-019-0373-0

    [86]

    GOMEZ-HORTIGUELA L,PINAR A B,PEREZ-PARIENTE J,et al. Ion-exchange in natural zeolite stilbite and significance in defluoridation ability[J]. Micropor Mesopor Mat,2014,193:93−102. doi: 10.1016/j.micromeso.2014.03.014

    [87] 翟 宇,李占五,邓寅生,等. 改性沸石吸附矿井水中氟离子的试验研究[J]. 煤炭科学技术,2010,38(9):121−124.

    ZHAI Yu,LI Zhanwu,DENG Yansheng,et al. Experiment research on modified zeolite applied to adsorb fluorine ion from mine water[J]. Coal Science and Technology,2010,38(9):121−124.

    [88]

    SINGH N,KUMARI S,KHAN S. Improved fluoride removal efficiency using novel defluoridation pencil[J]. Mater Today Commun,2021,28:102521. doi: 10.1016/j.mtcomm.2021.102521

    [89]

    SAVARI A,HASHEMI S,ARFAEINIA H,et al. Physicochemical characteristics and mechanism of fluoride removal using powdered zeolite-zirconium in modes of pulsed& continuous sonication and stirring[J]. Adv Powder Technol,2020,31(8):3521−3532. doi: 10.1016/j.apt.2020.06.039

    [90] 何瑞敏,苏双青,赵 焰,等. 环境矿物材料对矿井水中氟化物的吸附性能研究[J]. 煤炭技术,2022,41(8):111−114. doi: 10.13301/j.cnki.ct.2022.08.025

    HE Ruimin,SU Shuangqing,ZHAO Yan,et al. Adsorption performance research of environmental minerals on fluoride ion in mine water[J]. Coal Technology,2022,41(8):111−114. doi: 10.13301/j.cnki.ct.2022.08.025

    [91]

    FIORITO S,EPIFANO F,PALUMBO L,et al. Efficient removal of tartrazine from aqueous solutions by solid sorbents[J]. Sep Purif Technol,2022,290:120910. doi: 10.1016/j.seppur.2022.120910

    [92]

    BAKHTA S,SADAOUI Z,BOUAZIZI N,et al. Functional activated carbon: from synthesis to groundwater fluoride removal[J]. Rsc Adv,2022,12(4):2332−2348. doi: 10.1039/D1RA08209D

    [93]

    ANSARI M,KAZEMIPOUR M,DEHGHANI M,et al. The defluoridation of drinking water using multi-walled carbon nanotubes[J]. J Fluorine Chem,2011,132(8):516−520. doi: 10.1016/j.jfluchem.2011.05.008

    [94] 莫文锋. 某矿矿井水处理厂除氟工艺探讨[J]. 建材与装饰, 2019(8): 199−200.

    MO Wenfeng, Discussion on defluorination technology of mine water treatment plant[J]. Construction Materials & Decoration, 2019(8): 199−200.

    [95] 刘奇林,张 鑫,金红亮,等. 一体化除铁除氟技术在农村饮水安全工程中的运用[J]. 河南水利与南水北调,2018,47(5):54−55.

    LIU Qilin,ZHANG Xin,JIN Hongling,et al. Application of intergrade defluoridation technology for iron removal to rural drinking water safety project[J]. Henan Water Resources and South-to-North,2018,47(5):54−55.

图(8)  /  表(2)
计量
  • 文章访问数:  93
  • HTML全文浏览量:  27
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-02
  • 网络出版日期:  2023-05-16
  • 刊出日期:  2023-05-30

目录

/

返回文章
返回